
Improving Parallel I/O Performance with Data Layout Awareness ]

Yong Chen §, Xian-He Sun ‡, Rajeev Thakur ∗, Huaiming Song ‡, Hui Jin ‡
§ Computer Science and Mathematics Division, Oak Ridge National Laboratory, USA

‡ Department of Computer Science, Illinois Institute of Technology, USA
∗ Mathematics and Computer Science Division, Argonne National Laboratory, USA

Email: {cheny@ornl.gov, sun@iit.edu, thakur@mcs.anl.gov, hsong20@iit.edu, hjin6@iit.edu}

Abstract

Parallel applications can benefit greatly from mas-
sive computational capability, but their performance
suffers from large latency of I/O accesses. The poor
I/O performance has been attributed as a critical
cause of the low sustained performance of paral-
lel computing systems. In this study, we propose a
data layout-aware optimization strategy to promote
a better integration of the parallel I/O middleware
and parallel file systems, two major components of
the current parallel I/O systems, and to improve the
data access performance. We explore the layout-aware
optimization in both independent I/O and collective
I/O, two primary forms of I/O in parallel applications.
We illustrate that the layout-aware I/O optimization
could improve the performance of current parallel
I/O strategy effectively. The experimental results verify
that the proposed strategy could improve parallel I/O
performance by nearly 40% on average. The proposed
layout-aware parallel I/O has a promising potential in
improving the I/O performance of parallel systems.

Keywords: parallel I/O, parallel file systems, par-
allel I/O middleware, collective I/O, independent I/O,
data layout, I/O performance, data access optimization

1. Introduction

Supercomputers have crossed the Petaflop perfor-
mance mark and are moving forward to reach the Ex-

] This research is sponsored in part by the Office of Advanced
Scientific Computing Research; U.S. Department of Energy. This
research is also sponsored in part by the National Science Foun-
dation under NSF grant CCF-0621435 and CCF-0937877. The
work was performed in part at the Oak Ridge National Laboratory,
which is managed by UT-Battelle, LLC under Contract No. De-
AC05-00OR22725. Accordingly, the U.S. Government retains a non-
exclusive, royalty-free license to publish or reproduce the published
form of this contribution, or allow others to do so, for U.S.
Government purposes.

aflop range [43]. However, while computing resources
are making rapid progress, there is a significant gap
between processing capacity and data-access perfor-
mance. Due to this gap, although processing resources
are available, they have to stay idle waiting for data
to arrive, which leads to a severe overall performance
degradation. Fig. 1 shows the number of CPU cycles
required to access cache memory (SRAM), main mem-
ory (DRAM), and disk storage [6]. It can be seen that
the number of cycles for accessing storage is hundreds
of thousands of times larger. This trend is predicted
to continue in the near future. In the meantime, many
scientific and engineering simulations in critical areas
of research, such as nanotechnology, astrophysics, cli-
mate, and high energy physics, are becoming more and
more data intensive [28]. These applications contain a
large number of I/O accesses, where large amounts of
data are stored to and retrieved from disks. However,
the disparity of technology growth is causing a gap be-
tween processor performance and storage performance
that has been increasing over the last few decades.
This poor I/O performance has been attributed as the
cause of low sustained performance of existing parallel
computing systems.

Data layout describes how data is distributed among
multiple file servers. It is a crucial factor that de-
termines the data access latency and the I/O subsys-
tem performance for parallel computing systems. The
recent works in log-like reordering of accesses and
intermediate library of rearranging accesses [2][25]
have demonstrated the importance and significant po-
tential of arranging data accesses in a proper manner.
However, historically, parallel I/O middleware and par-
allel file systems, two critical components to provide
high data-access bandwidth for parallel systems, are
developed separately with a separated modular design
in mind. This separation enhances the transparency
between different parallel I/O components at distinct
layers and eases the software implementation. Nev-



Figure 1. Comparison of Data Access Latency.
This chart shows the data access time of SRAM,
DRAM and disk in CPU cycles from year 1980 to
2010. The disk I/O is hundreds of thousands of
times slower and this trend is predicted to continue
in the next decades.

ertheless, this separation can lose the potential op-
timization opportunity that could benefit the overall
performance of parallel I/O systems. For instance, the
collective I/O, one of the most important optimization
strategies in parallel I/O, often relies on the logical
layout of file accesses from multiple processes, other
than the physical data layout on file servers, because of
lacking data layout information. On the other hand, it
is the parallel file system that determines the physical
layout of data among multiple file servers and thus
determines the access latency and concurrency. With
aware of such layout information, the overall parallel
I/O system could perform better. However, the current
parallel I/O strategy does not explore such layout-
aware optimization well.

In this study, we argue that it could be beneficial if
we have such a layout-aware parallel I/O optimization
to get a better integration of parallel I/O middleware
and parallel file systems. We propose to consider the
physical data layout and data locality into parallel I/O
strategy, and thus have a better matched I/O. We ex-
ploit the layout-aware optimization in both independent
I/O and collective I/O, two forms of I/O that are widely
used in parallel applications. The rest of this paper is
organized as follows. We first review important related
works in parallel I/O optimization in Section 2. Section
3 introduces the idea and the design of the layout-
aware parallel I/O strategy, including both indepen-
dent I/O and collective I/O. Section 4 presents the
experimental results of the proposed strategy. Section
5 concludes this study and discusses potential future

work.

2. Related Work

While a layout-aware parallel I/O optimization is in-
novative, there are numerous studies that have focused
on improving I/O access performance at various levels.
At the hardware level, disk bandwidth has only im-
proved at a very slow pace, while the capacity has been
increasing rapidly to Peta-bytes. Research in software
optimizations can be roughly classified into the areas
of runtime I/O libraries [5, 19, 21, 36, 40, 41], parallel
file systems [7, 10, 30, 37, 44], caching, prefetching
and data distribution strategies [1, 9, 12, 15, 16, 20, 22–
24, 26, 27, 29, 31, 34, 38, 39, 44].

2.1. Parallel I/O Runtime Library and File
System Optimizations

There has been a significant amount of research
effort in optimizing I/O performance using runtime
libraries, such as collective I/O [19, 40], two-phase
I/O [5], extended two-phase I/O [41], data sieving
[40], server-directed I/O [36] and disk-directed I/O
[21]. These strategies collect and merge small requests
into larger requests at the I/O client/middleware/server
level.

Parallel file systems, such as Lustre [10], GPFS
[37], PanFS [30], PVFS [7], and PPFS2 [44], enable
concurrent I/O accesses from multiple clients to files.
All these file systems provide high bandwidth for large,
well-formed parallel I/O requests, but perform rela-
tively poorly on other less-ideal access patterns. PPFS2
[44] offers better runtime optimization compared to
other file systems. However, the optimizing techniques
in parallel file systems lack aggressiveness in reading,
writing, and moving data around fast enough to avoid
severe performance bottlenecks.

2.2. Parallel I/O Caching and Prefetching

Many research efforts have been devoted at caching
optimizations for parallel I/O, such as collective buffer-
ing [31], active buffering [29], and collective caching
[26]. Patterson et al. [34], Kuenning et al. [24], Grif-
fioen and Appleton [15] proposed prefetching strate-
gies using compiler, runtime, and access pattern infor-
mation.

Various pattern-based file prefetching methods have
been proposed [1, 16, 27, 44] to improve I/O perfor-
mance of applications with regular data access. Many
other I/O prefetching strategies have been proposed in



both heuristic prediction based approaches and spec-
ulative execution based approaches. Prediction algo-
rithms, such as One-Block-Lookahead (OBL) prefetch-
ing, sequential prefetching [12], stride prefetching[14],
Markov prefetching [20], and distance prefetching
[22], have been proposed for identifying patterns in
memory accesses. Most of these algorithms can be
applied to the prediction in parallel I/O domain too.
Speculative prefetching methods include Chang and
Gibson’s SpecHint [11], Patterson et. al.’s informed
prefetching TIP [34] and Yang et al.’s AASFP ap-
proach [45]. PPFS2 [44] offers runtime optimization
for caching, prefetching, data distribution, and shar-
ing. Recently, a more aggressive pre-execution based
prefetching [8], where a prefetching thread runs ahead
of main computing thread to prefetch data, was in-
troduced. Besides, a signature based prefetching with
post-execution analysis and runtime adjustment was
introduced in [3].

2.3. Data Layout and Access Optimization

In parallel file systems, file data is distributed among
multiple I/O servers and disks to provide higher de-
gree of parallelism. Parallel file systems, including
Lustre [10], GPFS [37] and PVFS2 [7], implement a
simple striping data distribution function, that data is
distributed using a fixed block size in a round-robin
manner among available I/O servers and disks.

Considering applications’ access information and
data layout information on file servers to optimize
accesses is possible at various levels including applica-
tion level, middleware level, and file system level. At
application level, many techniques [23, 38] have been
developed for accessing data in a way that improves
disk access parallelism by modifying application code.
The problem is that these strategies are not transparent
to developers and often introduce extra programming
burden. Library-level optimizations [4, 40, 42], such as
data sieving and two-phase I/O, are helpful in reducing
the number of requests to the file system. However,
as demonstrated in this study, when combined and
optimized with physical layout information of file
systems, we can achieve an even better result. The
data layout optimization at file system level primarily
focuses on providing variant data distribution strategies
for a variety of I/O workloads and user requirements.
For instance, PVFS2 [7] uses simple striping by de-
fault, and provides two more data distribution strategies
called variable striping and two dimensional striping
[33]. There also exist numerous studies that utilize data
layout information to optimize caching and prefetching
strategies in sequential I/O research domain, such as

Diskseen prefetching [13] and DULO buffer cache
management scheme [18]. While many optimizations
exist, there lacks sufficient study that investigates a
better integration of parallel I/O middleware and paral-
lel file systems, two major components of parallel I/O
systems. In this study, we demonstrate the potential
and real benefits of a better integration, layout-aware
parallel I/O strategy, with the goal of improving disk
access performance and task parallelism for reducing
overall execution time of applications.

3. Layout-Aware Parallel I/O Design and
Methodology

In this section, we present the idea and the prototype
design of the data layout aware parallel I/O strategy.
We first briefly review the independent I/O and col-
lective I/O, two major forms of I/O that are used in
parallel applications. We assume parallel applications
are written in MPI (Message Passing Interface) in
this study. We then introduce the proposed strategy
that fosters a better integration of layout awareness
to parallel I/O to explore physical locality and reduce
contention better.

3.1. Independent I/O and Collective I/O

Independent I/O is a straightforward form of I/O and
is widely used in parallel applications. This form of I/O
can be called independently by an individual process
or any subset of processes of a parallel application. It
is different from the case that all processes within the
communicator that is associated with the file handle
carry out I/O requests together. In the context of this
study, the independent I/O refers to the MPI-IO non-
collective function family. The advantage of indepen-
dent I/O is that users have the freedom to perform
I/O for each individual process or any subset of the
processes that open the file. However, the disadvantage
is that the implementation has no idea of what other
processes might do and therefore have to service the
I/O requests of each process individually. This short-
coming loses the opportunity that optimizes the I/O
performance with the knowledge of other processes.
The independent I/O can be implemented directly with
I/O system calls depending on specific file systems.

For many parallel applications, even though each
process may access several non-contiguous portions of
a file, the requests of multiple processes are often in-
terleaved and may constitute a large contiguous portion
of a file together [40]. In order to achieve better I/O
performance, a group of processes may cooperate with
each other in reading or writing data in a collective



and efficient way, which is known as collective I/O.
The collective I/O is a general idea that exploits the
correlations among accesses from multiple processes
of a parallel application and optimizes its I/O accesses.
It can be applied at many levels, such as disk level [21],
server level [36] or client level [40]. In this study, we
focus on parallel I/O middleware level. The collective
I/O has been well implemented in the most popular
MPI-IO middleware implementation, ROMIO [40]. If
the user chooses collective I/O semantics and provides
the entire access information of a group of processes to
the underlying MPI-IO middleware, the MPI-IO imple-
mentation can improve I/O performance significantly
by combining the requests of different processes and
servicing the combined aggregate requests.

Figure 2. Collective I/O and Two-phase Imple-
mentation. The two-phase implementation has a
communication phase to exchange data between
I/O client processes and aggregators and an I/O
phase to carry out I/O requests via aggregators
collectively.

The most popular method of implementing collec-
tive I/O is a two-phase strategy [35] (and its extension
- a generalized two-phase I/O [41]). This strategy
carries out collective I/O with separated I/O phase and
data exchange phase (or communication phase). Fig.
2 shows an example of two-phase collective I/O read.
In this example, we assume all processes participate
in the I/O phase (the processes participating I/O phase
are termed as aggregators and the number of aggre-
gators can be specified by users) and each process
(also aggregator) has sufficient memory for temporary
buffer. The two-phase I/O implementation has a first-
round communication to let each aggregator knows the
aggregated span of the I/O requests of all processes.
The implementation then partitions the aggregated
span of requests into multiple file domains with each
aggregator responsible for carrying out I/O requests for
its own file domain. This phase is called the I/O phase.
In the data exchange phase, each aggregator sends data
to the requesting processes, and each process receives

its required data from corresponding aggregators that
fetch the data on behalf of it.

3.2. Independent I/O with Layout Awareness

Although the independent I/O is simple and straight-
forward, the current strategy is not optimal. Due to
the independent nature, the existing independent I/O
strategy in parallel I/O merely utilizes the underlying
file system calls without the consideration of other
processes. However, in this study, we argue that the
ignorance of other processes could destroy the locality
of requests from each individual process. The reason is
that all these processes compete with each other to be
serviced, which essentially damages the locality and
hurts the overall performance, as we know that the
request of a specific process usually has strong locality
(i.e., the principle of locality). Without considering the
accesses from other processes for the independent I/O,
we not only lose the potential benefit of collective
I/O, but also deteriorate the I/O performance if without
considering the data layout and locality well.

Figure 3. Independent I/O from Parallel Appli-
cations. Each I/O client process carries out I/O
requests independently without considering the
requests of other processes. However, from the
data layout point of view, this ignorance of other
processes could destroy the access locality of
each individual process due to contention.

Fig. 3 demonstrates a scenario where 128 processes
of a parallel application issue independent I/O re-
quests simultaneously to four I/O servers. This sce-
nario is quite common in real applications, such as
in application-level checkpointing/restart. The result
of such a parallel I/O strategy is that all processes
compete with each other and destroy the locality of
each process’s request. For instance, it could happen
that one I/O server (IOS#0) serves the partial request
from P1 first, then interrupted by Pi and serve the
request from Pi partially, followed by the interruption



and serving the request from P0 and P127 partially too
(note that the requests from other processes are omitted
here). Similarly, it could happen to other processes
too that the requests from these processes compete
with each other and are serviced without considering
physical layout. Such an existing form of independent
I/O of parallel applications can lose the benefit of
physical data locality considerably.

Figure 4. Layout-Aware Independent I/O from Par-
allel Applications. With data layout awareness, the
request from a specific I/O client process is ser-
viced continuously in whole instead of being inter-
rupted randomly by other processes. The layout-
aware independent I/O exploits better locality, re-
duces the performance loss due to the access
contention and thus improves the I/O performance.

We propose to consider physical layout for the
existing parallel I/O strategy, as shown in Fig. 4. In
this new form, the request from a specific process is
serviced continuously in whole, instead of interrupted
randomly by other processes. The advantage of this
newly optimized strategy is that it considers the phys-
ical locality and avoids the interruption caused by the
contention from other processes. Though this strategy
does not combine and optimize accesses with other
processes as the collective I/O does, it avoids and
reduces the performance loss due to the contention of
other processes. Thus it can improve the performance
effectively too as the experiments demonstrate. There
might exist two concerns for this new strategy. The first
concern is that this approach may result in serialized
accesses to I/O servers. The second concern is that
this strategy may result in imbalanced response time
for different processes (or fairness concern). Note that
the total response time, or the time-to-solution, is what
users really care for a parallel application. As the

experimental testing shows, the total execution time
of a parallel application can be considerably improved
with the new layout-aware strategy, even though the
response time for individual processes are not well
balanced. In addition, such an optimization strategy
is devised from the perspective of the data layout
on each single disk. It also works in an environment
where each I/O server has multiple disks. In this case,
the new strategy can still benefit from the parallelism
provided by multiple disks within a server or across
servers. Furthermore, in order to reduce the imbalance
and avoid I/O serialization, we decouple the network
communication and I/O operations. As shown in the
experiments , the decoupled approach can achieve an
even better result together with layout-aware optimiza-
tion.

3.3. Collective I/O with Layout Awareness

Collective I/O combines the requests and issues
the aggregated request via aggregators on behalf of
all processes. In addition to applying the same idea
in independent I/O into aggregators to exploit better
locality and reduce contention, we apply an additional
dimension of layout awareness optimization in collec-
tive I/O when the file domains are partitioned and the
requests are carried out.

As we have discussed in previous sections, a sep-
arated design of parallel I/O middleware and parallel
file systems makes the current collective I/O strategy
lacking the physical data layout information. Specifi-
cally, the calculation of the span of the combined I/O
requests and the creation of the file domains are based
on logical partitions, not physical layout that actually
determines data access latency. Even though the file
domain that each aggregator is responsible for carrying
out I/O requests is logically contiguous, it does not
guarantee physically continuity. The ignorance of the
physical layout is subject to limit the performance im-
provement space of collective I/O. We demonstrate that
it would be beneficial by the incorporation of layout
awareness into collective I/O. We propose to integrate
the physical layout information of data distribution
among servers and rearrange file domain’s partition
and the requests from aggregators in a fashion that
matches the physical layout on servers.

Fig. 5 illustrates the idea of such a collective I/O
strategy with layout awareness. In Fig. 5, we illustrate
the details of the existing collective I/O operation
example and the physical layout of requested data (dis-
tinguished by the logical block number, i.e. LB#) on
file servers. The file server number, i.e. S#, represents
which file server the requested data reside on. Since the



proposed strategy focuses on optimizing the I/O phase
of the two-phase I/O strategy, we omit the details of
communication phase here. The data layout strategy of
file servers is assumed to be the most common round-
robin mechanism. The proposed new collective I/O
strategy rearranges the partitions of file domains and
the requests of aggregators in a way that the requests
are physically contiguous as much as possible, not only
logically contiguous, as shown in Fig. 5. This example
demonstrates that we rearrange requests of aggregators
to have each aggregator accesses data on file servers
contiguously, and multiple aggregators can access file
servers concurrently. The data layout information can
usually be obtained from the API provided by the
underlying parallel file systems. For instance, PVFS2
provides the interface to inquire the data layout on file
servers [7][32]. Note that the rearrangement here is to
change the requests that each aggregator carries out
on behalf of the processes, or the way the aggregators
access data. The rearrangement does not exchange data
themselves among aggregators. The communication
overhead involved in the proposed design is low, not
as exchanging data among aggregators, especially for
large I/O requests.

Figure 5. Collective I/O with Layout Awareness.
This new strategy rearranges the partitions of file
domains and the requests of aggregators to be
physically contiguous as much as possible. This
strategy exploits better locality, reduces contention
and achieves better I/O performance.

4. Experimental Results and Analysis

We have performed experimental tests with the pro-
posed layout-aware parallel I/O strategy for both inde-
pendent I/O and collective I/O operations with several
benchmarks and one user-level checkpointing/restart
application. We first briefly describe the experimental

environment and then present the experimental testing
results.

4.1. Experimental Setup

Our experiments were conducted on a 65-node Sun
Fire Linux-based cluster. This cluster is composed of
one Sun Fire X4240 head node, with dual 2.7 GHz
Opteron quad-core processors and 8GB memory, and
64 Sun Fire X2200 compute nodes with dual 2.3GHz
Opteron quad-core processors and 8GB memory. The
head node has 12 500GB 7.2K-RPM SATA-II drives
configured as RAID-5 system. Each compute node has
a 250GB 7.2K-RPM SATA hard drive. All 65 nodes
are connected with Gigabit Ethernet. In addition to the
ethernet interconnection, a subset of 16 client nodes
and the head node are also connected with 10Giga-
bit InfiniBand interconnection. The experiments were
tested on MPICH2-1.0.5p3 release and PVFS 2.8.1 file
system. We varied PVFS2 system configurations to test
the performance under different scenarios.

4.2. Experimental Results and Analysis of In-
dependent I/O with Layout Awareness

The first set of experiments is to compare the
performance of layout-aware independent I/O with the
existing independent I/O strategy. In order to better
understand the performance improvement of the pro-
posed strategy, we distinguish two different cases of
the layout-aware strategy. The first case is layout-aware
reordering optimization only, which means we only
apply layout awareness to all processes but do not
decouple communication and I/O. The second case is a
complete optimization strategy with both layout-aware
optimization and communication and I/O decoupling.
In this set of experiments, we tested on the InfiniBand
subset cluster. We configured PVFS2 system with four
I/O server nodes and eight client nodes.

Fig. 6 demonstrates the results of the layout-aware
strategy and the normal parallel I/O strategy for a user-
level checkpointing application. In this application, all
processes follow a coordinated checkpointing protocol
by reaching a global consistent state first, then issue
application-level checkpointing by writing the runtime
data into persistent data storage. We vary the number of
client processes to test the performance under different
scenarios, but keep the same total image size of the
whole application in all cases. For instance, the first
group of three bars in the figure represents the case
with 8 processes and each process writes an image
of 2000MB. As can be observed from the figure, even
though the total amount of I/O requests is the same for



all cases, the execution time was increased when the
number of processes increased. This time increase is
primarily due to the contention from multiple processes
and the degraded locality because of the contention.
With the complete layout-aware reordering and com-
munication and I/O decoupling, the execution time
was decreased by 35.2% on average. In this case,
the communication and I/O decoupling contributed
considerably to the overall performance, while the
strategy with only layout-aware reordering decreased
the execution time by 7.61% on average. Furthermore,
we can observe that the complete proposed optimiza-
tion strategy can achieve stable performance under var-
ious cases, which clearly demonstrates that the layout-
aware optimization exploits better physical locality
and reduces contention considerably. In addition, we
can observe that the benefit of the optimized strategy
increased as the system size scaled up. For instance, the
performance speedup with the complete optimization
strategy was 24.3%, 33.2%, 38.9%, 38.4% and 41.2%
respectively when we tested with 8, 16, 32, 64 and
128 processes. This is a great merit of the proposed
strategy, as it is scalable and can achieve better perfor-
mance speedup when the system size is increased.

Figure 6. Layout-Aware Independent I/O Opti-
mization Result on PVFS2

Fig. 7 demonstrates the results of the similar test
as in the previous case, but on NFS file system. The
performance trend of the test on NFS file system is not
as stable as in the PVFS2 test case, but we can still
observe a clear performance improvement with the pro-
posed layout-aware optimization strategy. Although the
communication and I/O decoupling seems contributed
little in this series of tests, the overall performance was
still improved by 28.6% on average. The layout-aware
reordering alone achieved roughly 19.4% performance
speedup on average.

Figure 7. Layout-Aware Independent I/O Opti-
mization Result on NFS

4.3. Experimental Results and Analysis of Col-
lective I/O with Layout Awareness

Next we present the experimental results of the pro-
posed layout-aware optimization in collective I/O. The
tests were carried out with one synthetic benchmark
that tested the performance of collective I/O and the
IOR collective I/O testing. In this set of experimental
tests, we varied the PVFS2 settings. We configured
PVFS2 with 32 I/O server nodes. The rest of 32 nodes
were used as client nodes.

4.3.1. Synthetic Benchmark. We have coded a syn-
thetic benchmark in which each process does strided
reads but the aggregated requests of all processes
are sequential reads over the file. We performed a
series of tests on the Sun Fire cluster to compare the
performance of layout-aware collective I/O and the
original one. The total size of the data accessed by
all processes are 128MB, 320MB, 640MB, 800MB
and 4000MB respectively. The results are shown in
Fig. 8 with both current collective I/O strategy and
the optimized strategy with layout awareness. It can
be observed that the optimization strategy with layout
awareness could have a considerable impact on the
performance of parallel I/O system. The performance
variation and the performance improvement was up to
48.8% and 38% on average.

4.3.2. IOR Benchmark. Fig. 9 reports the testing
results with IOR-2.10.2 benchmark from Lawrence
Livermore National Laboratory [17]. In these exper-
iments, we performed the test with 64 processes on 32
client nodes (client nodes are separate from I/O server
nodes). We performed both sequential reads/writes and
random reads/writes tests, and varied the file size. As
can be seen from these results, the layout-aware strat-
egy can affect the IOR benchmark testing performance



Figure 8. Layout-Aware Collective I/O Optimiza-
tion with Synthetic Benchmark Testing

considerably. The layout-aware strategy could improve
the I/O bandwidth up to 74%, 38%, 112% and 28%
for random reads, random writes, sequential reads and
sequential writes, respectively. The average potential
improvement of layout-aware strategy with different
file sizes was 40%, 23%, 45% and 16% for random
reads, random writes, sequential reads and sequential
writes respectively.

5. Conclusion and Future Work

Poor I/O performance has been a bottleneck in many
parallel computing systems and data-intensive high-
end/high-performance computing applications. In this
study, we propose a new layout-aware I/O strategy to
optimize parallel I/O performance and foster a better
integration of parallel I/O middleware (independent
I/O and collective I/O) and parallel file systems (data
layout information). While both of the parallel I/O
middleware and parallel file systems technologies have
made their success, little has been done to investigate a
layout-aware parallel I/O strategy and a better integra-
tion of these two parallel I/O subsystems to improve
the overall performance.

The contribution of this study is three-fold. First,
we demonstrate that it could be beneficial to integrate
layout awareness to parallel I/O strategy. Second, we
propose a new layout-aware parallel I/O optimiza-
tion strategy and exploit this optimization strategy
for both independent I/O and collective I/O. Third,
as the experimental results demonstrate, the layout-
aware optimization can clearly improve the parallel
I/O system performance. The proposed optimization
strategy can exploit physical data locality and reduce
contention better than the existing parallel I/O strategy.

(a) Random Accesses

(b) Sequential accesses

Figure 9. Layout-aware Collective I/O Optimization
with IOR Benchmark Testing

Parallel I/O systems have been designed as one-
set-for-all and have been static. There is a great need
for research into next-generation parallel I/O architec-
tures to support data layout awareness, applications’
access characteristics and intelligence. Although our
current research effort is just one step toward the
goal of an intelligent next-generation I/O architecture,
our prototyping system has demonstrated the great
potential in improving parallel I/O access performance
via layout awareness optimization. In the near future,
we plan to continue our current research investigation,
especially the investigation on layout awareness and
access awareness optimizations, to further improve
parallel I/O system performance.

Acknowledgment

The authors are thankful to Dr. Philip C. Roth of Oak
Ridge National Laboratory for his helpful suggestions.
The authors are also grateful to anonymous reviewers
for their constructive comments and suggestions that
help the further improvement of this work.



References

[1] Ahmed Amer, Darell Long, Jehan-Francios Paris,
and Randal Burns, File Access Prediction with
Adjustable Accuracy, International Performance
Conference on Computers and Communication,
Phoenix, AZ, April 2002.

[2] J. Bent, G. Gibson, G. Grider, B. McClelland, P.
Nowoczynski, J. Nunez, M. Polte, M. Wingate.
PLFS: A Checkpoint Filesystem for Parallel Ap-
plications. in Proc. of ACM/IEEE Supercomput-
ing’09, 2009.

[3] S. Byna, Y. Chen, X.-H. Sun, R. Thakur,
W. Gropp. Parallel I/O Prefetching Using MPI
File Caching and I/O Signatures, in Proc.
of the ACM/IEEE SuperComputing Conference
(SC’08), Nov. 2008.

[4] Javier Garcła Blas, Florin Isaila, David E. Singh
and Jess Carretero, View-based Collective I/O for
MPI-IO, IEEE International Symposium on Clus-
ter Computing and the Grid (CCGRID). Lyon,
France. 2008.

[5] Rajesh Bordawekar, Juan Miguel del Rosario,
Alok N. Choudhary: Design and Evaluation of
primitives for Parallel I/O. SC 1993: 452-461

[6] R. E. Bryant and D. O’Hallaron. Computer Sys-
tems: A Programmer’s Perspective. Prentice-Hall,
2003.

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and R.
Thakur. PVFS: A Parallel File System For Linux
Clusters. in Proceedings of the 4th Annual Linux
Showcase and Conference, 2000.

[8] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W.
Gropp. Hiding I/O Latency with Pre-execution
Prefetching for Parallel Applications, in Proc.
of the ACM/IEEE SuperComputing Conference
(SC’08), Nov. 2008.

[9] Y. Chen, X.-H. Sun and M. Wu. Algorithm-
System Scalability of Heterogeneous Computing.
Journal of Parallel and Distributed Computing
(JPDC), Vol. 68, No. 11, 1403-1412, 2008.

[10] Cluster File Systems Inc. Lustre: A Scalable,
High Performance File System. Whitepaper,
http://www.lustre.org/docs/whitepaper.pdf

[11] F. Chang and G. A. Gibson. Automatic I/O
Hint Generation Through Speculative Execution,
Proceedings of the 3rd Symposium on Operat-
ing Systems Design and Implementation (OSDI),
1999.

[12] F. Dahlgren, M. Dubois, and P. Stenstrom, Fixed
and Adaptive Sequential Prefetching in Shared-
memory Multiprocessors, Proc. 1993 Int’l Conf.
Parallel Processing, CRC Press, 1993, pp. I56-I63

[13] X. Ding, S. Jiang, F. Chen, K. Davis, X. Zhang.
DiskSeen: Exploiting Disk Layout and Access
History to Enhance I/O Prefetch, in Proceedings
of USENIX Annual Technical Conference 2007,
pp. 261-274, 2007.

[14] J. Fu, J.H. Patel, Data Prefetching in Multipro-
cessor Vector Cache Memories, Proc. 17th annual
Int’l Symposium, Computer Architecture, pp. 54-
63, May 1991.

[15] J. Griffioen and R. Appleton, Performance Mea-
surements of Automatic Prefetching, In Proceed-
ings of the 8th International Conference on Par-
allel and Distributed Computing Systems, pages
237-242. IASTED, Sept. 1995.

[16] T. Highley and P. Reynolds, Marginal Cost-
Benefit Analysis for Predictive File Prefetching,
Proceedings of the 41st Annual ACM Southeast
Conference (ACMSE 2003), Savannah, GA.

[17] Interleaved or Random (IOR) Benchmark,
http://sourceforge.net/projects/ior-sio/.

[18] S. Jiang, X. Ding, F. Chen, E. Tan, X. Zhang.
DULO: An Effective Buffer Cache Management
Scheme to Exploit Both Temporal and Spatial
Localities, in Proceedings of the 4th USENIX
Conference on File and Storage Technologies
(FAST), 2005.

[19] J. May, Parallel I/O For High Performance Com-
puting, Morgan Kaufmann Publishing, 2001.

[20] D.Joseph and D. Grunwald. Prefetching Us-
ing Markov Predictors, Proceedings of the 24th
Annual Symposium on Computer Architecture,
Denver-Colorado, pp 252-263, June 2-4 1997.

[21] D. Kotz. Disk-directed I/O for MIMD Multipro-
cessors. ACM Transactions on Computer Sys-
tems, 15(1):41C74, 1997.

[22] Gokul Kandiraju, Anand Sivasubramaniam, Go-
ing the Distance for TLB Prefetching: An
Application-Driven Study, In Proceedings of the
ISCA ’02, 2002.

[23] Meenakshi A. Kandaswamy , Mahmut Kandemir
, Alok Choudhary , David Bernholdt, An Exper-
imental Evaluation of I/O Optimizations on Dif-
ferent Applications, IEEE Transactions on Paral-
lel and Distributed Systems, v.13 n.12, p.1303-
1319, December 2002.

[24] G. H. Kuenning, The Design of the SEER Pre-
dictive Caching System, In Proceedings IEEE
Workshop on Mobile Computing Systems and
Applications, 1994, pages 37-43, IEEE, 1994.

[25] J. F. Lofstead, S. Klasky, K. Schwan, N. Pod-
horszki and C. Jin. Flexible IO and Integration
for Scientific Codes Through the Adaptable IO
System (ADIOS). in Proc. of the 6th International



Workshop on Challenges of Large Applications in
Distributed Environments, 2008.

[26] Wei-keng Liao, Avery Ching, Kenin Coloma,
Alok N. Choudhary, Lee Ward, An Implementa-
tion and Evaluation of Client-Side File Caching
for MPI-IO, IPDPS 2007: 1-10

[27] H. Lei and D. Duchamp, An Analytical Approach
to File Prefetching, In Proceedings of the 1997
USENIX Annual Technical Conference, pages
275-288. USENIX, Jan. 1997.

[28] J. May. Parallel I/O for High Performance Com-
puting. Morgan Kaufmann Publishing, 2001.

[29] Xiaosong Ma, Marianne Winslett, Jonghyun Lee,
Shengke Yu, Faster Collective Output through
Active Buffering, IPDPS 2002.

[30] A. M. David Nagle, Denis Serenyi, The Panasas
ActiveScale Storage Cluster - Delivering Scalable
High Bandwidth Storage, In Proceedings of Su-
percomputing ’04, November 2004.

[31] B. Nitzberg, Virginia Mary Lo, Collective Buffer-
ing: Improving Parallel I/O Performance, HPDC
1997

[32] PVFS2 Development Team. PVFS Developer’s
Guide. http://www.pvfs.org/cvs/pvfs-2-8-branch-
docs/doc//pvfs2-guide.pdf.

[33] PVFS Development Team, PVFS2
Tuning, http://www.pvfs.org/cgi-
bin/pvfs2/viewcvs/viewcvs.cgi/pvfs2/doc/pvfs2-
tuning.tex#rev1.2

[34] R. H. Patterson, G. A. Gibson, E. Ginting, D.
Stodolsky, and J. Zelenka, Informed Prefetch-
ing and Caching, In Proceedings of the 15th
ACM Symposium on Operating Systems Princi-
ples (SOSP ’95), ACM, 1995.

[35] J. del Rosario, R. Bordawekar, and A. Choudhary,
Improved Parallel I/O via a Two-Phase Run-time
Access Strategy, in Proc. of the Workshop on I/O
in Parallel Computer Systems at IPPS 93, 1993.

[36] K. Seamons, Y. Chen, P. Jones, J. Jozwiak and M.
Winslett, Server-Directed Collective I/O in Panda,
in Proc. of Supercomputing95. ACM Press, 1995.

[37] F. Schmuck and R. Haskin, GPFS: A Shared-
Disk File System for Large Computing Clusters,
In First USENIX Conference on File and Stor-
age Technologies, pages 231–244. USENIX, Jan.
2002.

[38] S. W. Son, G. Chen, M. Kandemir, Disk Layout
Optimization for Reducing Energy Consumption,
Proceedings of the 19th annual international con-
ference on Supercomputing, June 20-22, 2005.

[39] X.-H. Sun, Y. Chen and Y. Yin. Data Layout
Optimization for Petascale File Systems. In Proc.
of The 4th Petascale Data Storage Workshop
(in conjunction with ACM/IEEE Supercomput-
ing’09), 2009.

[40] R. Thakur, W. Gropp and E. Lusk. Data Sieving
and Collective I/O in ROMIO. in Proceedings of
the 7th Symposium on the Frontiers of Massively
Parallel Computation, 1999.

[41] R. Thakur and A. Choudhary, An Extended Two-
Phase Method for Accessing S ections of Out-of-
Core Arrays, Scientific Programming, (5)4:301-
317, Winter 1996.

[42] R. Thakur, W. Gropp, and E. Lusk, Optimiz-
ing Noncontiguous Accesses in MPI-IO, Parallel
Computing, (28)1:83-105, January 2002.

[43] Top 500 Supercomputing Website.
http://www.top500.org.

[44] N. Tran, D. A. Reed. Automatic ARIMA Time
Series Modeling for Adaptive I/O Prefetching,
IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 4, pp. 362-377, April, 2004.

[45] C.K. Yang, T. Mitra and T. Chiueh, A Decou-
pled Architecture for Application-Specific File
Prefetching, Freenix Track of USENIX 2002 An-
nual Conference, 2002.


