
A Segment-Level Adaptive Data Layout Scheme for
Improved Load Balance in Parallel File Systems

Huaiming Song, Yanlong Yin, Xian-He Sun
Department of Computer Science
Illinois Institute of Technology

Chicago, IL 60616, USA
{huaiming.song, yyin2, sun}@iit.edu

Rajeev Thakur, Samuel Lang
Mathematics and Computer Science Division

Argonne National Laboratory
Argonne, IL 60439, USA

{thakur, slang}@mcs.anl.gov

Abstract—Parallel file systems are designed to mask the ever-
increasing gap between CPU and disk speeds via parallel I/O
processing. While they have become an indispensable compo-
nent of modern high-end computing systems, their inadequate
performance is a critical issue facing the HPC community today.
Conventionally, a parallel file system stripes a file across multiple
file servers with a fixed stripe size. The stripe size is a vital
performance parameter, but the optimal value for it is often
application dependent. How to determine the optimal stripe
size is a difficult research problem. Based on the observation
that many applications have different data-access clusters in
one file, with each cluster having a distinguished data access
pattern, we propose in this paper a segmented data layout scheme
for parallel file systems. The basic idea behind the segmented
approach is to divide a file logically into segments such that an
optimal stripe size can be identified for each segment. A five-step
method is introduced to conduct the segmentation, to identify
the appropriate stripe size for each segment, and to carry out
the segmented data layout scheme automatically. Experimental
results show that the proposed layout scheme is feasible and
effective, and it improves performance up to 163% for writing
and 132% for reading on the widely used IOR and IOzone
benchmarks.

Keywords-parallel file system, adaptive data layout, file seg-
ment, optimal stripe size, I/O performance

I. INTRODUCTION

Data-intensive applications widely exist in the domains of
scientific computing and engineering simulation, such as nan-
otechnology, astrophysics, climate, and high-energy physics.
The data size and storage volume of these applications con-
tinue to grow rapidly. A single disk has reached several ter-
abytes and an individual system has reached petascale or even
beyond. However, the improvement rate of disk bandwidth has
not kept pace with the growth of capacity. Even worse, I/O
performance lags far behind computing capacity, resulting in
processors having to wait a large number of cycles for data
arrival. Data access performance is often the bottleneck for
data-intensive and high-performance computing systems.

Parallel file systems, such as Lustre[1], GPFS[2], pNFS[3],
PVFS2[4], and PanFS[5][6], provide a high degree of I/O
parallelism for parallel applications by combining a large
number of storage devices and utilizing them in concert. In
a parallel file system, a large data file is usually striped
across multiple I/O servers by using a fixed stripe size in a

round-robin manner. This striping method has the benefit of
concurrent data access to/from multiple I/O servers and can
provide balanced data size in these storage nodes. The data
access pattern and the striping method have an interrelated
effect on I/O bandwidth in parallel file systems [7][8][9]. One
stripping manner can benefit applications with a few specific
data access patterns, and different data access patterns require
different stripe sizes for higher I/O performance.

Generally, the optimal stripe size for an application depends
on its data access patterns. However, for many data-intensive
applications, data accesses are non-uniform in a large file.
Their request size can be large when accessing one part of
the file and small at another part; some parts are accessed
repeatedly while others may seldom be accessed. Also, the
number of concurrent processes can change with time. Due to
the non-uniform data access, one stripe size for a whole file
cannot serve all I/O requests with high performance. One stripe
size may be suitable for some data access patterns, but not
suitable for others. Therefore, it is not always easy to find an
optimal stripe size for data-intensive applications, especially
for those with variable data access patterns.

Historically, parallel I/O applications and parallel file sys-
tems are designed and developed separately. This separation
enhances the transparency between the two layers and eases
the software implementation. Nevertheless, because of lacking
information of each other, data access from client side may
mismatch with physical data layout on I/O servers. This mis-
match can introduce I/O workload imbalance problem among
multiple I/O servers, which is a critical restrict of performance
for parallel I/O systems. Figure 1 shows an example of I/O
workload distribution of stride I/O, which is a most common
occurrence in parallel I/O workloads [10]. The request size
is 4 KB and stride size is 12 KB. There are 4 I/O servers.
From the figure we can see that, if the stripe size is 4 KB
or 8 KB, the data accesses fall only into 1 or 2 I/O servers.
However, the data access workload can be evenly distributed
on all I/O servers if the stripe size is set to 1 KB or 16 KB. This
example demonstrates a potential optimization opportunity by
tuning stripe size to balance I/O workload, which can benefit
the overall performance of parallel I/O systems.

In this paper we propose a segment-level data layout scheme
to optimize the I/O performance for applications with non-

1

I/O Request

I/O Servers

Strip Size 4KB

4K 12K

Strip Size 8KBStrip Size 1KB Strip Size 16KB

Fig. 1. Stride I/O and data access workload distribution under different layout manners

uniform data access patterns, as well as to address I/O work-
load imbalance problems. Specifically, we make the following
contributions.

• We propose a segment-level layout scheme, which divides
files into segments and adopts different stripe sizes for
different file segments, in order to improve I/O bandwidth
in each segment.

• We describe how to calculate the optimal stripe size for
each file segment based on analysis of data access cost.

• We further adjust the stripe size for each file segment to
improve I/O workload balance.

The rest of this paper is organized as follows. Section II
introduces the related work of data access and layout opti-
mization for parallel I/O systems. In Section III, we propose
a segment-level adaptive data layout scheme, and describe a
five-step approach to conduct the segmentation. Section IV
introduces how to calculate the optimal stripe size for each
file segment, and Section V presents how the new approach
addresses I/O workload imbalance issues. Experimental results
are presented and analyzed in Section VI. Finally, Section VII
concludes the paper.

II. RELATED WORK

Data access patterns and layout strategies are two key
factors that affect I/O performance in parallel I/O systems. In
the last few years, numerous techniques have been proposed
in both data access and layout optimization to improve parallel
I/O performance. These techniques have been pursued in
attacking the I/O bottleneck problem in the form of runtime
I/O libraries, middleware, and parallel file systems.

A. Data Access Optimization

Research efforts on data access optimization have focused
on reordering of requests. A large body of research has
been done in parallel I/O libraries, such as data sieving

[11][12], two-phase I/O [13][14], collective I/O [12][15][16],
list I/O [17], and datatype I/O [18]. These techniques mainly
focus on collecting and merging small or non-contiguous I/O
requests into large or contiguous ones, and have achieved
I/O performance improvement by reducing the total amount
of network packing/unpacking, or disk head thrashing. Be-
sides these request re-arrangement approaches, other re-
search efforts have been devoted to caching[19][20][21] and
prefetching[22][23][24][25] at different layers, to take advan-
tage of data fetching beforehand or re-access afterwards.

In order to explore sustained peak I/O performance on
storage nodes, a collection of I/O scheduling techniques have
been developed on the server side of parallel file systems,
including disk-directed I/O [26], server-directed I/O [27],
and stream-based I/O [28][29]. Disk-directed I/O [26] sorts
the physical blocks into some optimal access ordering and
uses double-buffering to overlap disk read/write and network
transmission. Server-directed I/O [26] is a derivative of disk-
directed I/O. It utilizes a high-level multidimensional data set
interface and applies disk-directed techniques at the logical or
file level. Stream-based I/O attempts to address the problem
of network bottleneck in parallel I/O systems. All these
techniques succeed in achieving high bandwidth in disks and
networks of I/O servers, either by reducing the frequency
of disk seeks, or by reducing the waiting time of network
connections.

B. Data Layout Optimization

Most parallel file systems, such as Lustre[1], GPFS[2],
pNFS[3], PVFS2[4], and PanFS[5], provide several data lay-
out policies for different I/O workloads. Therefore, parallel
I/O performance can also be optimized by reorganizing data
layout on I/O servers to create a storage layout consistent
with expected data access patterns. A collection of research
efforts have been devoted to physical data layout optimization

2

[30][31][32][33][34][35][36] among multiple I/O servers. Data
partitioning[30][31] and replication[34][35][36] techniques are
commonly utilized to improve data locality on I/O servers or
to reduce the number of disk head seeks. For example, Zhang
et al[36] proposed a data replication scheme to amortize I/O
workload to multiple replicas to improve the performance, so
that each I/O node only serves requests from one or a limited
number of processes.

In order to explore parallel I/O more efficiently, data layout
optimization has to rely on the prior knowledge of data access
patterns. Workload studies on a number of platforms have
shown that I/O workloads for most scientific applications
usually fall into several patterns [10]. Moreover, there have
been some I/O trace techniques and tools [37][25][38] that
can be used for data access analysis. Our previous work [7][9]
proposed a model to estimate data access costs for different
layout manners based on data access patterns, thus to optimize
data layout on I/O servers.

Both requests rearrangement and data reorganization tech-
niques have been successful in improving I/O performance
for parallel I/O systems. However, to the best of our knowl-
edge, little effort has been done on segment-level data layout
optimization. In addition, the proposed layout scheme also
takes data access workload balance into consideration, which
is another significant difference from others’ work.

III. ADAPTIVE LAYOUT OPTIMIZATION

A. Segment-level Adaptive Data Layout

Data access patterns and layout manners have an interrelated
effect on I/O bandwidth in parallel file systems. Usually, data
layout optimization on storage nodes must consider the data
access patterns from the client side. However, the data access
pattern may vary at different parts of a large file. The request
size might be very large for some data and very small for
others. As a result, one fixed stripe size for the whole file
cannot serve all data accesses with high efficiency. We propose
a segment-level layout scheme, that divides a large file into
several small segments and adopts different layout manners
for different segments according to the data access patterns
on them, to explore potential benefit for all I/O requests.

In general, for the segments with many small I/O requests, it
is better to set a relatively small stripe size, so that one request
can be directed to one or a few storage nodes, and different
requests can be directed to different I/O servers to avoid
extreme access to one or a few nodes. For the segments with
large request sizes, it is better to stripe data with a moderately
large stripe size, so that applications can benefit from large
contiguous data access on I/O servers. Moreover, the number
of data blocks involved in one request should not be too
large, which can simplify the data collecting/scattering at the
parallel I/O middleware or client side library. The proposed
data layout scheme chooses optimal stripe size for each file
segment, which can improve the aggregate I/O bandwidth for
both small and large I/O requests.

Many data-intensive and high-performance computing sys-
tems have regular access patterns while accessing data files.

I/O Servers 0 1 2 3

Data Strips

Data File

seg. 0 seg. 1 seg. 2 seg. 3

Fig. 2. An instance of the segment-level adaptive data layout scheme. In this
example, the file is divided into 4 segments with their different stripe sizes.

For these applications, data access patterns are similar to
previous runs. It provides an opportunity to optimize data
layout based on the I/O trace analysis. The basic approach of
the proposed layout scheme includes the following five steps.

(1) Logically divide the address space of the file into seg-
ments by a fixed chunk size (e.g. 64MB or 128MB) for
further analysis.

(2) Calculate the average request size of all I/O requests
located on each segment according to the I/O traces. If
the start offset of an I/O request falls into the segment,
the request is counted toward the average request size.

(3) Analyze data access cost for each segment according to
our parallel I/O cost model (described in Section IV),
and calculate the optimal stripe size for each segment.

(4) Measure data access workload on all I/O servers for each
segment, and then choose a proper stripe size close to
the optimal stripe size determined in Step (3) to balance
workload among I/O servers.

(5) Combine adjacent segments into a larger segment if the
two have the same optimal stripe size.

The details of how to calculate the optimal stripe size for
each file segment in Step (3) and how to balance the data
access workload in Step (4) are described in the following sec-
tions. After the above five steps, an optimized segment-level
layout can be determined for a large file, with optimal stripe
sizes for its individual segments. Figure 2 shows an example
of the segment-level data layout scheme. In this example, the
file is divided into four segments, and different segments use
different stripe sizes. Since the stripe size for each segment
is optimized according to the data access pattern in it, the
proposed layout scheme can serve all I/O requests with high
performance. Compared with existing layout strategies that
adopt one stripe size for the whole file, the segment-level
layout scheme is a fine-grained optimization, and it is more
suitable for applications with complex data access patterns.

The five-step approach is based on I/O trace analysis to
conduct the file segmentation. Therefore, the proposed data

3

layout scheme makes a better integration of data access pattern
on the client side and data organization on the server side. It
needs prior knowledge of data access patterns of applications
to make a segment-level optimization. Trace-based data access
analysis is widely used for I/O optimization [25][38][39], and
such traces can be easily collected at either the application
level or I/O library level [25][38]. In our previous work, we
have developed a data access trace collector in the MPI-IO
library, which can record I/O requests for all MPI processes
when a parallel application runs [25].

B. Layout Metadata

By adopting the proposed segment-level layout scheme,
a large file is divided into several segments each with a
potentially different stripe size. Therefore, the metadata of data
layout should include the information about all segments and
stripe sizes. We design an <offset, strip size> pair list to
describe the layout information. For example, a list <0, 4KB:
64MB, 64KB: 128MB, 1MB: 1024MB, 64KB> means that
the file consists of 4 segments, and stripe sizes for them are
4 KB, 64 KB, 1 MB, and 64 KB, respectively.

Although the metadata includes more information on data
layout, the size of metadata is not too large. For example,
Google file system (GFS)[40] and Hadoop distributed file
system (HDFS)[41] use 64 MB chunk size, and one metadata
server can hold all block information of a petascale distributed
file system. The proposed layout scheme adopts 64 MB or 128
MB in Step (1) to divide a large file, hence the total number of
segments for the whole file system is not too large. Moreover,
in Step (5), adjacent segments with same stripe size will be
combined together, which can significantly reduce the total
number of segments for a file.

The proposed data layout scheme adopts different layout
manners for different file segments. The five-step approach
is simply a calculation carried out offline to figure out the
file segments and layout manner for them. Also, parallel file
systems could provide a smart interface to apply the segment-
level data layout. A feasible way is to provide layout templates
for specific applications. Layout templates could be generated
by I/O trace file analysis, and users can choose proper layout
templates when a new file is created. For some well-known
applications with typical data access patterns, parallel file
systems could also provide some specific templates without
trace analysis. The proposed scheme provides a more fine-
grained approach to enrich and optimize the data layout of
files in parallel file systems. Besides, if a file is not specified
with any layout templates, it would inherit the layout manner
of the directory, or use the default manner.

IV. HOW TO CALCULATE THE OPTIMAL STRIPE SIZE

The proposed data layout scheme uses an optimal stripe size
for each file segment, and the optimal stripe size is calculated
based on data access cost analysis. In this section, we propose
a model to calculate the data access completion time according
to the stripe sizes. We can use this model to calculate the
optimal stripe size with the lowest completion time for each

segment. For simplicity, assume the completion time of each
data access on I/O servers include two parts: startup time and
read/write time.

TIO = Tstartup + Trw (1)

Here the startup time means disk seek and software over-
head of the I/O servers, and it is independent from the request
size. Read/write time means the time consumption of data
read/write from/to disk devices, and this part is proportional
to the data size. For each data access, assume the startup
time on each I/O server is α. Usually, startup time is not a
constant in a storage node with block devices, and we assume
it follows uniform distribution between Tmin and Tmax, where
Tmin and Tmax represent the minimum and maximum startup
time, respectively. Thus α is the expectation of startup time,
and α = 1

2 (Tmin + Tmax). If I/O clients access data on k
I/O servers in parallel, the overall startup time should be the
maximum of all the k I/O servers. Hence, the expectation
of the maximum startup time on the k I/O servers can be
expressed as follows.

Tstartup = Tmin +
k

k + 1
(Tmax − Tmin) (2)

Assume the transmission time of a single unit of data is β,
stripe size is s, the request size is r, and the number of I/O
servers is n. Therefore, data access time of an I/O request can
be expressed as the following three cases.

⎧⎪⎨
⎪⎩

α + rβ (s > r)
Tmin + � r

s �
� r

s �+1 (Tmax − Tmin) + sβ (r
n ≤ s ≤ r)

Tmin + n
n+1 (Tmax − Tmin) + r

nβ (s < r
n)

(3)

In order to get the minimal data access cost, we compare
the minimal completion time of the three cases. In a given
system, the completion time of the first and third cases are
fixed if the request size r is determinate. For the second case,
the minimal value can be achieved when the derivative of s
is 0 or at the boundary conditions. The derivative of s can be
roughly expressed as follows.

β − r(Tmax − Tmin)
(r + s)2

Let the derivative equal 0, then we can calculate the value of
s.

s =

√
r(Tmax − Tmin)

β
− r (4)

If the value of s in Formula 4 also satisfies the precondition
r
n ≤ s ≤ r, minimal completion time can be calculated at that
point. Otherwise the minimal completion time can be achieved
where s is r

n or r, the end points of boundary conditions.
Therefore, we can determine the optimal stripe size s where
Formula 3 gets the minimal value.

In Formula 4, we use average request size on each segment
to calculate the optimal stripe size. The average request size

4

may have lost some individual information of data access,
but it is more representative in most cases. Besides, it can
substantially simplify the calculation.

V. HOW TO BALANCE I/O WORKLOAD

The striping manner can easily distribute a file evenly on
multiple I/O servers. However, due to non-uniform data ac-
cess, especially large amounts of non-contiguous data access,
balanced data size in all I/O servers does not mean balanced
I/O workload on them. The proposed segment-level data layout
scheme also takes I/O workload balance into consideration. In
this section, we discuss how to achieve this balance by tuning
the stripe size.

A. Data Access Workload

In Section IV, we assume that each data access on a storage
node consists of a startup time and data read/write time.
Normally, the startup time is independent from request size,
while data read/write time is proportional to request size. We
define I/O workload on each I/O server with comprehensive
consideration of two parts: the total number of data accesses
and the total data size accessed. Noticing that startup time for
each data access is α on one node, and the transmission time
of a single unit of data is β, we use K to represent the total
number of data accesses and S to represent the total requested
size on an I/O server. Thus, I/O workload on one I/O server
can be represented as follows.

LIO = K · α + S · β (5)

If an I/O server serves lots of small data accesses, the first
part ‘K · α’ is very large, and thus the I/O workload is very
high. On the other hand, if the requested size is very large, the
second part ‘S ·β’ is very large, thus the I/O workload on that
I/O server is also very high. Therefore, both large numbers of
data accesses and large amounts of requested data can result
in heavy I/O workload. The two observations are consistent
with real application scenarios.

Assume the offset and size of an I/O request are f and r.
It is not difficult to calculate the beginning I/O server and
the ending I/O server. From the beginning to the ending, the
number of data access K on each I/O server increases by
one, and the data size S on each I/O server increases by the
involved data size. Here the involved data size should consider
fragment of the boundaries. Figure 3 demonstrates an example
of how to measure K and S on all I/O servers for a request.
Generally, assume the serial numbers of I/O servers are from
0 to n − 1 (n is the total number of I/O servers), and the
beginning offset of the segment is F , so the serial number of
the beginning I/O server is

�f − F

s
�%n,

and the ending I/O server is

�f − F + r

s
�%n,

s1

I/O
Request

Offset and size: < f, r >

I/O
Servers

s2

Strip size: s

K: +1 +1 +1 +1

S: +(2s+s2) +2s +(s1+2s) +3s

Fig. 3. A sketch of how to calculate workload for an I/O request

The size of the beginning fragment is

s1 = (f − F)%s,

and the size of the ending fragment is

s2 = (f − F + r)%s.

Therefore, if we can get all the request information from I/O
traces, we can calculate the overall workload for all I/O servers
in a given parallel system with different configurations of
stripe sizes.

From the method of calculation we can see that, the distri-
bution of workload depends on the data access patterns and
data layout manners. Generally, data access patterns and data
layout manners have an interrelated effect on I/O workload
distribution. As mentioned in previous sections, in many large-
scale and data-intensive applications, data accesses might
be non-uniform to the file, which can introduce workload
imbalance problems. Generally, workload imbalance can be
measured as follows [42]:

σ =
Lmax

Lavg
− 1 (6)

where Lmax is the maximum data access workload in all I/O
servers, and Lavg is the average workload of these I/O servers.
From the measurements, we can see that σ ≥ 0. The closer
σ gets to 0, the more balanced the I/O workload is. When
σ = 0, the data access workload is well balanced among all
I/O servers.

B. Balance I/O Workload

For a given application with specific data access patterns,
stripe size is one of the key factors that influence I/O workload.
For instance, in the stride I/O cases shown in Figure 1,
different stripe sizes have different effects on the I/O workload
over I/O servers. As a result, it is feasible to balance workload

5

Calculate workloads for
all servers with strip_s

based on I/O traces

Get the imbalance factor:
imb_fa

imb_fa < threshold ?

Adjustment stop.
Strip_s is satisfied

Try alternative strip size:
strip_s = strip_s * (1-f) &
strip_s = strip_s * (1-f)

Calculate optimal strip
size according to data
access cost analysisStep 3

Step 4

Y

N

Fig. 4. Balance I/O workload by adjusting stripe size

by adjusting the stripe size in an application-specific manner
for large-scale and data-intensive systems.

We have discussed how to calculate the optimal stripe size
of each segment based on the data access time analysis in last
section. Nevertheless, the optimal stripe size is calculated from
average request size, which may have lost some individual
information of data accesses. It cannot guarantee I/O workload
balance among multiple I/O servers. We further tune the stripe
size calculated in Step (3) to achieve I/O workload balance. We
calculate the workload on all I/O servers with this stripe size.
If the I/O workload skew is too high, i.e., workload imbalance
calculated by Formula 6 is higher than a threshold (e.g., 0.20),
we use a loop-iteration method to adjust the stripe size, until
the workload is well balanced. Here we set the threshold as
0.20 based on experience and rule of thumb.

Figure 4 shows how to balance workload by adjusting stripe
size. We introduce an adjustment factor f (0 < f < 1) in the
algorithm. If workload is not balanced, the algorithm will try
two alternative stripe sizes and then recalculate the workload.
The adjustment of stripe size is an iterative process, and it
stops when workload imbalance is less than the threshold. In
order to avoid an endless loop, we set a maximum number
of iterations of the adjustment. If the I/O workload is still
unbalanced after all iterations, it will adopt the stripe size
calculated from Step (3).

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

The experiments were conducted on a 65-node SUN Fire
Linux cluster, in which there are 64 computing nodes and one
head node. Each computing node has two Quad-Core AMD
Opteron(tm) processors, 8GB memory and a 250GB 7200RPM
SATA-II disk. All nodes are equipped with Gigabit Ethernet

interconnection, and 17 nodes are equipped with additional 4X
InfiniBand interconnection. The operating system is Ubuntu
4.3.3-5, linux kernel 2.6.28.10. The parallel file system is
PVFS2 version 2.8.1. With both Ethernet and InfiniBand
networks, 8 nodes are configured as I/O servers, and the other
nodes are configured as I/O clients.

We evaluated the proposed layout optimization with two
popular I/O benchmark tools, IOR and IOzone. IOR consists
of a variety of different data access patterns, and it leverages
the scalability of MPI to easily and accurately calculate the
aggregate bandwidth. It is more suitable for performing I/O
throughput experiments with multiple clients. IOzone is a
filesystem benchmark tool for broad file system analysis,
which tests I/O performance with a bunch of file operations,
including ‘write’, ‘read’, ‘re-write’, ‘re-read’, etc. It is more
suitable for performing single client I/O throughput experi-
ments.

B. Results Analysis

First we verified how the I/O performance was affected
by stripe size and request size in a PVFS2 system. Figure 5
demonstrates the I/O performance with different request sizes
and stripe sizes in both Ethernet and InfiniBand environments.
The results were collected from the IOR benchmark. In Subfig-
ure (a) and (c), the stripe size was 4 KB. Label ‘8C-W’ means
writing performance with 8 I/O clients, and ‘8C-R’ means
reading performance. Other labels have similar meanings.
From the results we can observe that the I/O bandwidth first
rises as the request size increases, and when the request size
exceeds a certain value, the I/O bandwidth becomes sustained.
In Subfigure (b) and (d), the I/O client numbers are 32
and 16 respectively. ‘4K-W’ means writing performance of
4 KB request size, and ‘4K-R’ means reading performance.
Other labels are similarly defined. From Subfigure (b) and
(d), we can observe that stripe size and request size have
an interrelated effect to the I/O performance. For example,
in Subfigure(d), 64 KB stripe size can obtain the highest
bandwidth when the request size is 64 KB; while 1 MB stripe
size can achieve the highest performance when the request
size is 1 MB or larger. This set of figures illustrate that stripe
size and request size are two key related factors that affect I/O
performance in parallel file systems.

We also conducted experiments to compare the I/O per-
formance of the proposed data layout strategy with current
strategies with fixed stripe size. Figures 6 and 7 show the
average write/read I/O bandwidth of different layout strategies
with mixed workloads of the IOR benchmark. In this set of
experiments, the data file was divided into four segments.
The segment sizes were 128 MB, 1024 MB, 1024 MB and
4096 MB, respectively. We simulated the scenario of all layout
manners by dividing the original file into 4 subfiles in PVFS2,
one subfile for each segment and configured with different
stripe sizes according to the layout strategies. For each layout
strategy, we ran four instances of the IOR benchmark sequen-
tially, each instance accessing one segment. We configured
different parameters for the four instances, so that different

6

0

100

200

300

400

500

600

700

800

64B 256B 1K 4K 16K 64K 256K 1M 4M 64M

8C-W

8C-R

32C-W

32C-R

Request Size

Ba
nd

w
id
th

(M
B/
s)

(a) Bandwidth of different request sizes with Ethernet

0

100

200

300

400

500

600

700

800

4K 16K 64K 256K 1M 4M

4K-W 4K-R 64K-W

64K-R 1M-W 1M-R

Stripe Size

Ba
nd

w
id
th

(M
B/
s)

(b) Bandwidth of different stripe sizes with Ethernet

0

200

400

600

800

1000

1200

1400

64B 256B 1K 4K 16K 64K 256K 1M 4M 64M

16C-W

16C-R

32C-W

32C-R

Request Size

Ba
nd

w
id
th

(M
B/
s)

(c) Bandwidth of different request sizes with InfiniBand

0

200

400

600

800

1000

1200

1K 4K 16K 64K 256K 1M 4M

4K-W 4K-R 64K-W
64K-R 1M-W 1M-R

Ba
nd

w
id
th

(M
B/
s)

Stripe Size

(d) Bandwidth of different stripe sizes with InfiniBand

Fig. 5. I/O performance of IOR benchmark for different request sizes and
stripe sizes with InfiniBand and Ethernet interconnects

segments have different data access patterns. Each instance
includes 16 I/O client processes in all the set of experiments. In
Figures 6 and 7, the label ‘ADP’ refers to our proposed layout
manner with adaptive stripe size for individual file segments,
‘4K’ refers to that the stripe sizes were 4 KB for all segments,
and other labels are similarly defined.

0

100

200

300

400

500

600

700

AVG-Write AVG-Read

1K

4K

16K

64K

256K

1M

4M

ADP

Ba
nd

w
id
th

(M
B/
s)

(a) Average bandwidth in Ethernet environment

0

150

300

450

600

750

AVG-Write AVG-Read

1K

4K

16K

64K

256K

1M

4M

ADP

Ba
nd

w
id
th

(M
B/
s)

(b) Average bandwidth in InfiniBand environment

Fig. 6. Average bandwidth for sequential I/O workloads, calculated as the
overall read/write data size divided by the overall running time. The labels
on the right are different stripe sizes: various fixed stripe sizes, and ADP is
layout proposed in this paper.

In Figure 6, as we tested the performance of sequential data
access, the I/O workload was well balanced among all I/O
servers. The request sizes on these segments were 1 KB, 4 KB,
64 KB and 1 MB, respectively. With the proposed segment-
level layout strategy, the optimal stripe sizes of different
segments were 4 KB, 16 KB, 64 KB and 1 MB, respectively.
From the results, we observe that with the proposed layout
scheme, the writing performance can achieve about 25% to
101% improvement, and the read performance can achieve
around 9% to 71% improvement compared with other layout
strategies with fixed stripe size for the whole file. We can
also see that the improvement of reading is less than writing,
however, the read bandwidth is higher than writing. That is
because the local Linux file system on each file server uses
read ahead effectively. These results show that the proposed
layout scheme can achieve a significant improvement in I/O
bandwidth for balanced I/O workloads.

7

�
�
�

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1K 4K 16K 64K 256K 1M 4M ADP

#7

#6

#5

#4

#3

#2

#1

#0

(a) Workload distribution among I/O servers

0

100

200

300

400

500

600

700

AVG-Write AVG-Read

1K

4K

16K

64K

256K

1M

4M

ADP

Ba
nd

w
id
th

(M
B/
s)

(b) Average bandwidth in Ethernet environment

0

150

300

450

600

750

AVG-Write AVG-Read

1K

4K

16K

64K

256K

1M

4M

ADP

Ba
nd

w
id
th

(M
B/
s)

(c) Average bandwidth in InfiniBand environment

Fig. 7. Average bandwidth of strided I/O workloads. Strided I/O can
introduce workload imbalance among I/O servers. Sub-figure (a) shows the
workload distribution on the 8 I/O servers (‘#0’ ∼ ‘#7’) for different layout
manners. The ‘x’ axis of (a) represents the 4 file segments with different stripe
sizes. Sub-figures (b) and (c) show the average I/O bandwidth in Ethernet
and InfiniBand environments; the labels on the right are different stripe sizes:
various fixed stripe sizes, and ADP is layout proposed in this paper.

In Figure 7, we tested the performance of strided data ac-
cess. The request size and stride size pairs were <1KB,3KB>,
<4KB, 12KB>, <64KB, 64KB> and <1MB, 1MB> for
different segments, respectively. As discussed in Section V,
strided I/O can introduce workload imbalance problem when
adopting different stripe sizes. Figure 7(a) shows the distribu-
tion of the I/O workload for each segment in all I/O servers
for different layout strategies. We see that the workload was
unbalanced among the I/O servers when the stripe size was
fixed for the whole file (except in the 4 MB case). The
proposed layout takes workload balance into consideration,
and the stripe sizes for the 4 segments were 4 KB, 16 KB,
128 KB, and 2 MB, respectively. This resulted in a balanced
data access workload for all segments. Subfigures (b) and (c)
demonstrate the average bandwidth in Ethernet and InfiniBand
environments, respectively. We observe that with the proposed
segment-level layout scheme, the writing performance can
achieve about 50% to 163% improvement, and the reading
performance can achieve around 26% to 132% improvement
compared with other layout strategies with fixed stripe sized
for the whole file. We also notice that if the fixed stripe size
is 4 MB in this set of experiments, the workload is also
balanced between I/O server, but the I/O performance is not
good enough. That is because the stripe size is too large to
benefit all kinds of data accesses. Therefore, the proposed
layout with I/O workload balance awareness can achieve an
even greater improvement of I/O performance for non-uniform
data access.

100

150

200

250

300

350

write read re-write re-read rand-write rand-read

1K 4K 16K 64K 256K 1M ADP

Ba
nd

w
id
th

(M
B/
s)

Fig. 8. Average I/O bandwidth for the IOzone benchmark. We ran 1 IOzone
client with 8 I/O servers. The file was divided into 3 segments of size 64 MB,
256 MB, and 4GB. Request sizes on these segments were 4 KB, 256 KB,
and 4 MB, respectively.

Figure 8 demonstrates the average bandwidth with IOzone
benchmark. The results were tested with PVFS2 POSIX inter-
face. The IOzone benchmark was run on only one client node,
and we tested the I/O bandwidth only in InfiniBand environ-
ment so that the network bandwidth is not the bottleneck of
data access. The testing file was divided into 3 segments of
size 64 MB, 256 MB, and 4 GB. The request sizes on these
segments were 4 KB, 256 KB, and 4 MB, respectively. We
measured the I/O bandwidth with ‘write’, ‘read’, ‘re-write’,

8

‘re-read’, ‘rand-write’, and ‘rand-read’ operations, in which
‘rand-write’ and ‘rand-read’ mean random write and random
read. The stripe sizes of the segmented layout scheme for the
three segments were 16 KB, 64 KB and 256 KB, respectively.
We compared the I/O bandwidth for different layout strategies.
From the results, we can observe that the proposed layout
scheme obtained the highest I/O bandwidth, and the perfor-
mance improvement is around 6%∼57% compared with other
layout strategies with fixed stripe sized for the whole file.

From the results of sequential and strided I/O of IOR
experiments, we see that the proposed layout scheme can
achieve significant improvement in I/O performance for both
cases. Furthermore, the new layout scheme with workload
balance awareness can get more potential benefit from the
unbalanced workload. By comparing the experimental results
of IOR and IOzone benchmark, we observe that the perfor-
mance improvement in IOR experiments is higher than that in
IOzone experiments. The reason is that with multiple clients
in the IOR benchmark, the I/O workload is more heavy on
I/O servers, and there is more contention on storage devices.
For this reason, we can tentatively conclude that the proposed
layout scheme can achieve more performance improvement in
heavy I/O workloads.

VII. CONCLUSIONS AND FUTURE WORK

Data access patterns and layout strategies have an interre-
lated effect on the I/O performance of parallel file systems.
Existing strategies that use a fixed stripe size for the entire
scope of a file may not obtain the best I/O performance,
especially for applications with varying data access patterns
across a large file. In large-scale parallel I/O systems, a single
file could reach several terabytes, and data access patterns to
the file could vary at different parts of the file. Moreover,
non-uniform data access could introduce workload imbalance
problems among I/O servers. In this paper, we proposed a
novel segment-level data layout strategy for large-scale and
data-intensive applications. This new strategy can provide a
fine-grained segment-level data layout optimization with data
access workload balance awareness, which is more suitable
for applications with non-uniform data access patterns.

We described the five-step approach of the proposed data
layout optimization, including how to divide the file into
segments, how to calculate the optimal stripe size for each
segment, and how to balance the I/O workload among I/O
servers for each segment. The proposed data layout scheme
adopts different stripe sizes for different segments, and refines
layout optimization at the segment level. It achieves a better in-
tegration of data access characteristics of applications and data
organization in parallel file systems. The experimental results
demonstrate that, the proposed segmented layout strategy with
workload balance awareness improves the performance up to
163% for writing and 132% for reading on the widely-used
IOR and IOzone benchmarks.

In the future, we plan to refine the data access cost model
to estimate the optimal stripe size of each segment more
precisely. We also plan to define some specific segment-level

layout templates for common applications, which could guide
users to choose the optimal layout for them.

ACKNOWLEDGMENT

The authors are thankful to Hui Jin of Illinois Institute
of Technology and Dr. Robert Ross of Argonne National
Laboratory for their constructive and thoughtful suggestions
toward this work. The authors are also grateful to anonymous
reviewers for their valuable comments and suggestions. This
research was supported in part by National Science Foundation
under NSF grant CCF-0621435 and CCF-0937877, and in part
by the Office of Advanced Scientific Computing Research,
Office of Science, U.S. Department of Energy, under Contract
DE-AC02-06CH11357.

REFERENCES

[1] “High-performance Storage Architecture and Scalable Cluster File Sys-
tem,” Lustre File System White Paper, December 2007.

[2] F. Schmuck and R. Haskin, “GPFS: A Shared-disk File System for Large
Computing Clusters,” in FAST ’02: Proceedings of the 1st USENIX
Conference on File and Storage Technologies. Berkeley, CA, USA:
USENIX Association, 2002, p. 19.

[3] G. Gibson, B. Welch, G. Goodson, and P. Corbett, “Parallel NFS
Requirements and Design Considerations,” Internet Draft, October
2004. [Online]. Available: http://bgp.potaroo.net/ietf/idref/draft-gibson-
pnfs-reqs/

[4] I. F. Haddad, “PVFS: A Parallel Virtual File System for Linux Clusters,”
Linux Journal, p. 5, 2000.

[5] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas Activescale
Storage Cluster: Delivering Scalable High Bandwidth Storage,” in SC
’04: Proceedings of the 2004 ACM/IEEE conference on Supercomputing.
Washington, DC, USA: IEEE Computer Society, 2004, p. 53.

[6] B. Welch, M. Unangst, Z. Abbasi, G. Gibson, B. Mueller, J. Small,
J. Zelenka, and B. Zhou, “Scalable Performance of the Panasas Parallel
File System,” in FAST’08: Proceedings of the 6th USENIX Conference
on File and Storage Technologies. Berkeley, CA, USA: USENIX
Association, 2008, pp. 1–17.

[7] X.-H. Sun, Y. Chen, and Y. Yin, “Data Layout Optimization for Petascale
File Systems,” in PDSW ’09: Proceedings of the 4th Annual Workshop
on Petascale Data Storage. New York, NY, USA: ACM, 2009, pp.
11–15.

[8] H. Song, X.-H. Sun, H. Jin, and Y. Chen, “Trace-based Adaptive Data
Layout Optimization for Parallel File Systems (poster presentation),” in
PDSW ’10: Proceedings of the 5th Annual Workshop on Petascale Data
Storage, 2010.

[9] H. Song, X.-H. Sun, Y. Yin, and Y. Chen, “A Cost-based Application-
specific Data Layout Scheme for Parallel File Systems (on review),” sub-
mitted to IPDPS ’11: 25th IEEE International Parallel and Distributed
Processing Symposium, 2011.

[10] D. Kotz and N. Nieuwejaar, “File-system Workload on
a Scientific Multiprocessor,” IEEE Parallel Distrib. Technol.,
vol. 3, pp. 51–60, March 1995. [Online]. Available:
http://portal.acm.org/citation.cfm?id=613774.613889

[11] A. Choudhary, R. Bordawekar, M. Harry, R. Krishnaiyer, R. Ponnusamy,
T. Singh, and R. Thakur, “Passion: Parallel and Scalable Software for
Input-output,” Tech. Rep., 1994.

[12] R. Thakur, W. Gropp, and E. Lusk, “Data Sieving and Collective I/O in
ROMIO,” in FRONTIERS ’99: Proceedings of the The 7th Symposium
on the Frontiers of Massively Parallel Computation. Washington, DC,
USA: IEEE Computer Society, 1999, p. 182.

[13] R. Bordawekar, J. M. del Rosario, and A. Choudhary, “Design and
Evaluation of Primitives for Parallel I/O,” in Supercomputing ’93:
Proceedings of the 1993 ACM/IEEE conference on Supercomputing.
New York, NY, USA: ACM, 1993, pp. 452–461.

[14] R. Thakur and A. Choudhary, “An Extended Two-phase Method for
Accessing Sections of Out-of-core Arrays,” Sci. Program., vol. 5, no. 4,
pp. 301–317, 1996.

[15] J. M. May, Parallel I/O for High Performance Computing. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2001.

9

[16] Y. Chen, X.-H. Sun, R. Thakur, H. Song, and H. Jin, “Improving
Parallel I/O Performance with Data Layout Awareness,” in Cluster ’10:
Proceedings of the IEEE International Conference on Cluster Computing
2010. Washington, DC, USA: IEEE Computer Society, 2010.

[17] A. Ching, A. Choudhary, K. Coloma, W.-k. Liao, R. Ross, and W. Gropp,
“Noncontiguous I/O Accesses through MPI-IO,” in CCGRID ’03: Pro-
ceedings of the 3st International Symposium on Cluster Computing and
the Grid. Washington, DC, USA: IEEE Computer Society, 2003, p.
104.

[18] A. Ching, A. Choudhary, W.-k Liao, R. Ross, and W. Gropp, “Efficient
Structured Data Access in Parallel File Systems,” Cluster Computing,
IEEE International Conference on, vol. 0, p. 326, 2003.

[19] B. Nitzberg and V. Lo, “Collective Buffering: Improving Parallel I/O
Performance,” in HPDC ’97: Proceedings of the 6th IEEE International
Symposium on High Performance Distributed Computing. Washington,
DC, USA: IEEE Computer Society, 1997, p. 148.

[20] W.-k Liao, A. Ching, K. Coloma, A. Choudhary, and Lee Ward, “An
Implementation and Evaluation of Client-side File Caching for MPI-IO,”
Parallel and Distributed Processing Symposium, International, vol. 0,
p. 49, 2007.

[21] X. Ma, M. Winslett, J. Lee, and S. Yu, “Faster Collective Output through
Active Buffering,” in IPDPS ’02: Proceedings of the 16th International
Parallel and Distributed Processing Symposium. Washington, DC,
USA: IEEE Computer Society, 2002, p. 151.

[22] H. Lei and D. Duchamp, “An Analytical Approach to File Prefetching,”
in ATEC ’97: Proceedings of the annual conference on USENIX Annual
Technical Conference. Berkeley, CA, USA: USENIX Association,
1997, pp. 21–21.

[23] N. Tran and D. A. Reed, “Automatic Arima Time Series Modeling for
Adaptive I/O Prefetching,” IEEE Trans. Parallel Distrib. Syst., vol. 15,
no. 4, pp. 362–377, 2004.

[24] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, and W. Gropp, “Hiding I/O
Latency with Pre-execution Prefetching for Parallel Applications,” in SC
’08: Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–10.

[25] S. Byna, Y. Chen, X.-H. Sun, R. Thakur, and W. Gropp, “Parallel I/O
Prefetching using MPI File Caching and I/O Signatures,” in SC ’08:
Proceedings of the 2008 ACM/IEEE conference on Supercomputing.
Piscataway, NJ, USA: IEEE Press, 2008, pp. 1–12.

[26] D. Kotz, “Disk-directed I/O for MIMD Multiprocessors,” ACM Trans.
Comput. Syst., vol. 15, no. 1, pp. 41–74, 1997.

[27] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett, “Server-
directed Collective I/O in Panda,” in Supercomputing ’95: Proceedings
of the 1995 ACM/IEEE conference on Supercomputing (CDROM). New
York, NY, USA: ACM, 1995, p. 57.

[28] W. B. Ligon III and R. B. Ross, “Implementation and Performance of
a Parallel File System for High Performance Distributed Applications,”
in HPDC ’96: Proceedings of the 5th IEEE International Symposium
on High Performance Distributed Computing. Washington, DC, USA:
IEEE Computer Society, 1996, p. 471.

[29] R. B. Ross and W. B. Ligon III, “Server-side Scheduling in Cluster
Parallel I/O Systems,” Calculateurs Parallles Journal Special Issue on
Parallel I/O for Cluster Computing, 2001.

[30] S. Rubin, R. Bodı́k, and T. Chilimbi, “An Efficient Profile-analysis
Framework for Data-layout Optimizations,” SIGPLAN Not., vol. 37,
no. 1, pp. 140–153, 2002.

[31] Y. Wang and D. Kaeli, “Profile-guided I/O Partitioning,” in Proceedings
of the 17th annual international conference on Supercomputing, ser.
ICS ’03. New York, NY, USA: ACM, 2003, pp. 252–260. [Online].
Available: http://doi.acm.org/10.1145/782814.782850

[32] W. W. Hsu, A. J. Smith, and H. C. Young, “The Automatic Improvement
of Locality in Storage Systems,” ACM Trans. Comput. Syst., vol. 23,
no. 4, pp. 424–473, 2005.

[33] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reorganization for Self-
optimizing Storage Systems,” in In FAST ’09: Proccedings of the 7th
conference on File and storage technologies, San Fancisco, CA, USA,
2009, pp. 183–196.

[34] H. Huang, W. Hung, and K. G. Shin, “FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk Performance
and Energy Consumption,” in Proceedings of the 20th ACM
symposium on Operating systems principles, ser. SOSP ’05. New
York, NY, USA: ACM, 2005, pp. 263–276. [Online]. Available:
http://doi.acm.org/10.1145/1095810.1095836

[35] R. Koller and R. Rangaswami, “I/O Deduplication: Utilizing
Content Similarity to Improve I/O Performance,” Trans. Storage,
vol. 6, pp. 13:1–13:26, September 2010. [Online]. Available:
http://doi.acm.org/10.1145/1837915.1837921

[36] X. Zhang and S. Jiang, “InterferenceRemoval: Removing Interference of
Disk Access for MPI Programs through Data Replication,” in Proceed-
ings of the 24th International Conference on Supercomputing, 2010, pp.
223–232.

[37] A. Konwinski, J. Bent, J. Nunez, and M. Quist, “Towards
an I/O Tracing Framework Taxonomy,” in Proceedings of the
2nd international workshop on Petascale data storage: held in
conjunction with Supercomputing ’07, ser. PDSW ’07. New
York, NY, USA: ACM, 2007, pp. 56–62. [Online]. Available:
http://doi.acm.org/10.1145/1374596.1374610

[38] K. Vijayakumar, F. Mueller, X. Ma, and P. C. Roth, “Scalable I/O
Tracing and Analysis,” in PDSW ’09: Proceedings of the 4th Annual
Workshop on Petascale Data Storage. New York, NY, USA: ACM,
2009, pp. 26–31.

[39] P. Lu and K. Shen, “Multi-layer Event Trace Analysis for Parallel
I/O Performance Tuning,” in Proceedings of the 2007 International
Conference on Parallel Processing, p. 12, 2007.

[40] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
SIGOPS Oper. Syst. Rev., vol. 37, no. 5, pp. 29–43, 2003.

[41] “HDFS Architecture Guide,” HDFS 0.21 Documentation. [Online].
Available: http://hadoop.apache.org/hdfs/docs/r0.21.0/hdfs design.html

[42] E. M. Gengbin Zheng, Abhinav Bhatele and L. V. Kale, “Periodic
Hierarchical Load Balancing for Large Supercomputers,” International
Journal of High Performance Computing Applications (IHHPCA), 2010.

10

