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Abstract. Techniques for transforming convex quadratic programs (QPs) into monotone lin-
ear complementarity problems (LCPs) and vice versa are well known. We describe a class of
LCPs for which a reduced QP formulation|one that has fewer constraints than the \stan-
dard" QP formulation|is available. We mention several instances of this class, including the
known case in which the coe�cient matrix in the LCP is symmetric.
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1. Introduction

In this note, we consider linear complementarity problems (LCPs) and convex
quadratic programs (QPs) over closed convex cones, and examine the relation-
ship between LCP and QP formulations of the same problem. We show that for
a subclass of LCPs, it is possible to de�ne a QP that has fewer constraints than
the standard QP reformulation and whose primal-dual solution yields a solution
of the LCP.

Our work is related to that of Robinson [7,8], who discusses methods for re-
ducing variational inequalities (possibly nonlinear and nonmonotone) that have
certain structural properties. There is a subclass of problems for which the reduc-
tion techniques discussed here and those of Robinson are identical. We mention
some problems of this type in Section 4 and discuss the relationship between the
reduction techniques in more detail there.

The signi�cance of our results derives partly from the fact that software
for solving QP is generally more prevalent than software for LCP. Given some
LCP formulation of a problem, and a code for solving QP, it is often to our
advantage to �nd the most compact QP representation of the problem possible
before calling the code to solve it.
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Section 2 provides some background and presents an existence result for the
solution of monotone LCP. Section 3 proves the main results about reduced QP
formulations. Some examples are given in Section 4.

2. Background

We now de�ne a�ne variational inequalities, linear complementarity problems,
and quadratic programming problems over a closed convex cone in Euclidean
space IRn, and outline the techniques by which a given problem can be formulated
by any one of these techniques. We also state results about the equivalence of
these formulations and existence of solutions.

We use h�; �i to denote an inner product in IR
n. (All our examples use hx; yi =

xTy.) We use M , Q, R, S, and A to denote linear operators on IR
n (or, equiva-

lently, their matrix representations), and M�, Q�, etc., to denote their adjoints.
Closed convex cones are closed sets K � IR

n such that for any vectors x 2 K
and y 2 K, we have that �x+�y 2 K for all � � 0 and � � 0. Note in particular
that 0 2 K, that by setting � 2 [0; 1] and � = 1 � � we verify the convexity
property, and that x+K � K for all x 2 K. The cone K is said to be polyhedral
if there exist a �nite set of vectors fa1; a2; : : : ; aLg such that

K =

(
x 2 IR

n jx =
LX
l=1


lal; 
l � 0 for all l

)
: (1)

The polar cone for K is de�ned by

K� def
= fs j hy; si � 0 for all y 2 Kg:

It is easy to verify that (K�)� = K; see Rockafellar [9, p. 121]. When K is
polyhedral with the form (1), K� is also polyhedral and is given explicitly as

K� = fs j hs; ali � 0 for all l = 1; 2; : : :; Lg

(see Rockafellar [9, p. 122]). The normal cone for K at a point x is de�ned by

NK(x)
def
=

�
fs j hs; y � xi � 0 for all y 2 Kg; if x 2 K,
; if x =2 K.

(2)

It follows immediately that K� = NK (0).
Given a convex function f on IR

n, we de�ne the conjugate function f� by

f�(y) = sup
x

fhx; yi � f(x) jx 2 ri(domf)g:

The subgradient of f is the multifunction de�ned by

@f(x) = fy j f(z) � f(x) + hy; z � xi for all zg:

As in Robinson [7], we use these de�nitions to note the following relationship:

y 2 NK(x) , x 2 NK� (y): (3)
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A proof of this claim follows if we note that

NK(x) = @IK(x);

where IK is the indicator function for K (which takes on the value 0 on K and
1 otherwise), use the fact that I�K = IK� (Rockafellar [9, Theorem 14.1]), and
then apply Theorem 23.5 of [9].

Consider the a�ne variational inequality problem over the closed convex cone
K � IR

n:

Find x 2 IR
n such that q �Mx 2 NK(x); (4)

where M 2 IR
n�n and q 2 IR

n are given. If x solves (4), we have from x+ y 2 K
for all y 2 K and the de�nition (2) that

hq �Mx; yi = hq �Mx; (x+ y) � xi � 0; for all y 2 K.

Therefore q �Mx 2 K�, so it is natural to write the LCP associated with (4)
as follows:

Find x 2 K such that q �Mx 2 K�; hx; q �Mxi = 0: (5)

In fact, Proposition 1.5.2 of Cottle, Pang, and Stone [1] shows that problems (4)
and (5) are equivalent.

We are interested in monotone problems, those for which M is monotone
but not necessarily self-adjoint. The formulation (5) reduces to the standard
monotone LCP if we take K = IR

n
+, the nonnegative orthant. We obtain the

mixed monotone LCP if we set K = IR
�n
+ � IR

n��n for some �n strictly between 0
and n. The polar cone in this case is K� = IR

�n
� � f0g.

Consider now the quadratic programming problem (QP) over a closed convex
cone L � IR

m:

min
z2IR

n

1

2
hz;Qzi � hc; zi; subject to Az � b 2 L; (6)

where Q is self-adjoint and monotone. The standard technique for reformulating
(5) as a quadratic program (6) is to de�ne the inner product to be the objective
function and write

min
x
hx;Mx� qi subject to x 2 K; q �Mx 2 K�; (7)

To identify (7) with (6), we de�ne z = x and

Q = M +M�; c = q; Az = (z;�Mz); b = (0;�q); L = K �K�;

where, as mentioned earlier, M� is the adjoint of M . Conversely, the standard
technique for reformulating (6) in the form (5) is via the Karush-Kuhn-Tucker
(KKT) optimality conditions for (6), which are that there exists a vector v such
that

Qz � c+ A�v = 0; Az � b 2 L; v 2 L�; hv;Az � bi = 0: (8)
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(These conditions can be derived for example by applying results from Rockafel-
lar [9, Ch. 28], together with elementary observations about L, L�, and normal
cones.) Because of the assumed monotonicity of Q and convexity of L, the con-
ditions (8) are su�cient as well as necessary for solving (6).

For the particular QP (7) that arises as a reformulation of the LCP (5), the
conditions (8) reduce to the following:

(M +M�)x� q �M�u+w = 0; (9a)

(x;�Mx)� (0;�q) 2 K �K�; (9b)

(w; u) 2 K� �K; (9c)

h(x; q�Mx); (w; u)i = 0: (9d)

Note that this LCP is quite di�erent from the original form (5), in that the
number of variables is signi�cantly greater. However, an equivalence relationship
between these two LCPs and the QP (7) can be derived in the case in which K
is in addition polyhedral.

Theorem 1. Suppose that K is a closed convex cone in IR
n, and that (5) is

feasible; that is, there exists x 2 K such that q �Mx 2 K�. Then

(i) if K is polynedral, the LCP (5) has a solution; and
(ii) any solution of (5) also solves (7), and conversely.

Proof. The proof of (i) follows immediately from Gowda and Seidman [3, The-
orem 3.1].

For (ii), we see immediately that any solution of (5) is feasible in (7) with
an objective value of 0. Since, as observed earlier, 0 is a lower bound on the
objective in (7), we conclude that x solves (7).

It remains to prove only that any solution x of (7) also solves (5). By necessity
of the conditions (9), there exists a vector (u;w) such that (9) is satis�ed by
(x; u; w). We now show that this x solves (5) by using a generalization of the
argument of Theorem 3.1.2 of [1]. By taking the inner product of (9a) with x�u,
we obtain

0 = hx� u;Mx� q +M�(x� u) +wi
� hx� u;Mx� q +wi by monotonicity of M
= hx;Mx� qi+ h(x; q�Mx); (w; u)i � hu;wi
= hx;Mx� qi � hu;wi by (9d)
� hx;Mx� qi since u 2 K, w 2 K�:

Since x 2 K and q �Mx 2 K�, we have also that hx;Mx� qi � 0, so it follows
that hx;Mx� qi = 0 and hence that x solves (5).

Gowda [2] shows that a quadratic functions attains its minimizer over a closed
polyhedral convex cone when it is bounded below on the cone; this result can
be used to prove existence of the solution to (7) directly whenever the feasible
region for this problem is nonempty.



On Reduced Convex QP Formulations of Monotone LCPs 5

3. Reduced QP Formulations

We now examine special structures of the operator M that allow us to de�ne
a QP reformulation of the LCP (5) with possibly fewer constraints than the
standard reformulation (7). Our results in this section extend the observation
of Cottle, Pang, and Stone [1, Section 1.4]. A slightly generalized version of the
latter result states that when M is self-adjoint and monotone, the LCP (5) is
equivalent to the following QP:

min
x

1

2
hx;Mxi � hq; xi subject to x 2 K: (10)

(To verify the equivalence, note that the necessary and su�cient optimality con-
ditions for (10) are q�Mx 2 NK (x), which is equivalent to (5).) By comparing
with (7), we see that the quadratic term in the objective of (10) di�ers and that
the constraint q �Mx 2 K� is not present.

The special structure of M that we analyze in this section is de�ned with
respect to a subspace T of IRn. A projection onto this subspace is denoted by
PT , where

PTx = argmin
y2T

hy � x; y � xi: (11)

Note that PT is a self-adjoint linear operator and that PTPT = PT .
The subspace orthogonal to T is T? = fy j hy; xi = 0 for all x 2 Tg. We have

that
I = PT + PT?; (12)

that is, any vector x 2 IR
n can be decomposed as x = PTx+ PT?x.

In this section we assume certain properties on two-sided projections of M
onto T and its complement T?. To be speci�c, we are interested in M for which
there exist operators S, Q, and R on IR

n, such that

PTMPT = PTSPT ; S monotone and self-adjoint, (13a)

PTMPT? = PTRPT?; (13b)

PT?MPT = PT?(�R
�)PT = �PT?R

�PT ; (13c)

PT?MPT? = PT?QPT? ; Q monotone and self-adjoint: (13d)

A number of identities follow from these properties. For example, we have

PT (M +M�) = PT (M +M�)PT + PT (M +M�)PT?

= PTMPT + PTM
�PT + PTMPT? + PTM

�PT?

= PTMPT + (PTMPT )
� + PTMPT? + (PT?MPT )

�

= 2PTSPT + PTRPT? + (�PT?R
�PT )

�

= 2PTSPT ; (14)

where we used the self-adjoint property of S. Similarly

PT?(M +M�) = 2PT?QPT?: (15)
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For our problem class of interest, we assume too that T and K are related
in a certain way. De�ning

PTK
def
= fv j v = PTx for some x 2 Kg; (16)

we assume that
PTK � K; PT?K � K: (17)

Similar inclusions for K� follow by a simple argument: Given any y 2 K�, we
have from PTK � K that hy; PTvi � 0 for all v 2 K. Since hy; PTvi = hPTy; vi,
we have that hPTy; vi � 0 for all v 2 K, so that PTy 2 K�. We deduce that

PTK
� � K�; PT?K

� � K�: (18)

We also have the following lemma.

Lemma 1. Suppose that (17) holds. Then for any x 2 K, we have

NPTK(PTx) = fv jPTv 2 NK (PTx)g: (19)

Proof. Note �rst that PTx 2 PTK, since x 2 K. Therefore, from the de�nition
(2), we have

NPTK(PTx) = fv j hv; PT t � PTxi � 0; all t 2 Kg

= fv j hv; PT ti � hv; PTxi � 0; all t 2 Kg

= fv j hPTv; ti � hPTv; PTxi � 0; all t 2 Kg

= fv j hPTv; t � PTxi � 0; all t 2 Kg

= fv jPTv 2 NK(PTx)g:

Similar relationships follow from (17) and (18); in particular, for any y 2 K�,
we have

NP
T?

K�(PT?y) = fu jPT?u 2 NK� (PT?y)g: (20)

The following technical lemma is also useful in proving our main result.

Lemma 2. Let x1, x2, v1, and v2 be vectors such that

x1 2 K; x2 2 K; v1 2 NK(x1); v2 2 NK(x2); hv2; x1i = hv1; x2i = 0:

Then
v1 + v2 2 NK (x1 + x2):

Proof. Since v1 2 NK(x1) and v2 2 NK(x2), we have that

hv1; t� x1i � 0; hv2; t� x2i � 0; for all t 2 K: (21)

But given any t 2 K, we have that

hv1 + v2; t� (x1 + x2)i

= hv1; t� x1i � hv1; x2i + hv2; t� x2i � hv2; x1i

= hv1; t� x1i+ hv2; t� x2i � 0;

proving the result. The result can also be proved by making use of the following
characterization: NK(x) = K� \ fv j hv; xi = 0g:
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We are now ready to derive our main result, which is to show that under the
assumptions on M and K made in this section, a solution of (5) can be obtained
from the primal-dual solution of the following convex quadratic program:

min 1
4
hx; (M +M�)xi � hPT q; xi (22a)

subject to PT?(q �Mx) 2 PT?K
�; (22b)

PTx 2 PTK: (22c)

The (necessary and su�cient) optimality conditions for this problem are as fol-
lows:

�PT q +
1

2
(M +M�)x�M�PT?u+ PTv = 0; (23a)

PT?(q �Mx) 2 PT?K
�; (23b)

PTx 2 PTK; (23c)

u 2 NP
T?

K�(PT?(q �Mx)); (23d)

v 2 NPTK(PTx): (23e)

Because of (19) and (20), we have that

PT?u 2 NK�(PT?(q �Mx)); PTv 2 NK(PTx):

We can therefore rewrite (23) as follows:

�PT q +
1

2
(M +M�)x�M�PT?u+ PTv = 0; (24a)

PT?(q �Mx) 2 PT?K
�; (24b)

PTx 2 PTK; (24c)

PT?u 2 NK� (PT?(q �Mx)); (24d)

PTv 2 NK(PTx): (24e)

We now show that the primal-dual solution of (22) yields a solution of (4)
(equivalently, (5)). By operating on (24a) with PT?, we obtain from (13d), the
self-adjointness of Q and PT? , and the identity (15) that

0 = 1

2
PT?(M +M�)x � PT?M

�PT?u

= PT?QPT?x� [PT?QPT?]
�u

= PT?QPT?x� PT?QPT?u: (25)

From (24d), and using (3), we obtain

PT?(q �Mx) 2 NK(PT?u): (26)

By expanding PT?(q �Mx) and using (13) and (25), we obtain

PT?(q �Mx) = PT?q � PT?MPT?x� PT?MPTx

= PT?q � PT?QPT?x+ PT?R
�PTx

= PT?q � PT?QPT?u+ PT?R
�PTx;
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so from (26) we have

PT?q � PT?QPT?u+ PT?R
�PTx 2 NK(PT?u): (27)

We now operate on (24a) with PT and use (13), (14), and self-adjointness of
PT and PT? to obtain

0 = �PT q + PTSPTx� PTM
�PT?u+ PTv

= �PT q + PTSPTx� [PT?MPT ]
�u+ PTv

= �PT q + PTSPTx+ [PT?R
�PT ]

�u+ PTv

= �PT q + PTSPTx+ PTRPT?u+ PTv: (28)

Hence, by substitution into (24e), we obtain

PT q � PTSPTx� PTRPT?u 2 NK (PTx): (29)

From Lemma 2, we have by combining (27) and (29) that

(PT?q � PT?QPT?u+ PT?R
�PTx) + (PT q � PTSPTx� PTRPT?u)

2 NK(PT?u+ PTx);

so that, using (12) and (13), we have

q � PTMPTx� PTMPT?u� PT?MPT?u� PT?MPTx 2 NK(PT?u+ PTx):

If we de�ne

x� = PT?u+ PTx; (30)

we see immediately that

q �Mx� 2 NK(x
�): (31)

We conclude that from the primal-dual solution of (22), we can construct a
solution of (4), and therefore of (5). This result, slightly enhanced, can be stated
formally as follows.

Theorem 2. Suppose that for the matrix M , the subspace T , and the closed
convex cone K the conditions (13) and (17) (and therefore (18)) are satis�ed.
Then if (x; u; v) is a primal-dual solution of (22), we have that x� de�ned by
(30) is a solution of (5). Moreover, if Q in (13d) is strictly monotone on the
subspace T?|that is, hv;Qvi > 0 for all 0 6= v 2 T?|then the primal solution
x of (22) also solves (5).

Proof. We have proved the �rst statement already in the paragraphs above. For
the second statement we have, by taking inner products of (25) with (x � u),
that

hPT?(x� u); QPT?(x� u)i = 0;

so from the strict monotonicity property we have PT?u = PT?x. Therefore we
can replace PT?u by PT?x in (30), giving the result.
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A similar result can be proved if we replace (22) by its dual, by interchanging
the roles of T and T?. We obtain the following QP:

min 1

4
hx; (M +M�)xi � hPT?q; xi (32a)

subject to PT (q �Mx) 2 PTK
�; (32b)

PT?x 2 PT?K: (32c)

We show by similar logic to the analysis of (22) that a primal-dual solution of
(32) yields a solution of (5) under the assumptions of this section. The formal
result is as follows

Theorem 3. Suppose that for the matrix M , the subspace T , and the closed
convex cone K the conditions (13) and (17) (and therefore (18)) are satis�ed.
Then if (x; u; v) is a primal-dual solution of (32), we have that x� de�ned by

x� = PTu+ PT?x; (33)

is a solution of (5). Moreover, if S is strictly monotone on the subspace T , then
the primal solution x of (32) also solves (5).

The signi�cance of Theorems 2 and 3 is that the number of linear equali-
ties and inequalities required to express the relations PT?(q �Mx) 2 PT?K

�,
PTx 2 PTK, and so on is often fewer than the corresponding number required to
represent q�Mx 2 K�, x 2 K in the standard formulation (6). Therefore, if we
have available software for solving convex QPs, we might expect more e�cient
practical performance from applying it to the formulations (22) and (32) than
to (6).

4. Examples

We now consider some examples of problems of the type analyzed in Section 3,
illustrating the reduced QP formulations in each case.

Example 1. We believe that most practical instances of the problem structure
analyzed in this paper will have the following form. Let the cone K � IR

n be a
Cartesian product of the form

K = K0 �K1; (34)

where K0 � IR
n0 and K1 � IR

n1 are both closed convex cones, with n = n0 + n1.
Assume too that the coe�cient matrix M can be written in the form

M =

�
�S �R

� �RT �Q

�
; (35)

where �S 2 IR
n0�n0 and �Q 2 IR

n1�n1 are symmetric positive semide�nite. The
vector q and the vector of unknowns x are partitioned correspondingly as follows:�

q0
q1

�
;

�
x0
x1

�
; where x0; q0 2 IR

n0 ; x1; q1 2 IR
n1 :
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We now de�ne
T = IR

n0 � f0g; T? = f0g � IR
n1 ; (36)

and note that (17) obviously holds, since

PTK = K0 � f0g; PT?K = f0g �K1:

We identify the components in (35) with the quantities S, R, and Q from (13)
by de�ning

S =

�
�S 0
0 0

�
; R =

�
0 �R
0 0

�
; Q =

�
0 0
0 �Q

�
: (37)

By referring to (22), we can write the reduced QP formulation of this mixed
monotone LCP as follows:

min
x0;x1

1
2
(xT0 �Sx0 + xT1

�Qx1)� qT0 x0; (38a)

subject to q1 + �RTx0 � �Qx1 2 K�
1 ; (38b)

x0 2 K0: (38c)

Note that we have modi�ed the formulation (22) by omitting the constraints in
which both sides are identically zero. The standard QP formulation (6) would
have 2n constraints, in contrast to the n constraints needed in (38). The alter-
native formulation (32) becomes

min
x0;x1

1

2
(xT0 �Sx0 + xT1 �Qx1)� qT1 x1; (39a)

subject to q0 � �Sx0 � �Rx1 2 K�
0 (39b)

x1 2 K1: (39c)

Example 1A. If there is rank de�ciency in the matrix �Q, the vector x1 in
formulation (38) can be replaced by a lower-dimensional object. In the extreme
case of �Q = 0, x1 does not appear at all. The reduced formulation (38) reduces
further to

min
x0

1

2
xT0

�Sx0 � qT0 x0; (40a)

subject to q1 + �RTx0 2 K�
1 ; (40b)

x0 2 K0: (40c)

This case is covered by the analysis of Robinson [7, Proposition 2]. We can
identify the optimality conditions for (40) with Robinson [7, eq. (8)] by de�ning
�d(�) appropriately and setting Y = K1 and P = K0.

If instead we have that �S = 0, then (39) can be used to obtain a reduced
problem in which only the variables x1 appear.

Example 1B. Suppose that n1 = 0, so that �R, �Q, and q1 are all vacuous. Then
(38) reduces to

min
x0

1

2
xT0

�Sx0 � qT0 x0; subject to x0 2 K;
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where K = K0. This is simply the form (10) whose equivalence to (5) in the
case of symmetric positive semide�nite �S was essentially noted by Cottle, Pang,
and Stone [1, Section 1.4]. Again, the reduction of Robinson [7, eq. (8)] yields
the same result.

The following alternative, generally less useful formulation is available from
(39):

min
x0

1

2
xT0

�Sx0; subject to q0 � �Sx0 2 K�:

Example 1C. A further special case of Example 1 is the linear programming
problem in standard form. Here we have

�S = 0; �Q = 0; �R = �AT ;

with the coordinate cones are de�ned as

K0 = IR
n0
+ ; K1 = IR

n1 :

The resulting LCP (5) is then

q1 �Ax0 = 0; q0 +ATx1 � 0; x0 � 0; xT0 (A
Tx1 + q0) + xT1 (�Ax0 + q1) = 0;

which by simple manipulation becomes

Ax0 = q1; ATx1 � �q0; x0 � 0; xT0 q0 + xT1 q1 = 0: (41)

The reduced QP form (22) (equivalently (38)) is

min
z;w

�qT0 x0 s.t. Ax0 = q1; x0 � 0; (42)

which is simply the linear programming problem in standard form. The alterna-
tive reduced QP form (32) (equivalently (39)) is

min �qT1 x1 s.t. ATx1 � �q0; (43)

which is just the dual of the standard form. In practice, it is usually bene�cial
to apply software to either (42) or (43), rather than to the larger self-dual form
that would arise from the standard QP formulation (6), namely,

min �qT0 x0 � qT1 x1

s.t. Ax0 = q1;

ATx1 � �q0;

x0 � 0:

Application of linear programming software to this form would be e�cient only
if the code were able to recognize and exploit the self-dual structure.

Example 2.We now consider the extended linear-quadratic programming (ELQP)
problem proposed by Rockafellar [10,11]. Given nonempty polyhedral convex
sets Y � IR

n0 and Z � IR
n1 , matrices �S and �Q, and vectors q0 and q1 with the
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same form as in Example 1, and a matrix A 2 IR
n0�n1 , the ELQP problem is as

follows:
min
y2Y

�hq0; yi+
1

2
hy; �Syi + �Z; �Q(q1 + ATy); (44)

where
�Z; �Q(u) = sup

z2Z

hz; ui � 1
2
hz; �Qzi: (45)

The dual of this problem is

max
z2Z

hq1; zi �
1

2
hz; �Qzi � �Y;�S(q0 �Az); (46)

where
�Y;�S(v) = sup

y2Y

hy; vi � 1

2
hy; �Syi: (47)

ELQP has proved to be a highly versatile framework that includes many piece-
wise linear and piecewise quadratic problems. We consider here the case in which
Y and Z are closed convex cones. This subset of ELQP includes linear and
quadratic programming problems as special cases. For instance, the constraint
q1 + ATy � 0 can be enforced by setting �Q = 0 and Z = IR

n1
+ in (45). The

framework can also incorporate \soft constraints," a modeling technique that is
frequently used in practice. In this technique, a violation of a desired inequality
is not forbidden, but is discouraged by the inclusion of a quadratic term in the
violation in the objective. For instance, if we set

Z = IR
n1
+ ; �Q = (�=2)I;

for some � > 0, then from (45) we have

�Z; �Q(q1 + ATy) =
1

2�



(q1 +AT y)+


2
2
; (48)

where the subscript \+" denotes projection onto IR
n1
+ .

It is easy to show that the optimality conditions for (44), (45) simply have
the form of the LCP in Example 1. These conditions are

q0 � �Sy �Az 2 NY (y);

q1 + ATy � �Qz 2 NZ(z):

As in Example 1, we have that the reduced QP formulation (22) is

min
y;z

1

2
(yT �Sy + zT �Qz)� qT0 y; (49a)

subject to q1 + ATy � �Qz 2 Z�; (49b)

y 2 Y: (49c)

The alternative formulation, corresponding to (32), is

min
y;z

1
2
(yT �Sy + zT �Qz) � qT1 z; (50a)

subject to q0 � �Sy � Az 2 Y � (50b)

z 2 Z: (50c)
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Example 2A. A special case of ELQP is the subproblem that arises in the stabi-
lized sequential quadratic programming (SSQP) method described inWright [12].
The subproblem to be solved is similar to the one that leads to (48). It has the
form

min
z

1

2
zT �Qz � cT z +max

��0
�T (b� Az) � 1

2
�k�� ��k22; (51)

where �� is the estimate of � from the previous iteration and � > 0 is the
stabilization parameter. When �Q is positive semide�nite, this problem has the
form of (46), (47) if we set

y = �; q1 = c; q0 = b+ ���; �S = �I; Z = IR
n; Y = IR

m
+ ;

and ignore the constant term in the objective. The form (50) is then

min
z;�

1

2
�k�k22 +

1

2
zT �Qz � cT z subject to Az � b+ �(�� ��) � 0;

which is equivalent to the form derived by Li and Qi [4, eq. (15)]. We can elim-
inate � from this problem (at the cost of some nonsmoothness in the objective)
and write it as

min
z

1

2�



[b�Az + ���]+


2
2
+ 1

2
zT �Qz � cT z:

Example 3. Finally, we mention the problem that motivated this note. It was
described by Mangasarian and Musicant [6], who considered a QP formulation
of the Huber regression problem. Given a matrix A 2 IR

`�d and a vector b 2 IR
`,

we seek the vector z 2 IR
d that minimizes the objective function

X̀
i=1

�((Az � b)i); (52)

where

�(t) =

�
1

2
t2; jtj � 
;


jtj � 1

2

2; jtj > 
;

where 
 is a positive parameter. By setting the derivative of (52) to zero, We
can formulate this problem as an LCP by introducing variables w; �1; �2 2 IR

`

and writing

w � Az + b+ �2 � �1 = 0; (53a)

ATw = 0; (53b)

w + 
e � 0 ? �1 � 0; (53c)

�w + 
e � 0 ? �2 � 0: (53d)
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We can write the problem as

2
664
�b
0

�
e
�
e

3
775�

2
664

I �A �I I
AT 0 0 0
I 0 0 0
�I 0 0 0

3
775
2
664
w
z
�1

�2

3
775 2 K�; (54a)

2
664
w
z
�1

�2

3
775 2 K; (54b)

*2664
w
z
�1

�2

3
775 ;
2
664

I �A �I I
AT 0 0 0
I 0 0 0
�I 0 0 0

3
775
2
664
w
z
�1

�2

3
775�

2
664
�b
0

�
e
�
e

3
775
+

= 0; (54c)

where

K = IR
`+d � IR

2`
+ ; K� = f0g � IR

2`
� : (55)

Thus by de�ning

T = IR
` � f0g; T? = f0g � IR

2`+d; (56)

it is easy to verify that (17) and (18) are satis�ed and that the properties (13)
hold, with Q = 0 and S = PT . Therefore the second statement of Theorem 3
holds, and (32) is

min 1

2
wTw + 
eT (�1 + �2); (57a)

subject to w � Az + b+ �2 � �1 = 0; �1 � 0; �2 � 0;

which is equivalent to the form given in [6, formula (9)]. Note that the naive QP
formulation (7) would have many more constraints than this form.

Theorem 2 suggests another QP formulation for (54), one proposed by Li
and Swetits [5]. From the form (22), we obtain

min 1

2
wTw + bTw;

subject to �ATw = 0; �
e �w � 0; �
e + w � 0;

that is,

min 1

2
wTw + bTw; subject to � ATw = 0; �
e � w � 
e: (58)

The second statement in Theorem 2 does not apply in this case, but we can
still conclude that the primal-dual solution of (58) yields a solution of (54). In
particular, the Lagrange multiplier vector for the constraint �ATw = 0 yields a
solution of (52).



On Reduced Convex QP Formulations of Monotone LCPs 15

Acknowledgments

I thank Olvi Mangasarian and Steve Robinson for their comments on the manuscript,
and Todd Munson for pointers to relevant literature. I also thank Seetharam
Gowda for pointing out an error in the original verison of Theorem 1 and for
further pointers to the literature.

References

1. R. W. Cottle, J.-S. Pang, and R. E. Stone. The Linear Complementarity Problem. Aca-
demic Press, San Diego, 1992.

2. M. S. Gowda. Minimising quadratic functions over closed convex cones. Bulletin of the

Australian Mathematical Society, 39:15{20, 1989.
3. M. S. Gowda and T. I. Seidman. Generalized linear complementarity problems. Mathe-

matical Programming, Series A, 46:329{340, 1990.
4. Dong-Hui Li and Liqun Qi. A stabilized SQP method via linear equations. Technical

report, Mathematics Department, University of New South Wales, 2000.
5. W. Li and J. J. Swetits. The linear `1 estimator and the Huber M-estimator. SIAM

Journal on Optimization, 8:457{475, 1998.
6. O. L. Mangasarian and D. R. Musicant. Robust linear and support vector machines. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 22(9):1{6, 2000.
7. S. M. Robinson. A reduction method for variational inequalities. Mathematical Program-

ming, Series A, 80:161{169, 1998.
8. S. M. Robinson. Composition duality and maximal monotonicity.Mathematical Program-

ming, Series A, 85:1{13, 1999.
9. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, N.J., 1970.
10. R. T. Rockafellar. Linear-quadratic programming and optimal control. SIAM Journal on

Control and Optimization, 25:781{814, 1987.
11. R. T. Rockafellar. Computational schemes for large-scale problems in extended linear-

quadratic programming. Mathematical Programming, 48:447{474, 1990.
12. S. J. Wright. Superlinear convergenceof a stabilized SQP method to a degenerate solution.

Computational Optimization and Applications, 11:253{275, 1998.


