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Abstract

This paper addresses the existence and implementation of the infinite horizon controller
for the case of active steady-state constraints. The case of active steady-state constraints is
important because, in many practical applications, controllers are required to operate at the
boundary of the feasible region (for instance, in order to maximize global economic objectives).
For this case, the usual finite horizon parameterizations with terminal cost cannot be applied
since the origin lies on the boundary of the feasible region, and only suboptimal solutions are
available.

We propose here an iterative algorithm that generates an upper bound and a lower bound
finite horizon approximation to the optimal solution. We show convergence of these boundary
approximations to the optimal solution as the horizon increases is shown. The difference between
the upper and lower bound solutions is used to bound the difference between the approximating
solution and the optimal one. The algorithm provides a solution that is guaranteed to be within
a user specified tolerance of the optimal solution. A numerical example with comparison between
optimal and suboptimal controllers is presented.

Index terms — Model Predictive Control, Steady-state constraints, Optimal Control
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1 Introduction

Model Predictive Control (MPC) is a technique in which a process model is used to forecast future
process behavior, and the sequence of future control inputs is computed as the solution to an
open-loop optimization problem. The first element of the optimal input sequence is used as the
process input. The remaining elements of the input sequence are discarded and the optimization
is repeated at each sampling time. Feedback from measurements is considered by correcting the
model prediction, based on the error between the measurement and prediction. Many methods are
available for this correction. Several recent reviews [1, 2, 3] summarize the theoretical formulations
and industrial implementations of MPC.

In this paper, we consider the infinite horizon formulation of model predictive control (IHMPC)
and address the case of constraints that are active at steady state. Process constraints arise both
from physical limitations (for example, a valve can be at maximum fully open and at minimum
totally closed) and from safety and performance specifications. Most papers on constrained infinite
horizon MPC rely on the assumption that the origin is in the interior of the feasible region [4, 5,
6, 7, 8]. It is frequently the case, however, that in order to maximize performance objectives, the
MPC controller operates at the boundary of the feasible region with respect to both input and
output constraints. Moreover, when a nonzero disturbance enters the process, it is often the case
that one or more manipulated inputs ride at their corresponding saturation values during a period
of steady-state operation. These cases give rise to problem formulations in which the origin lies on
the boundary of the feasible region. This situation was treated in [9], which provides a suboptimal
solution for this problem. The main contribution of this paper is to provide an algorithm for finding
the optimal solution of the constrained infinite horizon optimization problem.

The paper is organized as follows. In Section 2, we recall the formulation of the infinite horizon
controller, presenting the common finite parameterization with terminal constraint and discussing
feasibility limitations. In Section 3, we discuss the proposed algorithm and prove its convergence
to the optimal solution. Some implementation issues are addressed in Section 4 and we present an
application of this method in Section 5. Finally, in Section 6, we summarize the main results of
this work. Some definitions and results for infinite dimensional quadratic programs are reported in

Appendix A, while some existence issues are addressed in Appendix B.
2 Formulation of the problem
2.1 Infinite Horizon Model Predictive Control

In this paper we consider time-invariant, linear, discrete systems described by the following model:

Tr4+1 = Az + Bug

yr = Cuy (2.1)



in which zp € R" is the state vector, u;y € R™ is the input vector and y; € RP is the output vector.
It is assumed that the pair (A, B) is stabilizable and the pair (C, A) is detectable.

When a complete measurement of the state vector is not available, a state estimator is required.
Estimation is not germane to the subject of this paper and we assume simply that a Kalman filter
is used, which provides at each sampling time an estimate of xj given the plant measurements
yr- In the presence of plant-model mismatch or unmodeled disturbances, a disturbance model is
required to obtain offset-free control. Several kinds of disturbance models can be used to achieve

this goal. Here we consider the well known output disturbance model defined by the following

Tpy1 = Axy + Buy,

Pk+1 = Pk,

Yr = Cap + pr.- (2.2)

Given the current disturbance estimate, pg, the steady-state targets are computed by solving
the following optimization problem [9]:

. 1 _ ~
mn - {n"Qsn + (usp — W) Rs(usp — )} + a2 n (2.3)

Ts krUs,krYs, kTl

subject to:

Ts ke = Axs,k + Bus,lm

k= Cxgk + Dr,

y—-n<ysk=y+n,  n=0,
Umin < Us g < Umax, Ymin < Ys,k < Ymax;

in which Qs and R, are positive definite matrices, ¥ and @ are the desired targets for output
and input, respectively. These targets may be computed by a global economic optimizer, which
supervises the MPC controller. We assume that ymin < Ymax, Umin < Umax- FOr appropriate choice
of ¢s, the linear penalty ¢!n guarantees that the output slack variable 7 is zero whenever it is
possible to use this value without violating feasibility; that is, whenever the target value 7 is a
feasible choice for y; .

The control action is computed from the minimization of the following infinite horizon quadratic

objective function:

1
O(N) : min 5 Z Yk+j — Ys, k Q(yk+j - ys,k)+
7=0

{@kts k45 Yk+5 =A“k+J

(kg — s i) R(urtj — usk) + Aujy ;SAugy;  (2.4a)

subject to

xk-‘rj-i—l - Aa:k-l—] + BUk+j, .7 = 07 17 27 DRI (24b)



Yk+j = Copqj+pr, J=0,1,2,..., (2.4c)

Umin < Uk4-5 < Umax; ] = 0, 1, 2... , (24d)
—Atmax < Auk—i—j < AUpax, J=12... (246)
Ymin S yk+j S Ymax .7 = 07 17 27 veey (24f)

in which Augy; =S Ugtj — Uptj—1 and Aumax > 0. We assume that @ is positive definite, R and S
are positive semidefinite, and R or S is positive definite.
By using the steady-state targets, we have that

Yktj — Ysk = C(Tppj — To k) (2.5)

Thus, we rewrite the infinite horizon objective function in a more convenient form. Consider the

following new variables:

L karj_xs,k o o A 0 B
Wi = |:uk+j—1 — ’LLs,k:| ’ Ui = Ukt T sk A {0 O} ’ B [I ’ (2.6)

0 S -5
_ I _ | Ymax — Usjk _ I o 0 I o Almax
b= [I} » 4= [umin Jrus,k]  B= {I] » G = [0 I] » €T [Aumax ’

c 0 Ymax — Ys,k
H = h = ’ .
|:—C O:| ’ |:_ymin + Ysk

cefo . @[99 reres m=[f].

It follows from (2.6) that the “new” R is positive definite since either the “old” R or the “old”
S is positive definite. From the steady-state target calculation (2.3) we have that d > 0, h > 0.
Moreover, since Aumax > 0, we have that e > 0. By substituting into (2.4), we find that the optimal

control problem requires the minimization of the following infinite horizon objective function:

1 oo
O(N) : min = Z ijij + UJTRU]' + 2ijMvj (2.7a)

{w]',vj}?io 2 j:()

subject to:

wo = u)init’ Wil = ij + BUJ', 7=0,1,2,..., (27b)
Dv;<d, j=0,1,2,..., (2.7¢)
Ev; — Guwj <, ji=0,1,2,..., (2.7d)
Hw; <h, j=0,1,2,..., (2.7¢)

The optimization problem (2.7) may be infeasible due to the presence of input and state constraints.
For example, a disturbance may enter the plant and cause the current state wg to leave the feasible

region. The problem of feasibility for MPC has been addressed in several ways [6, 10, 11, 12]. Any



of these state constraint softening approaches can be incorporated into the methodology proposed
here.

Therefore, we assume that, given a w'™, a sequence {vj, wj}?io exists, which is feasible with
respect to constraints (2.7b) (2.7c), (2.7d), (2.7e) and gives a finite value of the objective function
in (2.7). From a physical point of view, we assume that a sequence of inputs exists that is able
to bring the system to the origin while respecting input and state constraints. This assumption
is commonly referred to as constrained stabilizability. We also assume that the pair (Ql/ 2 A) is
detectable. This assumption prevents unstable modes evolving without appearing in the objective

function. This assumption implies that, if a feasible sequence exists, then w; — 0, v; — 0 as j — o0

[8].
2.2 Finite parameterization of the optimal control problem

The infinite horizon problem in (2.7) was addressed in several ways [5, 4, 13, 7, 8]. The key step in
these analyses is to recognize that inequality constraints remain active only for a finite number of
sampling times while the states and the inputs are approaching the origin.

The solution of the unconstrained infinite horizon problem is the well known linear feedback
control law:

vy = —ij, (2.8)

in which K is computed from the solution of the discrete-algebraic Riccati equation. For nonlinear
systems, Michalska and Mayne [14] present the “dual-mode” controller in which the optimal linear
control law in (2.8) is appended to the input sequence after a finite horizon. The same idea is used
for linear systems [7, 8], where the following finite horizon objective function is used as replacement

of (2.7):

N-1

1 1
min = Z {ijij + v;‘»FRvj + 2ijMvj} + —whMwy (2.9a)

{wi o dvi )" 2 555 2

subject to:

wy = w™t, wj+1 = Aw;j + By, j=0,1,2,...,N —1, (2.9b)
Dv;<d, j=0,1,2,...N—1, (2.9¢)
Evj—Guw;<e, j=0,1,2,...N—1, (2.9d)
Hw; <h, j=0,1,2,...N, (2.9¢)

in which the cost-to-go II is the solution of the discrete-algebraic Riccati equation. In addition to
constraints (2.9¢), (2.9d) and (2.9e), the final state wy is required to be in the following positive

invariant convex set [15]:

0= {w|f1(A ~BK)w<h Vi> o} : (2.10)



in which

—-DK R d
H=|-(EK+G)|; h=le
H h

If the final state wy is in the invariant set defined by (2.10), the optimal unconstrained control law
(2.8) yields a solution that satisfies state and input constraints at all future sampling times. When
the origin is in the relative interior of the feasible region, which is true if and only if d, e and h are
strictly positive, the existence of a nontrivial invariant set is guaranteed.

When the origin lies inside the feasible region for (2.7), we may construct a solution for the
infinite-horizon problem (2.7) from the solution of the finite-horizon problem (2.9) provided that
the horizon index N is sufficiently large. Typically, one solves (2.9) for some N and then checks to
see whether wy lies in the output admissible set Q. If so, it can be shown that the optimal values
ofwj, j=0,1,2,...,N and vj, j = 0,1,2,..., N — 1 are identical for (2.7) and (2.9). Otherwise,
one increases the value of N in (2.9) and repeats the process.

When state constraints are active at steady state, arbitrarily small constant disturbances would
render the hard constrained problem infeasible, which means that there is no feasible sequence that
brings the system to the origin without persistently violating the active constraints permanently.
Therefore, we assume that state constraints are not active at steady state. In other words, it is
assumed that the elements of h (but not of d) in (2.7e) or (2.9¢) are all strictly positive. Moreover,

velocity constraints are never active at steady state, since e is positive by definition.

3 Optimal solution of the infinite horizon problem

In this section, we introduce a method for finding an approximate solution of the problem (2.7) in
the case in which some constraints are active at steady state, so that the origin lies on the boundary
of the feasible region. Our approach is to construct two problems that approximate (2.7) and for
which solutions can be calculated — one of which has an optimal objective value that is an upper
bound for the optimal objective of (2.7) and the other a lower bound. By showing that these two
bounds approach each other as N — oo, we obtain increasingly accurate estimates of the optimal
objective for (2.7). Moreover, we use the difference between the upper and lower bound objective
functions to obtain a bound on the difference between the solution of the approximating problem

and the solution of (2.7).

3.1 Upper bound on the optimal solution

An upper bound on the optimal objective ®* of (2.7) can be computed by using the method
proposed in [9]. In this approach, a suboptimal solution to (2.7) is found by restricting the evolution
of the input and state trajectories to the null space of the active steady-state constraints, after the

finite horizon N > 0. This solution is found by minimizing the following infinite horizon objective



function:

U(N) : = Z Tij + v;prvj + waMvj (3.1a)
{wj,vj}J 0 2 o
subject to (2.7b), (2.7c), (2.7d), (2.7e) (3.1b)
and
Dv; =0, j=N,N+1,..., (3.1c)

where D denotes the row sub-matrix of D corresponding to input inequality constraints active at
steady state, that is the rows of D whose corresponding elements of d are zero.
Let ®%, be the optimal objective value for ¢(NN) in (3.1). Since (3.1) has more constraints than

(2.7), its feasible region is smaller, so we have:
O < DY, (3.2)

We can reformulate the infinite horizon problem (3.1) as a finite-horizon problem that can be
solved by practical means as follows:

N-1

1
{wJ}NTl{I;}N N = Z; {wTQw] + v; TRv; + 2w Mv]} + wNHwN (3.3a)
J J

subject to (2.9b), (2.9¢), (2.9d), (2.9¢) (3.3b)

where the cost-to-go matrix IT is associated with the unconstrained control law:
v; = —Kuwj. (3.4)

The computation of K is described in [9]. In order for such a linear control law to exist, the
system must be stabilizable in the null space of the active steady-state constraints. In some cases,
this condition requires the controller to zero the unstable modes that are not controllable in this
subspace. When all input constraints are active at steady state, it is necessary to zero all the
unstable modes and the upper bounding problem results in the controller discussed in [13]. In
Appendix B it is shown that the upper bounding problem (3.3) is feasible for N sufficiently large
under the assumption of the existence of a feasible sequence for the optimal problem (2.7).
The problems (3.1) and (3.3) are identical in the sense that the solution components vy, v1, ..., vN_1

are the same for each. We compute the remaining components by using the unconstrained evolution

of the system under the feedback gain K:
v; = —Kuw, j=N,N+1,..., (3.5a)
Wit1 = A’U)j—‘rB’Uj J=N,N+1,... (35b)
If the final state wy does not lie in the output admissible set for the subset of inequalities not

active at steady state under the feedback gain K ([9], [15]), the horizon N must be increased in

order for the solution components of (3.1) and (3.3) to be equal.



3.2 Lower bound on the optimal solution

A lower bound on the optimal objective ®* of (2.7) can be found by minimizing the following

infinite horizon objective function:

1 oo

L(N) : min 3 Z w]Tij + U]TRU]' + 2’U)JTMU]' (3.6a)
{wjavj}jzo =0

subject to (2.7b), (2.9¢), (2.9d), (2.9¢). (3.6b)

Notice that constraints (2.9¢), (2.9d), (2.9¢) are enforced over a finite horizon N only.
Let @4 be the optimal objective value for £(N). Since (3.6) has fewer constraints than (2.7),
it is clear that
oy < ®*, VYN >0. (3.7)

The infinite horizon problem (3.6) can be solved by using the finite parameterization in (2.9),

without adding the constraint on the final state. That is, we solve the following problem:

N-1
. 1 T T T L 7
| Nmm. N3 Z {wj Qwj + v; Rvj + 2w; Muv;} + inHwN (3.8a)
{witizoofvitizo j=0
subject to (2.9b), (2.9¢), (2.9d), (2.9¢). (3.8b)
The solution components vy, v1, ..., vy—1 are the same for (3.6) and (3.8). We obtain vy, vn11, ...,

from (3.8) by using the unconstrained evolution:

v;=—Kw; j=NN-+1,..., (3.9a)
Wil = ij —f—BUj j=N,N+1,... (39b)

3.3 Convergence of the Optimal Sequences

In this section we show that vy obtained from each of the three problems (2.7), (3.1), (3.6) converges
to the same point as N — oo. We prove the result by treating (2.7), (3.1), (3.6) as strictly convex

quadratic programs in the variable
_ 2
z = (vg,v1,...) € L7,

where

o0
Z = {Z:(ZI,ZQ,...)]ZZ'ER,i:1,2,...; Zz3<oo}
=1

[o.¢]
= (vo,v1,v2,...) |v; € R™, j=0,1,...; Z\|vj\|%<oo ) (3.10)
§=0



By using the state equation to eliminate w; for j = 1,2,..., all three problems (2.7), (3.1), (3.6)

have the following form:
1
min f(z) = 5(2, Uz) + (c, z), subject to z € C, (3.11)

where C is a closed, convex subset of ¢2. See Appendix A.1 for further details and results on
quadratic programs on the space ¢2.

Note that the restriction (3.10) does not hamper our ability to consider interesting points. An
input sequence {v; = uy; — us}32, for which 3772, |vj]|3 = oo is such that limj_, e gt # Us i,
which implies that limj . Yx+; # Ysx (this property follows from unicity of the solution of the
target calculation problem [9]). Therefore, the objective function in (2.4) (and the equivalent one in
(2.7)) would be infinite, since @) in (2.4) is positive definite and all the other terms are nonnegative.

In describing the limiting behavior of the solutions of the problems (3.1) and (3.6) as N —
00, we use results from Appendix A.2 concerning the minimizers of a strictly convex quadratic
function over increasing and decreasing sequences of sets. We consider first the lower-bounding
problem (3.6). Let Cn denote the feasible set in ¢2 for this problem; that is, the set of vectors
v = (vo,v1,v2,...) for which there is a w = (wp, w1, ws,...) such that (v,w) satisfy (3.6b) and,
in addition, Z;ioHUjH% < co. We obtain (3.6) by setting C = Cy in (3.11). It is clear that
{CN}N=123.. is a decreasing sequence of sets. Moreover, it is easy to see that the set defined by

C= () Cwn
N=12,...
is simply the feasible set for (2.7); that is, the set of vectors v = (vg,v1,v2,...) for which there
is an w = (wp,w,ws,...) such that (v, w) satisfy (2.7b), (2.7c), (2.7d), (2.7e) and, in addition,
>0 |v; |3 < co. We obtain (2.7) by setting C = C in (3.11).

We introduce the notation 2y = (0n5,0,On,1,0N,2, - .. ) for the minimizer of (3.11) with C = Cy
(equivalently, (3.6)), and z* = (v, v}, v3,...) for the minimizer of (3.11) with C = C (equivalently,
(2.7)). By applying Theorem A.4 from Appendix A.2, we have that

lim 2y =z, @Y 1@, (3.12)

N—o0

where the last limit indicates that the sequence of optimal objective values {<I>lN} N=1,2,.. for (3.6)
is increasing and approaches the optimal objective ®* for (2.7) as N — oo.

We turn now to the upper-bounding problem (3.1). Let Cy denote the feasible set in 2 for this
problem; that is, the set of vectors v = (vg, vy, v2,...) for which there is an w = (wg, w1, wa,...)
such that (v, w) satisfy (3.1b), (3.1c), and, in addition, > 72, lv;||3 < co. We obtain (3.1) by setting

C =Cy in (3.11). It is clear that {éN}N:LQ,gm is an increasing sequence of sets. Its limit, defined
by
c= |J ov
N=12,...

9



is the set of vectors v € £2 for which there is an w such that (v, w) satisfy (3.1b), as well as satisfying
(3.1¢) for some value of N. This is not the same set as the feasible set C for (2.7), in which the
restriction (3.1c) does not appear at all. Hence, the issues in considering the upper-bounding
problem are slightly more subtle than for the lower-bounding problem, and are considered in our
discussion of increasing sequences of sets in Appendix A.2. The remainder of our discussion below
shows that we can apply Theorem A.5 in Appendix A.2 to this case, and arrive at the desired
conclusion that the sequence of minimizers of the upper-bounding problem (3.1) converges to the
minimizer of the optimal problem (2.7).

We can identify the feasible set C for (2.7) with the set C* in (A.20), and identify the minimizer
z* of (2.7) with Z of (A.20). Note that C is certainly closed, and that since Cy C C for every N we
certainly have C C C. It remains only to show that z* € cI(C); that is, the solution of (2.7) lies in
the closure of the set formed by the union of the feasible sets for (3.1), over all V.

To show that z* lies in the closure of C, we construct a sequence {zy} such that
2y € Cy C C, for all N sufficiently large, and zy — 2*.

Writing

2" = (v5,0],V5, .. ),

we have by the definition of C that there is a vector w* = (wg, w}, ws, . ..) such that (v*, w*) satisfies
the conditions (2.7b), (2.7c), (2.7d), (2.7e). Since z* € £, we also have that

D
Jim, 3 Ieil =o. (3.13)
]:

We now construct zy by perturbing the optimal vector z* in such a way that all the unstable
modes of the system are zeroed at time N. Theorem B.1 shows that such a zy exists and it is
feasible with respect to all constraints when N > N’ for some positive N’. After stage N, the input

is set to zero, and zp is as follows

ZN = (UN0, UN1, -+ - ONN=1,0,...).

Clearly zy € Cy. We can write

N-1 [e'e)
lzv =217 < D llowg = o315+ D lsll3
§=0 J=N

From (B.14) and (B.15), we have that the first term goes to zero as N — oo and, from (3.13),
we have that also the second term goes to zero as N — oco. We conclude that ||zy — 2*|] — 0 as
N — oo and hence that z* € cl(C), as claimed.

Having verified that the assumptions of Theorem A.5 in Appendix A.2 are satisfied, we can now

apply this theorem to deduce that the sequence of minimizers Zy of the upper bounding problem

10



(3.1) (alternatively, the problem obtained by replaying C by Cy in (3.11)), approaches the solution
of the optimal problem (2.7), and that the sequence of objective values converges monotonically to
the optimal objective value. That is, we have

lim zy = 2%, N1l (3.14)

N—o0

From (3.12) and (3.14), we have that the solutions 2y and zZy of £(NN) and U (), respectively,
approach the solution z* of the optimal problem (2.7) as N — oo. Moreover, we can apply the
result of Theorem A.3 to obtain an estimate of the distance of the first component vy from the
solution 2y of L(N) to the corresponding optimal component v§. In Theorem A.3, let the canonical
problem (A.1) correspond to the “most relaxed” problem—the lower bounding problem L£(N) in
(3.6). We have from this result that

1
gollén - 2?2 < o — oYy < dY — Dy,

where we use the fact that ®%;, > ®* in the second inequality, and the constant o > 0 is discussed

in Appendix A.1; this gives a useful bound, since ®* itself is not available. Thus we deduce that

R . R i} 92 1/2
oo = il < llaw = =1 < |2(@% - abo| (3.15)

4 Implementation issues

The results of the previous section suggest an iterative approach to determining an approximation
to the vj component of the solution of the infinite horizon problem (2.7). In this approach, we
solve a series of quadratic programs for the upper and the lower bound problems (3.1) and (3.6).
If the difference between the optimal objective values for these problems does not satisfy a chosen
stopping criterion, the horizon is increased; otherwise the first input vé of the computed sequence

of the lower bound problem (3.6) is accepted as a good approximation to vy, and is injected into

the plant.
As stopping criterion we use a relative difference between the upper and the lower bound
solution: o !
%@NN < p, (4.1)

where p is a small positive number.

At each sampling time we apply the following algorithm, starting with a positive horizon N > 0.

1. Solve (3.3). If the problem is infeasible, go to 5. Otherwise, let ®% be the optimal value of

the objective function.

2. If the final state wy does not belong to the output admissible set for constraints inactive at

steady state [9], go to 5.

11



3. Solve (3.8). Let ®!; be the optimal value of the objective function.
4. Check (4.1). If satisfied, go to 6.
5. Increment the horizon N and go to 1.
6. Set vg equal to the first solution component of (3.8).
The proposed algorithm always terminates because from (3.12) and (3.14) we have that
Jim @ — Py =0, (4.2)

which implies that for any p > 0 there exists a N’ such that for N > N’ the stopping criterion
(4.1) is satisfied.

Theorem A.3 and (3.15) provide a measure of the distance from the input of the lower bound
solution (3.6) and of the optimal solution (2.7). In (3.15) the monotonicity constant « appears in
the denominator, so the bound is tighter when « is large. A numerical algorithm for computing a

bound on « is available but we omit it for the sake of brevity.

5 Case study

In this section we present a numerical example of a system in which the control action does not
become permanently active or inactive at steady state.

The following system is considered:

0.5477  0.8208 0 1

Tpp1 = [—0.8208 0.5067 0 |z + |0 ug, (5.1)
0 0 08 1

ye=[1 0 1]y (5.2)

The controller is required to drive the system state to the origin, from the initial state zqg =

[3 3 O}T. The control action is bounded as follows:

up < 0. (5.3)

Tuning parameters for the controller are Q =1 and R = 1.

For this system the target values for both input and state are zero, which is also a bound for
the input. Hence, the origin lies on the boundary of the feasible region. The unconstrained control
law ug = — Ky, for this system requires both positive and negative inputs. As shown in Figure 2,
the corresponding constrained control action does not become permanently active or inactive. A
logarithmic scale is used in the figure to emphasize this behavior.

The relative tolerance between the upper bound and the lower bound solutions in (4.1) is chosen

equal to p; = 1079, In Figure 1, we plot the horizon length against the relative difference between

12



the upper bound and the lower bound objective functions, obtained at time k& = 0. This plot shows
that a horizon of about 70 is needed to satisfy the chosen tolerance p;. This relative tolerance
guarantees a precise convergence of the entire input sequence (ug,u1,...) to the optimal value.
However, even with a bigger tolerance (and therefore a shorter horizon), the injected input ug is
still close to the optimal value. In fact, in Figure 2 the injected input is reported for the chosen
tolerance p; and for the larger tolerance po = 1073. These two input sequences are close to each
other except for the last part of the simulation, where the magnitude of the input is small in any
case. The output for the closed-loop system is reported in Figure 3, both for the tolerance pg
and po. The two lines are essentially indistinguishable, showing that even a weaker convergence

tolerance produced a response close to the optimal one.

6 Conclusions

In this paper the existence and the implementation of the infinite horizon controller for the case
of active steady-state constraints has been discussed. This case is important because, in practi-
cal applications, controllers are often required to operate at the boundary of the feasible region.
For this case only suboptimal solutions were available, based on finite horizon formulations with
terminal equality constraints or infinite horizon formulations with appropriate suboptimal finite
parameterization. An iterative algorithm was presented that determines the optimal solution of
this problem within a user specified tolerance. Since the optimal infinite horizon solution is found,
the proposed controller is simple to understand and tune, and achieves better performance than

the previous solutions.
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Quadratic Programs and Sequences of Sets: Definitions and
Theorems

A.1 Convex Quadratic Programs in (>

We consider the space £2, which is the infinite-dimensional set of objects of the form:

z=(z1,22,23,...), z €R foralli=1,2,....

14



such that
oo
D 7 <o
i=1

When equipped with the following inner product:

<a, b) = i aibi,
i=1

¢? is a separable Hilbert space [16]. We define the norm on this space in the obvious way:
2]l = (2, 2)"/2.

Consider the following convex optimization problem over ¢2:

1

= 5(2, Uz) + (c, z), subject to z € C, (A1)

min f(z)
z
where

o U :(?> — (?is a linear, self-adjoint, strictly monotone operator; that is, there is o > 0 such
that
(2,Uz) > a(z, z), for all z € £2, (A.2)

e C C /2 is convex, closed, and nonempty.
We define the normal cone to C at a point z as follows:
Ne(z) ={v|{v,2—2) >0, forall z€C}. (A.3)
Theorem A.1 If z* solves (A.1), then we have
—(Uz*+¢) € Ne(29), (A.4)
and in particular, we have
(Uz*4c,z—2") >0, for all z € C. (A.5)
Proof. We can apply the Corollary on p. 52 of Clarke [17]. At the solution z*, we have:
0€adf(z") + Ne(z"), (A.6)

where 0f denotes the generalized gradient of f at z*. Since f is quadratic and U has the properties
described above, we have df(z*) = {Uz* + ¢}, so that (A.4) follows immediately from (A.6). The

second claim follows from (A.3). O
Theorem A.2 The problem (A.1) has a unique minimizer z*.
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Proof. Given any zy € C, the level set

{z]£(2) < f(20)}

is closed and bounded, by the monotonicity property (A.2). Hence f attains a minimum on this

set, say at z*. Uniqueness of z* is also a consequence of monotonicity. [

Theorem A.3 Let z* be the solution of (A.1). Then for all other z € C, we have that

e 11l/2
Proof. Using (A.5), we have (¢, z — z*) > —(Uz*, z — z*). Hence, we have
F&) = F(2") = e, U2) = 32" U + o7 — )
1 1 1
> 5(2, Uz) — 5(2*,Uz*> —(Uz*,z—2") = 5(2 —25U(z—2%))
> Salls— P
2

where the last inequality follows from (A.2). O

A.2 Increasing and Decreasing Sequences of Sets

We now consider monotonic sequences of subsets of £, their limits, and the behavior of the sequence
of points obtained by minimizing the function f(z) defined in (A.1) over each of the sets in these
sequences.

Consider first a decreasing sequence of sets {é J}J=1,2,. such that

each C; C % is closed, convex, and nonempty; (A.8)

élDégD"'. (A.g)
This sequence has a limit C defined by

C= Cr; (A.10)
J=1,2,...

see [16, p. 66]. It is clear that C too is closed, convex, and nonempty. Cis simply the set of points

that belong to every set C; in the sequence. We also have the following characterization.
Lemma A.1

C={z]z= Jlim 2y, for any convergent sequence {z;} with z; € Cy for all J}. (A.11)
—00
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Proof. Assume first that z € C. The trivial sequence defined by z; = z suffices to show that z
belongs to the set on the right-hand side of (A.11).

Now assume that z ¢ C. We show that there can exist no sequence {zs} with z; € Cy, all J
with the property that ||z — z|| — 0.

Since z ¢ C, we have that z ¢ Cr for some K and indeed, by closedness of éK, we have
dist(z,éK) > 0. Therefore, by the monotonicity property of the sequence {é 7}, we have that
z ¢ C; for all J > K, and in fact that

dist(z,Cy) > dist(z,Cx) > 0, for all J > K.
It follows that for any sequence {z;} with the property z; € ¢ 7, we have that
|z — 27| > dist(z,Cy) > dist(z,Cx) > 0, forall J > K,

so we cannot have ||z — zs|| = 0. O

We consider the sequence of problems P(J) defined as follows
P(J): min f(z) subject to z € Cy, (A.12)

where f(z) is defined as in (A.1). By applying Theorem A.1, we can identify points 27, J =1,2,...
such that 2; is the unique solution of P(J) for each .J. Similarly, we define 2 to be the unique
minimizer of f over the limiting set C. By the decreasing property (A.9), and the definition (A.10),

we have that
f(21) < f(22) <--- < f(2). (A.13)

In fact, we have the following result.

Theorem A.4 For z;, J=1,2,... and Z defined in the previous paragraph, we have

Jlim Zy=24. (A.14)
Proof.  The sequence of real numbers
{fE)}i=12,.. (A.15)

is increasing and bounded above. Using the following argument, we can show that this sequence
{2} is Cauchy. Given any indices J; and Jo with J; < Ja, we have that Z;, is feasible in P(J;).
Hence, by applying Theorem A.3 to P(J;) with z* = Z;, and z = Z;,, we have that

. L \11/2
FGan) = FGER)TY

(67

||2J1 - 'éJzH < |2
Hence, for any € > 0, there exists J(.) such that
127, — 21| <€, forall Jy, Jy with J(E) < J1 < Js.
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Because of this Cauchy property and the fact that £2 is a Hilbert space, the sequence {2} converges
to a limit in ¢2, say z*. In fact, because of the characterization (A.11), we have z* € C. Because
f(25) 1 f(z*), we have from (A.13) that f(z*) < f(2). But since z* € € and % is the unique
minimizer of f over C , we must have Z = 2*, completing the proof. [

We next consider an increasing sequence of sets. Let {é J}J=12,. be a sequence of sets such

that

each C; C £? is closed, convex, and nonempty; (A.16)

élCéQC"‘. (A17)

This sequence has a limit C defined by

J=1,2,...
see [16, p. 66]. The set C is convex and nonempty but not necessarily closed. As an example,
consider the sets defined by
Cy = {w = (w1, wa,ws,...) | w € % w; =0 for all i > J},
which yield an increasing sequence whose limit is

C = {w = (wy,wa,ws,...)|w e %, w; =0 for all i sufficiently large}.

Although the sets C; are closed for all J, the limit C is open. The point w = (1,1/2,1/4,1/8,...)
lies in the closure of C though not in C itself.

Since the limit C may be an open set, the function f(z) may not attain its minimizer on this
set. We can still however show convergence of the sequence of minimizers of f over C; to a point

Z that minimizes f over some closed set containing C, which we denote by C*.

Similarly to (A.12), we consider the sequence of problems P(.J) defined as follows
P(J): min f(2) subject to z € Cy, (A.19)

where f(z) is defined as in (A.1). By applying Theorem A.1, we can identify points z;, J = 1,2, ...
such that z; is the unique solution of P(J) for each J. We also define a point z and a set C* as

follows:

Z = argmin,ec+ f(2), where C* is a set satisfying (A.20a)
C* is closed, C C C*, and z € cl(C). (A.20Db)

(Note that since C* is closed and C C C*, we certainly have cl(C) C C*.) Clearly, we have that

f(z1) = f(z2) > - > f(2). (A.21)

In fact, we have the following result.
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Theorem A.5 For zj, J=1,2,... and Z defined in the previous paragraph, we have

lim z; = Z. (A.22)

J—o0

Proof. We can show that the sequence {z;} is Cauchy by using as similar argument as in the
proof of Theorem A.4. Hence the sequence converges, say to a point z*. Moreover, since z; € C for
all J, we have that z* € cl(C).

Because of (A.21), we have that f(2*) > f(2z) Suppose for the moment that this inequality is
strict. Since z € cl(C), there is a sequence {y} with yx € C for all K, such that yx — 2. By the
definition (A.18), we can choose indices K and Jk sufficiently large that the following properties

hold:

flyr) < f(z%), (A.23)
yk € Cy, forall J > Jk. (A.24)

In particular, we have that
Flyx) < f(27) < f(Ze),
which is a contradiction since Z;, is the minimizer of f over Cj,. Therefore, we must have
f(z") = f(2).
Since z is the unique minimizer of f over the set C*, it certainly is the minimizer of f over cl(C).

Since z* € cl(C) and f(z*) = f(2), we have z* = Z, completing the proof. [

B Existence of the upper bounding problem

We show that the existence of an infinite feasible sequence for the optimal problem (2.7) implies
that the upper bounding optimization problem (3.3) is feasible for finite N. In the upper bounding
optimization problem (3.3), the use of the linear control law v; = —Kwy, requires the controller
to zero in finite time the unstable modes that are not controllable in the null space of the active
steady-state constraints. We show here the stronger result that the existence of an infinite feasible
sequence for the optimal problem (2.7) implies we can zero all unstable modes in finite time.

Without loss of generality, we make two simplifying assumptions. First, consider a Schur
decomposition of the system matrix partitioned into stable and unstable parts. We consider only
the unstable part, i.e. we consider a purely unstable system, and show we can zero the entire state
in finite time.

Second, we assume that the initial state wyq is sufficiently close to the origin that all constraint
boundaries that do not intersect the origin (i.e. constraints that are not active at steady state)
appear arbitrarily far away and can be neglected. This assumption is valid since, for any sequence
{wpg, vy} feasible for (2.7), we have that limg_,oc w = 0, limg_,o vxy = 0 and, therefore, the system

state can be brought arbitrarily close to the origin in finite time.
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B.1 Preliminary definitions

Definition B.1 (General problem) We consider the following problem:

wy given wir1 = Awg + By, k=0,1,..., (B.1a)
Dv, <0 k=0,1,..., (B.1b)
in which A € R™™ has all eigenvalues outside the open unit circle, i.e. |\(A)| >1,i=1,...,n,

B € R™™ gnd D € R™X™_ with m, < m, and rank(D) = m,. We assume that a sequence

{wr, v }72, ewists such that (B.1a) and (B.1b) are satisfied and

o0
Z wi Quy + v Ruy, < 00 (B.2)
k=0

for Q, R symmetric positive definite matrices.

Without loss of generality, we assume that D = [Ima 0]. The transformation of the input u and,

consequently, of the matrix B that leads to this form is
D

ve To= [DC} v, B — BT 1, R—T TRT™!

in which D¢ € R(m=ma)Xm jg qyych that T € R™*™ is invertible.

Lemma B.1 Given a nonsingular matric A € R"™"™ and B € R"™", (A, B) is controllable iff
(A=Y, B) is controllable.

Proof. 1f (A, B) is controllable we have that:

n = rank [B AB - A”_lB] = rank (A"_1 [A_"‘HB A—nt2p ... B])
= rank [B A'B ... A_(”_l)B} ,

which implies that (A~!, B) is controllable. Necessity is proven in an analogous way. [J
Definition B.2 We define the controllability matriz of order k for (A=, B) as
Cy,=[B A'B A7’B ... A-(=Dp]. (B.3)
We also define the infinite dimensional controllability matriz for (A=, B) as
Coo = klirgo Cg. (B.4)

The matrix C,, has bounded elements since A has unstable eigenvalues.
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Definition B.3 We define the matriz Iy, € RMak>Xmk g

D 0 0

and the infinite dimensional matriz Dy, as:

Do = lim Dy.

k—oo

B.2 Main proof

Let Too = (v0,v1,---) € £2 be an input vector that satisfies (B.1a), (B.1b) and (B.2). We can write
wy, — APwy = A¥'Bug + A*2Bu; + -+ + Bug_q,
or alternatively
A= ® Dy — Awg = Bug+ A 'Boy + -+ + A~ * DBy, 4.
As k — oo we have that wy — 0 and, therefore, we have

CooToo = —Awy, (B.5a)
Doomoo < 0. (B.5D)

Theorem B.1 Given an infinite vector no, € £? that satisfies (B.5), there exists a finite vector Tn

for some N such that

Cymy = —Awy, (B.6a)
Dy7y < 0. (B6b)

Proof. Some elements of the vector mo, may be zero. We can remove these elements from 7, and
define a new vector T,. Consequently, we remove the corresponding columns from C,, and Dy
obtaining new matrices Coo and Doo. If 7o has a finite number of elements, the proof is complete
because we can construct 7y from m,, by choosing N such that v; = 0, 7 > N. If all elements of
Tso are zero, the proof is also complete because wy = 0. We assume, therefore, that 7o, has an

infinite number of elements. We can rewrite (B.5) as

Coofros = —Auwy, (B.7a)

DooTtoo < 0. (B.7b)

in which the strict inequality comes from the structure of Dy, and from the fact that the zero

elements of 75, have been removed in 7.
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Let | < n be the rank of Co,. We have that there exists a M such that rank(C;) = [ for any

J > M. From (B.7a) we also have that rank([Co|Awp]) = . Given a N > M, we partition the

vector T, and the matrices @Oo and ]ﬁ)oo as follows
oo = (AN|FNIoo),  Coo = [CNIChso)s Doo = [Dn|Divjeo-

From (B.7a) we have

CNfFN + @N|oo7~TN|oo = —Awy (B.8)

We wish to construct a finite dimensional vector my as 7y = Ty + pn in which

pn = (vo,v1,...,0p-1,0,...,0)

such that

Cymn = —Awy, (B.9a)

Dy7y < 0. (B.9b)
Using (B.7a), we have that

Cn(7in + pn) = —Awg = CnAn + CjooTN oo
from which
Cnpn = CnjooTN|oo- (B.10)

Since the last N — M terms of py are zero, we can rewrite (B.10) as
Crprt = CnjooTN|oo (B.11)

Using (B.9b) instead, we obtain
DN,ON < —]f))Ner (B.12)

Since N > M, we can take a sub-matrix of (B.12) and use the particular structure of Dy to obtain:
Darpys < —Darar. (B.13)

Since N > M, we have that CN|<>07~TN|<><> € range(Cy) = range(Cys) and, therefore, (B.11) admits

solution. Let C}, be a left inverse of Cps (i.e. C§;Cps = I). One solution of (B.11) is:
prr = CFCN oo T N oo (B.14)
Since (@N|Oo7~rN‘oo — 0 as N — 00, we have that
i lparlz =0 (B.15)

Hence, since —D ;757 > 0 in (B.13), there exists N’ such that (B.13) holds for all N > N’. Choosing
any N > N’, we have found a vector m that satisfies (B.9a) and (B.9b). We can obtain the vector
7N that satisfies (B.6a) and (B.6b) by reinserting the zero elements that have been removed from

Too 0 Obtain 7o, 0O
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Figure 3: Closed-loop output for Example # 1

23



