
Preprint ANL/MCS-P8xx-0899, August, 1999
Mathematics and Computer Science Division
Argonne National Laboratory

Stephen J. Wright?

Optimization Software Packages

August 19, 1999

Abstract. We discuss software packages for solving optimization problems, focusing on fun-
damental software that assumes that the problemhas already been formulated in mathematical

terms. Such packages can be used directly in many applications, linked to modeling languages
or to graphical user interfaces, or embedded in complex software systems such as logistics and
supply chain management systems.

1. Introduction

Optimization software is used in a wide variety of applications, including the
fundamental sciences, engineering, operations research, �nance, and economics.
This plethora of applications has led to the development of a large number of
fundamental, general purpose software packages that can be used e�ciently in
a variety of contexts.

This chapter discusses software packages that solve optimization problems
which have been speci�ed precisely in a mathematical sense. The speci�cation
may take the form of a data �le, user-supplied code that �lls out given data
structures or evaluates functions at given values of the argument, or a model
de�ned via a modeling language such as AMPL, AIMMS, GAMS, or MPL. We
do not discuss optimization software that forms a part of larger applications, such
as spreadsheets or supply chain management systems, unless the optimization
code is also available separately.

Optimization software development has gone hand-in-hand with the theoreti-
cal development and analysis of algorithms during the past thirty years. In many
instances, the software authors themselves contributed heavily to the theoretical
analysis. This fact is hardly surprising, since the experience gained in applying
algorithms to practical problems reveals many features of their performance that
are not obvious from the theory, thereby driving the modi�cation and invention
of new algorithms.

The growing commercial market, particularly in linear and integer program-
ming, has yielded rapid improvements in the quality of the software in some

Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Argonne, Illinois 60439; wright@mcs.anl.gov

? Research supported by the Mathematical, Information, and Computational Sciences Divi-
sion subprogram of the O�ce of Advanced Scienti�c Computing Research, U.S. Department
of Energy, under Contract W-31-109-Eng-38.

2 Stephen J. Wright

areas and sometimes in the underlying algorithms as well. In other areas, im-
provements have been more gradual, due in some cases to the lack of demand
and in other cases (such as nonlinear programming) to the inherent di�culty of
the problem class.

The state of the art in optimization software is discussed in the book of Mor�e
and Wright [2]. Information from this book was used as the initial basis of the
NEOS Guide to Optimization Software, which can be found on the Web at

www.mcs.anl.gov/otc/Guide/SoftwareGuide/

This site, which is updated continuously, contains more detailed descriptions of
most of the packages mentioned in this article. We refrain from giving biblio-
graphic references or URLs in the text below in cases where this information can
be found easily in the NEOS Guide. Other notable online resources also can be
accessed through the NEOS Guide; go to

www.mcs.anl.gov/otc/Guide/OtherSites/

We mention in particular the Decision Tree for Optimization Software at

plato.la.asu.edu/guide.html

and Michael Trick's Operations Research Page at

mat.gsia.cmu.edu

Surveys of optimization software are carried out regularly in OR/MS Today, the
magazine published by INFORMS, the leading professional society in operations
research.

Some of the codes mentioned in this article can be executed remotely on the
NEOS Server at

www.mcs.anl.gov/neos/Server/

Users submit data to the Server and receive results through an email or web
interface to the Internet. The Server is a convenient way for users to benchmark
solvers and to test their suitability for a speci�c application.

In the following sections, we discuss the availability of software tools in sev-
eral important areas, including linear programming, integer programming, and
nonlinear programming. We mention a few of the major packages in each area,
discuss the underlying algorithms, and outline recent developments and current
research that is likely to have an impact on future software. In the �nal sec-
tion, we present some impressions of the possible future directions of the �eld of
optimization software.

2. Linear Programming

The birth of modern optimization dates to George Dantzig's invention of the
simplex algorithm for linear programming in the late 1940s. This extremely
e�ective method is still the basis of most linear programming codes today. Lin-
ear programming codes consume far more computer cycles than codes for any

Optimization Software Packages 3

other class of optimization problems. The reasons are partly historical and partly
practical. Generations of modelers in economics and �nance have been trained
to build linear models. Even when the underlying application is actually nonlin-
ear, as is often the case, a linear model su�ces to yield useful results, and the
unavailability of much of the data associated with the problem makes the use
of a nonlinear model unnecessarily sophisticated in any case. Finally, the global
solutions of linear programs are comparatively easy to �nd, while such is not the
case with general nonlinear programs.

The linear programming problem can be formulated mathematically as fol-
lows:

min
x

cTx subject to Ax = b; x � 0; (1)

where x 2 IR
n, c 2 IR

n, b 2 IR
m, and A 2 IR

m�n, for some integers m and n with
m � n. The set of feasible points for (1) is a polyhedral subset of IRn.

The simplex method generates a sequence of iterates xk, k = 0; 1; 2; : : : that
are vertices (extreme points) of the feasible polyhedron. At most m components
of each xk are nonzero, and each iterate is obtained by moving along an edge of
the polyhedron from the preceding iterate. The objective value decreases as the
iterations proceed, that is, cTxk+1 � cTxk for all k. Codes based on the sim-
plex method were available from the 1950s onward, but their e�ency increased
steadily through the 1970s due mainly to advances in the linear algebra tech-
niques and in \pricing," the process of deciding the edge along which to move
away from the current iterate xk. By the late 1980s, commercial simplex codes
appeared to have stabilized, but a new spurt of development was motivated
by the appearance of codes based on a rival class of algorithms: interior-point
methods (see [4]).

Today, interior-point codes coexist with simplex codes in the commercial do-
main. Commercial simplex codes include CPLEX Simplex, MINOS, and those
distributed by XPRESS-MP, OSL, and LINDO. Commercial interior-point codes
include CPLEX Barrier and OSL. All these codes are undergoing continual de-
velopment, and signi�cant improvements are still being reported on many large
practical problems. When coupled with the improvements in computer hard-
ware, the resulting solvers are vastly more powerful than was the case in the
mid-1980s.

Some codes are inexpensive or freely available to researchers and nonpro�t
users. The outstanding simplex code in this category is SOPLEX, which is avail-
able at the following URL:

www.zib.de/Optimization/Software/Soplex/

Academic licensing of the OSL package for Windows platforms is also currently
free of charge. Free or inexpensive interior-point codes include BPMPD, PCx,
HOPDM, LIPSOL, and LOQO. Interior-point codes are more widely available
for the simple reason that they are less complicated to program than simplex
codes. However, they frequently outperform even the best simplex codes on
some problems, particularly large problems. Simplex codes have the important
advantage that they can exploit prior information, such as a good estimate of

4 Stephen J. Wright

the solution of (1), whereas interior-point codes do not derive much bene�t from
such information. Warm starts are available in one of the most signi�cant uses
of linear programming codes, namely, their use in solving continuous relaxations
of integer programming problems.

Computational comparisons of the many of the codes mentioned above have
been performed by Hans Mittelmann, and the results can be viewed at the
following URL:

http://plato.la.asu.edu/bench.html

The traditional format for entering data into linear programming codes is the
MPS �le, a format dating to the 1950s and based on 80-character-wide punch
cards. A much more natural way to specify a linear programming problem is via
an algebraic modeling language such as AMPL, AIMMS, GAMS, or MPL, which
allows variables, constraints, and objectives to be written in much the same way
as on the modeler's note pad. Most linear programming codes can be accessed
through at least one of these languages. In other cases (for instance LINDO) the
linear programming solver and the modeling language are sold as an integrated
package. Some packages, notably XPRESS-MP and CPLEX, come with their
own algebraic input format.

Another way to interface to the software is through subroutine calls, which
are used to build up the model, modify it, solve the problem, and extract the
results. This mode is useful when the software must be embedded into a larger
system or an existing application, and most commercial codes come with the
required \subroutine library" interface.

3. Integer Programming

Integer linear programming problems have the form (1), except that some vari-
ables are required to take on integer values. (In the important special case of
binary variables, we require xi 2 f0; 1g.) In many problems, there is a subset
of variables that is not required to be integral. Such problems are known as
\mixed-integer (linear) programs."

Problems with integer constraints are much more di�cult to solve than con-
tinuous linear programs, due to the fact that the set of feasible points is no longer
convex or even connected. The software is considerably more complicated.

Most algorithms proceed by solving a sequence of continuous linear programs
of the form

min
x

cTx subject to Ax = b; x � 0; Cx � d;

where the additional constraints Cx � d are changed as the algorithm proceeds.
In these so-called continuous relaxations, the integrality requirements are not
imposed on x. The purpose of the additional constraints Cx � d is to either �x
or bound some of the components of x at integer values or to shrink the feasible
set fx jAx = b; x � 0g by cutting o� regions of the continuous feasible set that
do not contain integer feasible points. Constraints of the latter type are known as

Optimization Software Packages 5

cutting planes, and were the basis of the �rst methods developed in the 1950s.
Constraints that �x or bound some of the components at integer values arise
in the branch-and-bound approach, which has formed the basis of almost all
commercial codes. Recent research has focused on combining the cutting-plane
and branch-and-bound approaches, and on identifying powerful new classes of
cuts. Surprising advances are still being made in this area, as algorithms and
heuristics are improved and combined in imaginative ways, and the interaction
between the integer programming code and its simplex-method substrate is made
more e�cient.

For a brief introduction to methods for integer programming, see Wolsey [3].
High-quality codes for integer programming are available only in the com-

mercial sector, partly because of the need for a highly e�cient simplex code to
solve the continuous relaxations and partly because of the intrinsic complexity
of the heuristics used in the best methods to generate cutting planes and to per-
form the branching. The CPLEX, XPRESS-MP, and OSL codes are possibly the
best known, and all are undergoing continual development. More information on
these and other solvers can be found on the NEOS Guide.

Integer nonlinear programs also arise in many applications, but these are
very di�cult to solve, combining as they do the vagaries of nonconvex nonlinear
programming and integer programming. There are a number of research codes
for this problem class. The code MIQP for mixed-integer quadratic programming
is available on the NEOS Server.

4. Quadratic Programming

Quadratic programming problems have the general form

min
x

cTx+ 1

2
xTQx subject to Ax = b; x � 0; (2)

where Q is a symmetricmatrix whose properties and structure are highly application-
dependent. WhenQ is positive semide�nite, the problem (2) is a convex quadratic
program, and is much easier to solve than in the complementary case in which
Q has some eigenvalues negative. Another important special case arises when all
the constraints are bounds, that is, the general linear equalities Ax = b are not
present.

The simplex method for linear programming, described in Section 2, can be
extended to the problem (2). In this setting it is known by the more general
term \active-set method," since each step can be characterized by a subset A �
f1; 2; : : : ; ng of indices of x which are �xed at their bound of 0. As in linear
programming, this algorithm generates a sequence of feasible iterates, but it
no longer con�nes its search to the vertices of the feasible polyhedron because
the solution may lie in the interior of an edge or face, or even strictly inside
the polyhedron. If the component xi reaches its bound on the current step, the
index i is added to A. An index j may be deleted fromA on some iteration if the
Lagrange multiplier for the constraint xj � 0 indicates that the step generated

6 Stephen J. Wright

by relaxing this constraint is a descent direction for the objective function in
(2).

Codes based on the active-set approach appear in OSL and LINDO, while
the packages BQPD, QPOPT, and SNOPT also implement this approach.

The interior-point approach can be used as an alternative to the active-set
approach in the convex case, that is, Q positive seminde�nite. Interior-point
solvers are well suited to large-scale problems, and they can often be tailored
to exploit special strucure in the matrix Q to improve the e�ciency of the
calculations. The basic approach is a straightforward extension of Mehrotra's
primal-dual algorithm for linear programming. Packages that implement this
approach include CPLEX, LOQO, OSL, and BPMPD.

For problems in which only bound constraints are present, algorithms based
on the projected gradient approach are useful, particularly when the problem is
large. This approach has been investigated in many applications, but no codes are
generally available for this speci�c problem. However, this approach is available
in more general codes such as L-BFGS-B or LANCELOT, which are designed
for problems with a nonlinear objective.

5. Unconstrained Optimization

In unconstrained optimization, we seek to �nd the minimizer of a function f(x).
Techniques di�er according to the whether the function is smooth (at least twice
di�erentiable) or nonsmooth, and to whether we seek a local or a global mini-
mizer.

Algorithms related to Newton's method have proved to be particularly ef-
fective when we seek a local minimizer of a smooth function. In general, we
form a model of the function f around the current iterate xk|for instance, the
quadratic model

qk(d)
def
= f(xk) +rf(xk)Td+ 1

2
dTHkd (3)

where Hk is either the Hessian r2f(xk) or some approximation to it, obtained
either from a quasi-Newton update formula or a �nite-di�erence formula. The
problem (3) is solved, possibly approximately and possibly with the inclusion of
a bound on the size of d. Line-search methods search along the resulting step
d to �nd a new iterate xk+1 = xk + td (for some t > 0) with a signi�cantly
smaller value of f . Trust-region methods adjust the bound on the size of d until
the point xk+1 = xk + d gives an improved f value.

The code LANCELOT, though written for more general classes of problems,
reduces to a Newton-like method (with approximate Hessians Hk) when applied
to unconstrained minimization problems. LBFGS and VE08 are designed for
large-scale problems; they use a line-search approach in which Hk is a quasi-
Newton aprpoximation that can be stored in O(n) locations (where n is the
dimension of the unknown vetcor x), rather than the n2=2 memory locations
required by a dense matrix. TN/TNBC and TNPACK, which are also designed

Optimization Software Packages 7

for large problems, take Hk to be the true Hessian, and use an iterative method
to �nd an approximate minimizer of (3). UNCMIN and NMTR (a code from the
MINPACK-2 collection) implement a variety of trust-region approaches. The
code TENMIN augments the second-order model (3) with third-order terms
from the Taylor series for f . It tends to perform more reliably than Newton-type
methods when the Hessian r2f is singular at the solution. The implicit �ltering
approach described in Kelley [1, Chapter 7] uses �nite-di�erence approximations
to obtain an approximation to the gradient rf(xk), while a quasi-Newton ap-
proximation is used fof Hk. This approach is appealing when the function is
noisy, and when derivatives are not available.

Nonlinear conjugate gradient methods are popular for large-scale problems
in which gradients rf can be supplied by the user. They do not use a quadratic
model and require only O(n) storage. Several such methods are implemented in
CGplus, which is available through the NEOS Server.

Direct search methods such as Nelder-Mead simplex, Hooke-Jeeves, and mul-
tidirectional search are popular because they require only function values to be
supplied. These methods, which are designed for small n, evaluate f on a regular
pattern of points. This pattern is modi�ed to investigate regions of the space that
appear to be promising, and f is reevaluated at any new points so generated. For
details on these methods and information on software, see Kelley [1, Chapter 8].
The simulated annealing approach can also be used when only function values
are available. For an implementation, see the code ASA.

Often we wish to con�ne the search to a rectangular box de�ned by l � x � u,
where l and u are vectors of upper and lower bounds, respectively. The most
popular algorithms in this class are active-set and gradient-projection methods.
Active-set methods hold a subset of the components of x at one or other of their
bounds on each iteration, and take steps like those of unconstrained optimization
methods in the other components. The active set, which consists of the �xed
components of x, generally changes from one iteration to the next. Codes of this
type include TN/TNBC. In the gradient projection approach, a search direction
d is calculated in the space of all variables, and candidates for the new iterate are
ontained by projecting points of the form xk + td onto the feasible box, where
t > 0 is the line search parameter. The new point obtained in this way may
be improved by a sequence of Newton-like steps. Codes that use this approach
include LANCELOT, LBFGS-B, IFFCO, and VE08.

6. Nonlinear Programming

In nonlinear programming problems, both the objective function and constraints
can be general nonlinear functions. By adding slack variables to the inequalities,
we obtain the following general formulation:

min
x

f(x) subject to c(x) = 0; l � x � u; (4)

where l and u are vectors of upper and lower bounds, respectively. (Some of the
components of l may be �1, indicating that there is no lower bound on the

8 Stephen J. Wright

corresponding component of x, while similarly some of the components of u may
be +1.)

Algorithms that are currently available in software include sequential quadratic
programming, the projected gradient method, and the augmented Lagrangian
method, otherwise known as the method of multipliers. Interior-point methods,
both primal (log-barrier) and primal-dual, are the subject of much research but
are not currently available in production software. Other penalty and barrier
techniques, while still investigated by theoreticians from time to time, do not
appear in general purpose codes.

In sequential quadratic programming (SQP), a model problem for (4) is
formed by taking Taylor-series approximations about the current iterate xk.
In the case of SQP, this model problem typically has the form

min
d
rf(xk)Td+ 1

2
dTHkd s.t. c(xk) +rc(xk)T d = 0; l � xk + d � u; (5)

where Hk represents the Hessian of the Lagrangian function for the problem (4)
and is constructed either from exact second derivatives or from a quasi-Newton
update formula. If this step d makes progress toward solving (4), as measured by
some merit function, we de�ne the new iterate to be xk+1 = xk + d. Otherwise,
a trust-region or line-search strategy is used to obtain a new candidate step d.

The codes NLPSPR, SPRNLP, and SNOPT use the SQP approach. All of
these packages exploit sparsity in the linear algebra calculations, while the codes
DONLP2, NLPQL, and NPSOL use dense linear algebra and are therefore suited
to problems with fewer variables and constraints. The package FSQP uses a
variant of SQP in which all iterates are con�ned to the feasible region. Such a
restriction is useful when the objective function is not de�ned outside the feasible
region, or when it is essential to the user that the code return a feasible point,
even when it is not able to converge to full accuracy to a solution of the problem
(4).

The method of multipliers makes use of the augmented Lagrangian function
for (4), which is de�ned as

La(x; �;
)
def
= f(x) + �T c(x) +

1

2

c(x)T c(x);

where
 > 0 is a positive parameter and � is a vector of Lagrange multiplier
estimates. At iteration k, a new value xk+1 is obtained by approximately solving
the problem

min
x
La(x; �k;
k) subject to l � x � u; (6)

and the multiplier estimates are updated by setting

�k+1 �k +
1

k
c(xk+1):

The parameter
k may be either held constant or decreased prior to the next
iteration. The subproblem (6) is a bound-constrained optimization problem that
can be solved by using the techniques discussed in the previous section.

Optimization Software Packages 9

LANCELOT implements the method of multipliers for general constrained
problems. This code also makes use of trust-region techniques, gradient projec-
tion techniques for solving (6), e�cient iterative linear algebra methods, quasi-
Newton updates, and sophisticated heuristics for updating the parameter
k
(which is actually weighted di�erently for di�erent components of c(�)).

The reduced gradient approach for solving (4) is an extension of the simplex
method for linear programming, in which nonbasic variables (those at their upper
or lower bound) and basic variables (those whose values are determined by the
constraint c(x) = 0) take their place alongside superbasic variables, which are
allowed to move freely. Techniques from unconstrained minimization are applied
to �nd steps for the superbasic variables. Variables may be reclassi�ed among the
three categories when superbasic or basic variables encounter bounds, or when
Lagrange multiplier estimates indicate that a nonbasic variable should move o�
its bound. Codes based on this approach include CONOPT and LSGRG2, both
of which exploit sparsity in the Jacobian matrix rc(x).

The sequential-linearly-constrained algorithm used by the popular code MI-
NOS combines the augmented Lagrangian approach with projected gradient and
penalty techniques.

It is not currently possible to make general statements about the relative
e�ency of the techniques discussed above. The paradigm (4) encompasses a
wide variety of problems with a wide variety of peculiarities, and a technique
that performs relatively well on one type of problem might perform quite poorly
on another type.

7. Other Problems

Nonlinear least-squares problems arise often in the context of �tting models to
data. In these problems the objective function has the special form

f(x) =
1

2

mX

i=1

r2i (x);

so that the Hessian r2f(x) has the special property that it can be approximated
by the term

mX

i=1

rri(x)rri(x)
T ; (7)

which consists of only �rst-order information about the functions ri. Hence, in
a sense, we get some information about the second-order quantity r2f(x) for
free, and algorithms usually exploit this fact by setting Hk in the quadratic
model (3) to the approximation (7). MINPACK contains an implementation of
a trust-region algorithm in which the approximation (7) is used for the Hessian
of f|essentially the Levenberg-Marquardt algorithm. TENSOLVE implements
both line-search and trust-region strategies that include second-order informa-
tion in the Hessian. Like its unconstrained minimization counterpart TENMIN,

10 Stephen J. Wright

this code performs well on degenerate problems. The PORT3 subroutine library
contains an implementation of the algorithm NL2SOL, which combines the ap-
proximation (7) with a quasi-Newton estimate of the remaining terms ofr2f(x).
VE10 uses a line-search method in which the conjugate gradient method is used
to �nd an approximate minimizer of the quadratic model (3). Other codes that
exploit the least-squares structure include DFNLP, MODFIT, PROCNLP, and
NLSSOL. The package ODRPACK also implements Levenberg-Marquardt, and
additionally addresses an alternative to the least-squares paradigm known as
orthogonal distance regression (ODR).

Global optimization problems, in which we seek the global minimizer of a
nonconvex function f , are becoming increasingly important in applications, and
the increasing power of computers has made it possible to solve them in many
interesting cases. Usually it is essential for the algorithm to exploit the special
properties of f . While general algorithmic strategies such as branch-and-bound,
smoothing, multistart, etc are useful in designing algorithms for speci�c appli-
cations, general-purpose codes are less useful. Nevertheless, several such codes
exist. We mention ASA, the adaptive simulated annealing code discussed in Sec-
tion 5, LGO, and OPTECH. The new code MCS is implemented in Matlab and
is freely available from the site

http://solon.cma.univie.ac.at/�neum/software/mcs/

This web site contains a link to a web page with much useful information about
global optimization techniques.

Optimization problems involving networks arise in many applications, and a
great deal of research has gone into devising algorithms that exploit the structure
of such problems. Linear network problems (such as linear minimum-cost
ow,
or maximum
ow) are often solved by general simplex solvers, which sometimes
make an e�ort to detect and exploit the network structure in the way they
perform their linear algebra calculations. Other solvers such as NETFLOW and
LNOS exploit the structure explicitly, often applying special-purpose algorithms.
Nonlinear network problems are addressed by LSNNO.

8. Future Directions

Though the current generation of optimization software has been extremely use-
ful in a wide variety of applications, there is plenty of room for improvement
in the next generation. Much of the current software does not make use of
advanced software concepts, such as object-oriented design and data-structure
independence. Much of it is programmed in Fortran and is invoked through
subroutine-call interfaces whose
exibility is limited (though the increasing use
of modeling languages is improving the ease of use of many codes). Moreover,
most of the software is tied to the standard taxonomy of optimization prob-
lems that is re
ected in the section titles in this article. While the structure of
certain problems can often be exploited by using sparse linear algebra routines
at each iteration of the optimization algorithm, there are many other problems

Optimization Software Packages 11

that do not �t neatly into the standard taxonomy, and that would bene�t from
specialized linear algebra routines or new algorithms.

We believe that object-oriented design and component software ideas will
become key features of the next generation of optimization software. Components
that implement succesful algorithms such as sequential quadratic programming,
augmented Lagrangian methods, and interior-point methods can be programmed
in a way that is independent of the special features of the underlying problem and
the computational platform on which it is to be executed. These components can
be reused e�ciently in a wide variety of applications when coupled with modules
that implement the linear algebra operations speci�c to the application type and
the architecture of the machine. Powerful toolkits for application areas such as
statistics, process design and control, scheduling, and inverse problems can be
built up from components that implement optimization algorithms, specialized
and general linear algebra operations, mesh generation algoriths, discretization
algorithms for di�erential equations, visualization techniques, and graphical user
interfaces.

Given the continuing improvements in such long-studied areas as linear pro-
gramming, it seems certain that algorithmic advances will continue to play a
role in improvement of the software tools. Moreover, the scope of optimization
software will be widened to handle more di�cult and computationally challeng-
ing problem classes, particularly those involving uncertainty, discrete decision
variables, and matrix variables. Areas such as stochastic programming, stochas-
tic integer programming, semide�nite programming, and second-order cone pro-
gramming have been widely studied, but are not well represented in the current
generation of production software. This is because of the complexity of the al-
gorithms, the sophisticated demands they place on modelers, and their high
computational requirements. This situation will change in future generations of
optimization software as the bene�ts of these algorithms are demonstrated in
applications.

References

1. C. T. Kelley, Iterative Methods for Optimization, Frontiers in Applied Mathematics,
SIAM, Philadelphia, Penn., 1999.

2. J. J. Mor�e and S. J. Wright, Optimization Software Guide, no. 15 in Frontiers in Applied
Mathematics, SIAM, Philadelphia, Pa, 1993.

3. L. A. Wolsey, Integer Programming, John Wiley and Sons, 1998.

4. S. J. Wright, Primal-Dual Interior-Point Methods, SIAM Publications, Philadelphia,
1997.

