
Parallel I/O Prefetching Using MPI File Caching and

I/O Signatures

Surendra Byna, Yong Chen,

Xian-He Sun

Department of Computer Science

Illinois Institute of Technology

Chicago, IL, USA

{sbyna, chenyon1, sun}@iit.edu

Rajeev Thakur

Mathematics & Computer Science

Division

Argonne National Laboratory

Argonne, IL, USA

thakur@mcs.anl.gov

William Gropp

Computer Science Department

University of Illinois Urbana-

Champaign

Urbana, IL, USA

wgropp@illinois.edu

Abstract — Parallel I/O prefetching is considered to be effective

in improving I/O performance. However, the effectiveness

depends on determining patterns among future I/O accesses

swiftly and fetching data in time, which is difficult to achieve in

general. In this study, we propose an I/O signature-based

prefetching strategy. The idea is to use a predetermined I/O

signature of an application to guide prefetching. To put this idea

to work, we first derived a classification of patterns and

introduced a simple and effective signature notation to represent

patterns. We then developed a toolkit to trace and generate I/O

signatures automatically. Finally, we designed and implemented a

thread-based client-side collective prefetching cache layer for

MPI-IO library to support prefetching. A prefetching thread

reads I/O signatures of an application and adjusts them by

observing I/O accesses at runtime. Experimental results show

that the proposed prefetching method improves I/O performance

significantly for applications with complex patterns.

Keywords – parallel I/O; prefetching; I/O signatures; MPI-IO

I. INTRODUCTION

Many scientific and engineering simulations in critical

areas of research, such as nanotechnology, astrophysics,

climate, and high energy physics, are highly data intensive.

These applications contain a large number of I/O accesses,

where large amounts of data are stored to and retrieved from

disks. However, disparity of technology growth is causing a

gap between processor performance and storage performance

that has been increasing over the last few decades. This poor

I/O performance has been attributed as the cause of low

sustained performance of existing supercomputers. Although

advanced parallel file systems (such as PVFS [7], Lustre [4],

GPFS [32]) have been developed in recent years, they provide

high bandwidth only for large, well-formed data streams, but

perform poorly in dealing with large number of small and

noncontiguous data requests. While techniques such as

collective I/O and data sieving [37] can be used to merge small

I/O requests into large ones, many small I/O requests cannot be

eliminated due to the inherent nature of the underlying

applications. The so-called I/O wall is thus a critical

performance bottleneck.

I/O prefetching is a promising technique to improve file

access performance of many applications [13][20][25][28]. The

effectiveness of prefetching depends on determining future I/O

accesses of an application and fetching data closer to it. I/O

accesses follow regular patterns in many applications, where

data is accessed regularly for processing, and the processed

data is stored back in files [12][17][18][24]. In these

applications, regular patterns of I/O accesses can be identified

via post-analysis. We propose a prefetching method with a

combination of post-analysis and runtime analysis of I/O

accesses. The idea behind our method is to detect the pattern of

I/O accesses of an application, store the pattern information as

a signature representation, and use that signature in the future

runs of the application. To develop the signature notation of

I/O accesses, we present a classification of I/O access patterns

based on a study of a collection of widely used parallel

benchmarks. We developed a tracing library to collect

information of an application’s MPI-IO calls. We analyzed

these traces to generate a representation of an I/O access

pattern, called I/O signature. Conventional prefetching

methods are fast, but simple, and only detect simple strided

patterns. The reason is that complex data access patterns are

difficult to identify and the pattern search methods take a

longer time to learn. The signature-based approach reduces the

runtime processing cost and makes in-time prefetching

possible. In our design, a prefetching thread runs alongside the

main computing thread during I/O operations to predict data

requirements of the main thread and to bring that data into a

prefetch cache that is closer to the application. This prefetch

thread uses both the I/O signature and the information of I/O

accesses during runtime to predict future I/O accesses. The

prefetching thread does not perform any computing but is

solely responsible for prefetching data into the prefetch cache.

To store the prefetched data, we introduce a client-side prefetch

cache for parallel applications. We have modified the MPI-IO

library of MPICH2 to add the client-side cache to support

prefetching.

This research was supported in part by National Science

Foundation under NSF grant EIA-0224377, CNS-0406328,

CNS0509118, and CCF-0621435.

The paper is organized as follows. Section II discusses

related work in I/O prefetching and access pattern analysis. We

present the overall I/O signature-based prefetching method in

Section III. A classification of I/O access patterns, I/O

signature representation of access patterns are presented in

Section IV. The design and implementation of trace collection

and analysis, the client-side prefetch cache, and prefetching

method in the MPI-IO library are presented in Section V. I/O

signatures of various benchmarks are presented in Section VI,

and performance results with our prefetch strategy are given in

Section VII. We conclude the paper in Section VIII with a

discussion of our observations and future work.

II. RELATED WORK

A. I/O Prefetching

Many I/O prefetching approaches have been proposed

including Chang and Gibson’s SpecHint [5][6], Patterson and

Gibson’s Informed Prefetching (TIP) [25], and Yang’s AAFSP

[41]. SpecHint and TIP use idle cycles to speculate future I/O

accesses. The AAFSP technique is lightweight, but is only

designed for sequential applications. Our client-side

prefetching cache technique is targeted for parallel applications

that have I/O access patterns with some degree of regularity.

Static information about the I/O pattern is captured during post-

execution analysis. A prefetching thread then adjusts the

pattern information based on dynamic observation of I/O

accesses. PPFS2 [39] offers runtime optimization for caching,

prefetching, data distribution, and sharing. In our approach, we

use a combination of trace analysis from previous runs and

runtime adjustment of the I/O signature. This reduces the

overhead of detecting patterns at runtime, especially for regular

but complex patterns, which require more time in detecting

patterns.

B. I/O Access Patterns

Several previous parallel I/O studies observed that the I/O

accesses of many applications follow certain patterns. Miller

and Katz [18] studied several applications running on a Cray

Y-MP vector computer and detected that these applications

access data in chunks ranging from 32 KB to 512 KB. They

concluded that I/O access sizes of the tested applications were

relatively constant, cyclic, bursty, and predictable. Keeton et al.

[12] observed small and large jumps (stride or difference

between file offsets) among sequential accesses and

interferences between concurrent accesses. Pasquale et al.

[26][27] observed similar regularity among I/O patterns on a

Cray C90. Studies of I/O accesses on distributed memory

systems such as CM-5, iPSC/860, and the Intel Paragon XP/S

[3][14][29] show that many I/O requests are small and have

irregular patterns. Crandall et al. [3], Madhyastha et al. [17],

and Smirni et al. [35] studied scalable I/O applications and

provided a classification of patterns based on three dimensions

of file access features: Type of I/O operation (read/write),

sequentiality, and size of I/O requests. In this study, we classify

access patterns further in the dimensions of repetitiveness and

temporal behavior. Using these dimensions, we provide a

representative notation for I/O accesses. Marathe et al. [19]

used a notation to represent memory access traces that

represents the length of a memory access and sequentiality. Our

pattern representation notation is for I/O accesses and covers

more information in multiple dimensions. Each of these

dimensions can contain complex nested pattern notation. This

notation not only reduces the size of traces, but is also useful in

selecting prefetching strategies.

C. Client-side Caching

Many attempts have been made to use caching at the MPI-

IO level, including collective caching [15] and active buffering

[16]. Application-aware collective caching at the MPI-IO level

[15] is an effective solution in caching data that is used

frequently. This can be used for both reads and writes. We use

the collective cache approach in our prefetching cache design.

Our prefetching cache is a complement to the caching approach

and further improves I/O read performance.

III. I/O SIGNATURE-BASED PREFETCHING

I/O signature-based prefetching is a two step process. In the

first step, traces of a running application are collected and

analyzed to detect any patterns among them. The detected

patterns are stored as an I/O signature. An I/O signature

contains information regarding the strides between successive

I/O accesses (spatial pattern), how many times the pattern is

repeated, its temporal pattern, the size of requested data, etc.

We give more details about the I/O signature in Section IV.

The second step involves prefetching at runtime, where

signatures of an application are read, verified, and used to

prefetch data when a stable pattern is found.

Figure 1 illustrates the prefetching thread operations of one

Figure 1. I/O thread and prefetching thread operations from a single MPI

process view

client node. Our design follows the design of client-side

collective caching [15], which was developed to cache

frequently used pages. Since we designed our prefetching

strategy to work within an MPI-IO library, our prefetch caching

also uses the MPI communicator of an MPI program to detect

the scope of processes that collaborate with each other in

performing prefetching. We intend to preserve MPI-IO

optimizations such as data sieving and collective I/O [37].

Therefore, we integrate our prefetching design in the ADIO

(Abstract Device Interface for I/O) layer used in the ROMIO

implementation of MPI-IO. As shown in Figure 1, a

prefetching thread starts for each MPI process when the first

file is opened and ends when the last file is closed. The

prefetching thread initiates a user level prefetching cache and

reads I/O signatures from a file (I/O signature DB). The

parameters of the I/O signatures are adjusted dynamically by

observing the I/O accesses of the MPI process to which the

prefetching thread is attached. The main thread communicates

I/O access information to its prefetching thread using shared

variables. When the prefetching thread finds a stable pattern, it

starts prefetching data into the prefetching cache, which the

main thread looks up before sending a request to its underlying

file system. If data is found in the prefetch cache, the main

thread accesses that data. Otherwise, its normal operation of

sending an I/O request to file system is performed.

IV. I/O ACCESS PATTERNS

I/O accesses of parallel applications can be divided into

local patterns and global patterns. Local patterns are

determined per process (or thread), showing how a file is

accessed by a local process. Global patterns are over the

parallel application, representing how multiple processes

access a file. For example, a file can be accessed sequentially

by all processes of an application, where every process reads a

chunk of data. Many parallel file systems, including PVFS [7],

Lustre [4], GPFS [32], provide optimizations to stripe files on

disks efficiently to improve the locality of global patterns. In

this study, we focus on local patterns of each process.

Classifying I/O accesses into a set of patterns gives us an

opportunity to tune performance. Prefetching strategies can

utilize these patterns to predict future I/O accesses. I/O

accesses can be reordered to improve cache reuse by having the

information of access patterns. For instance, in out-of-core

applications, data processing operations can be performed on

all the data that has been fetched into memory before it is

swapped to disk. Access pattern information is also helpful in

selecting efficient cache replacement strategies.

In previous work, we classified the memory access patterns

of an application based on distances between successive

accesses and request size [1]. We extend that classification for

I/O accesses. Based on our study of various I/O benchmarks

that represent real parallel applications, we introduce a five-

dimensional classification for access patterns of a local process.

The five dimensions are spatiality, request size, repetitive

behavior, temporal intervals, and type of I/O operation, as

shown in Figure 2. The sequence of file locations accessed

represents the spatial pattern of an application. They can be

contiguous or non-contiguous or a combination of both. Non-

contiguous accesses refer to gaps (or strides between

successive file offsets) in accessing a file. These gaps can be of

fixed size or variable size. Variable size gaps can follow a

pattern of two or more dimensions (2d or kd). Another possible

pattern is one with decreasing (negative) strides. Some I/O

accesses have no regular pattern, where the strides are random.

Applications exhibit repetitive behavior when a loop or a

function with loops issues I/O requests. We classify I/O access

patterns either with repetitive behavior or without (i.e., pattern

occurs only once). When I/O access patterns are repetitive,

caching and prefetching can effectively mask their access

latency. By capturing repetitive behavior, cached data can be

kept longer or accesses can be reordered in a way that the

fetched data is completely used before replacing it by new

pages of data. Prefetching can utilize this repetitive behavior by

storing previous pattern information and reuse that information

to calculate future I/O access offsets without running prediction

routines to search for the same pattern multiple times. We use

this approach in our I/O signature-based strategy.

Request sizes can be small, medium, or large. The sizes of

requests can be either fixed or varying. We characterize a

request as a small request when it is only a fraction of a page

size, and as a large request when it is multiple times larger than

a page size. Because of the high I/O latency, small I/O requests

commonly cause performance bottlenecks if disks must be

accessed multiple times for a small number of bytes. If

possible, multiple small accesses can be combined into a larger

contiguous request to reduce the number of disk seeks.

Temporal patterns capture regularity in I/O bursts of an

application. They can occur either periodically (at fixed

intervals) or irregularly. Capturing temporal regularity can be

used in prefetching strategies to initiate prefetch requests in

time, so that prefetched data reaches its destination cache

neither too early nor too late.

The type of I/O operation is the last criteria for pattern

classification. We classify the operations as read, write, or

read/write.

Spatial Patterns

� Contiguous
� Non-contiguous

� Fixed strided
� 2d-strided
� Negative strided
� Random strided
� kd-strided

� Combination of contiguous
and non-contiguous patterns

Repetition

� Single occurrence
� Repeating

Request size

� Fixed
� Variable

� Small
� Medium
� Large

Temporal Intervals

� Fixed
� Random

I/O Operation

� Read only
� Write only
� Read/write

Figure 2. I/O access pattern classification

Compared to the I/O access pattern classification provided

by previous characterization studies [3][35][36], we add two

more dimensions: repetition and temporal intervals. In the

spatial pattern dimension, we classify existing variably strided

pattern further into various non-contiguous patterns. This

further classification is useful in selecting prediction methods

of future I/O accesses by a prefetching strategy, reordering I/O

accesses, and choosing victim pages by replacement policies.

A. I/O Signature Notation

We have developed a set of notations to describe I/O access

patterns, which we call the I/O signature of access patterns for

an application. The I/O signature can be given in two forms;

the first describing the sequence of I/O accesses in a pattern

and the second identifying I/O patterns. We call the description

of a sequence of I/O accesses in a pattern a Trace Signature,

and the abstraction of a pattern a Pattern Signature. Using the

five dimensions mentioned above, trace signature takes the

form as follows:

{I/O operation, initial position, dimension, ([{offset

pattern}, {request size pattern}, {pattern of number of

repetitions}, {temporal pattern}], […]), # of repetitions}

It stores information of an I/O operation, starting offset,

depth of a spatial pattern, temporal pattern, request sizes, and

repetitive behavior. In some instances, offsets, request sizes,

timing, and number of repetitions also contain a pattern.

Random temporal patterns are not captured in the trace

signature, as the usage of randomness is limited.

To illustrate I/O signature with an example, we use I/O

traces of out-of-core LU decomposition [11][40]. This

application accesses an 8192 x 8192 matrix of double-precision

elements. Table 1 shows the trace information of the first few

I/O reads. It has a 3-dimensional stride access pattern. We use

italicized, bold face, and normal fonts to represent three

dimensions of patterns. The initial position of read accesses is

1049088. The first dimension of offsets (italicized in Table 1)

has a pattern {1049088, 1, (524544, 1)}, where initial offset is

1049088. The next offset is 1573632 (i.e. 1049088+ 524544).

This stride pattern has only one access in each iteration, and the

request size is 524544 bytes. The second dimension of offsets

(bold faced) start at 524544. In this dimension, the sizes of

requests also follow a pattern where each request size is 4096

bytes less than the previous request. There is no temporal

pattern due to lack of regularity among I/O read times. The

number of repetitions also has a pattern, where the number of

repetitions in an iteration is one more than that of the previous

iteration. The third dimension of the offsets starts at the start of

the file (0), and accesses 522368 bytes of data. This 3-

dimensional pattern repeats 125 times. The overall trace

signature is shown below:

{READ, 0, 3, ([{1049088, 1, [{(524544, 1)}, 524544], 1}],

 [{524544, 1, [{524544}, {518272, 1, (-4096)}, {1, (1)}}],
 [{0, 1, [(0, 522368, 1])}]), 125}

While a trace signature provides a way to reconstruct the

sequence of I/O accesses, a pattern signature provides an

abstract description that explains the nature of a pattern. A

pattern signature takes the following form:

{I/O operation, <Spatial pattern, Dimension>, <Repetitive

behavior>, <Request size>, <Temporal Intervals>}

In a pattern signature, we store information consisting of all

five factors of our classification. Here random temporal

patterns are represented. An example of pattern signature for

the out-of-core LU traces is shown below:

{READ, <Non-contiguous, 3d strided>, <repetitive>,

<large, variable size>, <random>}

The use of an I/O signature has multiple advantages. An I/O

signature provides an automatic and systematic way of

describing the I/O property of an application. I/O access

optimization methods work effectively for specific patterns.

Having an I/O signature that can be recognized automatically

gives an opportunity to select efficient caching and prefetching

optimization strategies based on patterns. This notation is

useful in performing cost-benefit analysis of prefetching to

decide whether to use prefetching. If the I/O signature of an

application indicates complex access patterns that require more

computing overhead to detect (the prediction cost is high), it is

advisable to avoid prefetching in that case. The trace signature

of an I/O signature reduces the size of trace files when regular

patterns exist. Instead of having traces with regular patterns

repeating throughout trace files, our representation can

compress those repetitions into an I/O signature.

A significant advantage of an I/O signature, which has been

the motivation behind this research, is its usage in predicting

future I/O accesses and prefetching that data. Post-execution

analysis of an application’s I/O accesses can be stored as a

TABLE 1. TRACES OF LU DECOMPOSITION

Offset Request size

1049088 524544

524544 518272

0 522368

1573632 524544

524544 518272

1049088 514176

0 522368

2098176 524544

524544 518272

1049088 514176

1573632 510080

0 522368

2622720 524544

524544 518272

1049088 514176

1573632 510080

2098176 505984

0 522368

3147264 524544

524544 518272

1049088 514176

1573632 510080

2098176 505984

2622720 501888

0 522368

signature, which can be used by a prefetching strategy as hints

for generating prefetching requests. Let us take an example

where a process is accessing I/O in a strided pattern. Assume a

fixed stride of 8192 bytes and each I/O read request is of 2048

bytes. The trace signature of that pattern is {READ, initial

position, 1, ([8192, 4096, 100]), 1}. Prefetching strategies can

use this trace signature to calculate future file offsets from

initial position, i.e. (0 * 8192, 1 * 8192, 2 * 8192,… , 99 *

8192).

A limitation of the trace signature is its usage for

representing random accesses. While usage of trace signature

for regular patterns reduces the size of a trace file, there is no

such benefit for representing random I/O accesses. For random

accesses, the storage space required for a trace signature

representation and a trace file are of the same order. In such

cases, instead of having a large trace signature, providing a

pattern signature can itself express the information that these

I/O accesses are random. This can guide history-based

prefetching strategies to avoid trying to predict future offsets,

as it is difficult to predict random I/O accesses from the history

of accesses.

Another limitation in using an I/O signature, which is

obvious to any post-execution analysis of traces, is the

variation of values of its elements when an application is rerun

or when the stride pattern changes with the input values. While

the pattern signature for most applications does not change

with multiple runs and with different inputs, the trace signature

must be modified in this situation. For example, the initial

position or request size can vary based on the number of

processes. As shown in the fixed stride I/O signature above,

initial position can be process dependent, where a process i

may start accessing data from i*partition, where partition is a

function of process rank. In these cases, the I/O signature can

be adjusted during runtime analysis, which is the second step of

our signature-based prefetching method. In most cases, using a

pattern signature itself is sufficient for adaptively selecting a

future I/O access prediction algorithm of a prefetching strategy.

V. IMPLEMENTATION OF SIGNATURE-BASED PREFETCHING

Implementation of I/O signature-based prefetching contains

many challenges including detecting patterns in history of I/O

accesses and generating signatures with post-execution

analysis, implementing the prefetch cache, collecting runtime

information to adjust signatures that are generated offline,

developing a software library to issue prefetch requests,

synchronizing main and prefetching threads in fetching data,

and maintaining coherence of prefetched data when it is

updated by a process. We discuss solutions to each of these

issues in the following subsections.

A. Trace Collection and Analysis

Characterizing I/O workloads typically starts with tracing

application I/O requests. Each trace record contains the

information of the type of request (read, write, seek, etc.),

initial position, size of request, time stamp, client process that

is accessing the file, file offset, and file which is being

accessed. Madhyastha et al. have used Pablo [31] to trace I/O

calls and to store traces in Self-Defining Data Format (SDDF).

As our focus is entirely on studying MPI-IO calls, we

developed a tracing tool that traces all MPI-IO read and write

related calls. To capture MPI-IO calls, we use the profiling

interface of MPI [20], which provides a convenient way for us

to insert our code in an implementation-independent fashion. In

MPI implementations, every function is available under two

names, MPI_ and PMPI_. User programs use the MPI_ version

of the function, for example, MPI_File_read. We intercept the

user’s call to MPI_File_read by implementing our own

MPI_File_read function in which we retrieve information

required for tracing and then call PMPI_File_read to do actual

file read. As a result, application programs do not need to be

recompiled; they need only to be re-linked with our version of

the MPI functions appearing before the MPI library in the link

command line. Traces are stored in a text file, with a header

describing the records of each trace.

Automatic generation of I/O signatures from trace files is

necessary to use them in a prefetching environment. We

developed an analysis tool that reads through traces and gives

the I/O signatures of an application as output. It has five pattern

detectors for finding patterns among initial positions, offsets,

request sizes, temporality, and repetitions. Each of these

patterns follows the algorithm shown in Figure 3. For

successive trace records, we search for various patterns

including fixed strided, k-d (k = 2 and 3), and negative strided

patterns. While searching for patterns, we keep three states:

initial state, learning state, and stable state. The search is in the

initial state at the beginning and goes into learning state when a

Algorithm detect_pattern
Input: Trace file containing IO Read access information
Output: Pattern of a field in a trace file
{
 for (each trace record) {
 read a target field of trace record
 if (state = init)
 read next record
 else {
 search for fixed stride pattern
 if (pattern found)
 state = stable
 else {
 read next record
 search for k-d stride pattern
 /* k=2 and 3 i.e. 2-d and 3-d nested patterns*/
 If (k-d pattern found)
 state = stable
 else {
 read next record
 find negative strides and search for pattern
 If (pattern found)
 state = stable
 else {
 read next record
 (search for pattern using Markov chains
 for 1st level strides)
 If (pattern found)
 state = stable
 else {
 state = init
 read next record
 } } } } } } }

Figure 3. I/O Pattern Search Algorithm

pattern is first detected. If the same pattern is detected in the

following traces, the search state becomes stable. Otherwise, it

returns to the learning state and searches for next type of

pattern. If no pattern is found, the search will be in initial state.

Once a pattern is in stable state, it is written into a signature

and the number of repetitions is updated in the signature during

the next iterations of the algorithm. All the sub-signatures are

combined to form trace signature and pattern signature.

B. Prefetch Cache

A prefetch cache is necessary to store the data that has been

prefetched. It is also necessary to keep the data coherent.

Several researchers have been working on the idea of a cache

on the client side. Cooperative caching has been proposed as a

solution for caching and coherence control [8]. Active

buffering is an optimization for MPI collective write

operations. Liao et al. developed an application-aware

collective caching library at the MPI-IO level [15]. Collective

caching maintains a global buffer cache among multiple

processes in the client side. We use this library as a starting

point for our prefetch cache. We modified the cache to hold

prefetched pages. Figure 4 shows the high-level design of our

collective cache. Each client contributes part of its memory to

construct the global cache pool and the high-speed interconnect

network between client nodes enables the rapid transfer of

cached data among clients. Metadata of cached blocks is

maintained to locate them. The contents of metadata include

the file descriptor, file offset, rank of process that prefetched

the block, and dirty status. A specialized cache-coherency

protocol is used to maintain consistency among cache copies in

the cache pool. In our prefetch cache, all write caching is

disabled and only prefetched pages are cached. We also use a

prediction-based replacement policy combined with LRU

policy for this cache. In this policy, if a victim is chosen by the

LRU policy, and if it is among the pages to be accessed in the

near future, it will get a higher priority to stay in the prefetch

cache and a different page is selected for replacement.

C. Adjusting Signatures

The post-execution analysis generates I/O signatures of an

application and stores them in a text file. Prefetching threads, at

runtime, reads the corresponding signature of an application. In

order to start prefetching, it is necessary to verify whether the

signature is following the current I/O requests of the main

thread. It is possible that a trace signature values depend on the

rank of an MPI process and according to the current I/O

accesses of an MPI process, the signature has to be adjusted to

start prefetching data efficiently. We implement this signature

adjustment process using shared variables. The main thread

uses these shared variables to communicate with the

prefetching thread. These variables, which are protected with a

POSIX mutex, include file handle of the file that is being read,

file location (i.e. where in the file the I/O read is occurring),

and request size of an I/O read. When the shared variables are

available, the prefetching thread reads them and compares them

with the current signature. Figure 5 shows the algorithm to

adjust signatures. If the stride (sign_stride) and request size

(sign_req_size) of the current signature are same as the stride

(main_stride) and request size (main_req_size) of the main

thread I/O reads, respectively, then the prefetching thread

assumes that the signature is in a stable state and issues

prefetching requests. The initial file location in the trace

signature is set from the current file location from shared

variables. If either the strides or request sizes of the signature

are different with current I/O read parameters (from shared

variables), the prefetching thread stays in the learning state and

retrieves current strides or request size values to adjust the

signature. If both strides and request sizes are different from

current I/O read values, prefetching thread does not issue any

prefetching requests assuming that prefetching thread does not

have the correct signature.

D. Prefetching and Reading from MPI-IO

After a stable pattern is found, prefetching has to be

performed to fetch data from I/O servers to prefetch cache. We

developed a prefetching library by adding functionality to MPI-

IO library. The implementation of the prefetching request has

similarities to the implementation of the MPI-IO read function,

Figure 4. Collective client-side prefetch cache

Figure 5. Adjusting I/O Signatures using Shared Variables

but there are some differences. Prefetching requests have a

special client-side prefetch cache into which they load, whereas

MPI-IO fetches data into the user-specified buffer. Also,

prefetching calls do not modify the file pointers. To implement

prefetching, we maintain a separate file pointer and offset

pointer for the prefetching library, which do not interfere with

the original MPI-IO implementation. Prefetching requests are

given lower priority over regular MPI-IO requests. If there is

contention between a regular I/O request and a prefetching

request, the regular request is served first. Also, errors and

exceptions caused by prefetching requests are discarded.

Figure 6 shows the execution flow of performing a

prefetching request. First, the metadata of the requested page is

obtained. If the requested block is in the local client prefetch

cache, nothing has to be done and the block is ready to be

accessed by the main thread. If it is in the global prefetch cache

(at another MPI process’s local client prefetch cache), the data

will be migrated into the local client cache. If a requested block

(page) is not prefetched by any of the clients, data is prefetched

from file system. We use a tag to differentiate regular I/O

requests from prefetching requests.

To benefit from prefetching, the regular MPI-IO library

implementation is modified to be able to access the prefetch

cache for requested data in addition to sending the requests to

underlying file system. We modified the MPI-IO read

operation to lookup in the client-side prefetch cache before

issuing a request to the file system. First, the prefetch cache is

searched for data. If the data is found in the prefetch cache,

data is copied into user buffer. If not, a read request is sent to

the file system as in the unmodified version of code. More on

design and implementation of prefetching library are available

in [2].

E. Synchronization of Main and Prefetching Threads

The prefetching thread of an MPI process has to issue

prefetching requests early enough to bring data into the cache

by the time a regular I/O read is issued by the main thread. in

order to be efficient. In our prefetching implementation, we set

a prefetch distance of eight. The prefetch distance here we

mean how many strides away in a pattern we want to prefetch.

For instance, if the prefetch distance is eight, prefetching thread

requests for data which is eight strides away from current

regular I/O read file location, i.e. in a 1-d stride pattern,

prefetch position = sign file position + (8 * stride). However, it

is possible that the main thread of an MPI process goes ahead

of its prefetching thread in sending its regular I/O reads.

Prefetching thread has to adjust its prefetching distance in such

cases. The prefetching thread again uses shared variables to

monitor the progress of regular I/O reads. If prefetching thread

is falling behind, we adjust the file position of the signature to

progress further and prefetch data ahead.

F. Maintaining Coherence of Prefetched Data

Maintaining coherence of prefetched data is important. It is

possible that data, which has been prefetched, be modified by

another client. In that case, a client reading stale prefetched

data causes undesirable results. To avoid that, we use

invalidation method to protect coherency of prefetched data.

We modify the implementation of MPI-IO write operation to

look up data blocks that have been prefetched and invalidate

them in the prefetch cache if they are found. No data transfer

occurs to or from the prefetch cache to avoid an increased

overhead on a write operation.

VI. I/O SIGNATURES OF BENCHMARKS

In our experiments, we carried out experiments first to

obtain the I/O signatures of a variety of benchmarks that are

widely used to study the behavior of I/O accesses in parallel

workloads. From the analysis of their pattern signatures, we

then selected I/O workloads that would benefit from

prefetching. We discuss I/O signatures of benchmarks in this

section, and analyze prefetching performance results in the

following section. The benchmarks we studied include IOR

[34], mpi-tile-io [30], ASCI FLASH [9], BTIO from NAS

parallel benchmark set [23], and PIO-Bench [33]. We

characterized the I/O accesses of each benchmark using our

classification of patterns and determined their I/O signature.

We ran our experiments on a 17-node Dell PowerEdge

Linux-based cluster. This cluster has one Dell PowerEdge 2850

head node with dual 2.8 GHz Xeon processors and 2 GB

memory, and 16 Dell PowerEdge 1425 compute nodes, each

with dual 3.4 GHz Xeon processors and 1 GB memory. The

head node has two 73GB U320 10K-RPM SCSI drives. Each

compute node has a 40 GB 7.2K-RPM SATA drive. These

nodes are connected with 10/100 Mb/s Ethernet. We conducted

our experiments using NFS and PVFS [7]. The PVFS server

was configured with one metadata server node and 8 I/O server

nodes. All 16 compute nodes were used as client nodes.

A. IOR

Interleaved Or Random (IOR) [34] is a parallel file system

benchmark developed at Lawrence Livermore National

Laboratory. It is available with three APIs: MPI-IO, POSIX,

and HDF5. In this study, we present the results with MPI-IO.

This test performs write and read operations to a file using

MPI_File_write_at and MPI_File_read_at function calls. In our

test, each client writes and reads a contiguous chunk of data of

size 128 MB overall, and each I/O call writes or reads data of

size 32 KB. The total number of writes is 4096 (i.e. 128 MB /

32 KB) and the number of reads is 4096.

Figure 6. The execution flow for a prefetch request to a file block

We observed offset patterns for write and read operations.

The trace signature of IOR for our test is as follows:

{WRITE, 0, 1, ([{0, 32768, 1}, 32768, 4096]), 1}, {READ,

0, 1, ([{0, 32768, 1}, 32768, 4096]), 1}

In these patterns, WRITE and READ operations follow a

fixed stride of 32768 bytes offsets and access a fixed size

request of 32768 bytes in each I/O operation. This makes the

pattern of IOR spatially contiguous, repeating 4096 times.

From the trace signature, the pattern signature can be derived

as: {Write (or Read), <Contiguous>, <single occurrence>,

<fixed size, medium>, <random>}.

B. MPI-tile-IO

MPI-tile-io [30] is a test application that implements tiled

access to a two-dimensional dense dataset. This benchmark

tests the performance of the noncontiguous access pattern

obtained by logically dividing a data file into a dense two-

dimensional set of tiles. In this test, we studied read operations

of MPI-tile-IO. Each process accesses a chunk of data based on

the size of each tile and the size of each element. For example,

we set the size of the tile in the both x and y directions to 100.

The size of each element is 1024 bytes, which makes the size

of each tile 10240000 bytes. The trace signature for each

process is: {READ, initial position, 1, ([0, 1024000, 0]), 1},

where initial position is calculated based on the process rank.

For example, for process i, the initial position is

(i*sz_tile_x*sz_element). From the I/O signature, it can be

observed that there is no local spatial pattern because there is

only one access from each process. The trace signature of

READ operation is similar to that of WRITE pattern.

The pattern signature for MPI-tile-IO traces is: {Write (or

Read), <No spatial pattern>, <single occurrence>, <fixed

size, large>, <no temporal pattern>}. As there is only one I/O

operation (write or read) in this trace, a spatial and temporal

pattern cannot be defined.

C. NAS Parallel Benchmarks – BTIO

The BT benchmark [23] is based on a CFD code that uses

an implicit algorithm to solve the 3D compressible Navier-

Stokes equations. A finite-difference grid is assumed, and

systems of 5 x 5 blocks at each node are solved using a block-

tridiagonal solver. The BTIO version of the benchmark uses

the same computational method, but with the addition that the

results must be written to disk at every fifth time step. We have

tested the CLASS B benchmark with 16 processes (NPROCS=

16) using full subtype, which uses collective file operations and

describes the solution vector with MPI derived datatypes [22].

This benchmark uses a matrix with a size of (102 x 102 x 102).

The trace signature of I/O signatures for BTIO class B full

benchmark running on 16 processes is: {WRITE, initial

position, 1, ([42450944, 5308416, 40]), 1}, {READ, initial

position, 1, ([42450944, 5308416, 40]), 1}

The write and read operations of this benchmark are fixed

strided with fixed request size and single occurrence. The

initial position of processes are 0, 1*5308416, 2*5308416, …,

15*5308416 for 0-to-15 process, respectively.

The pattern signature of the BTIO test is: {Write (Read),

<Non-contiguous, fixed strided>, <single occurrence>, <fixed

size, large>, <random>}.

D. ASCI Flash I/O

ASCI FLASH [9] is a parallel application that simulates

astrophysical thermonuclear flashes. It uses the MPI-IO parallel

interface [22] to the HDF5 data storage library [10] to store its

output data, which consists of a checkpoint file, a plotfile with

centered data, and a plotfile with corner data. The plotfiles have

single-precision data. In this benchmark, the underlying MPI-

IO functions are used to create a single file. All processes write

data directly to this file with the size of a standard grid of 8 x 8

x 8. This data is of double-precision. The computational

domain is divided into blocks, which are distributed across the

processors. Each block contains 8 zones in each coordinate

direction (x,y,z) and a perimeter of guard-cells (4 zones deep)

to hold information from the neighbors. Typically, there are 24

variables per zone, and fit about 100 blocks on each process.

So, the size of each record in each process is (8 bytes/number *

8 zones in x * 8 zones in y * 8 zones in z * 100 blocks) = 400

KB.

In this test, we executed the Flash IO benchmark with 4

processes to retrieve its I/O access patterns. Each process calls

the collective write function (MPI_File_write_all) 50 times.

There is no regular pattern among all 50 writes; however, there

are three sets of patterns, while the remaining accesses are

random. The trace signature of the I/O signature for the

patterns is: {WRITE, initial position_1, 1, ([1323008,

request_size_1, 25]), 1}, {WRITE, initial position_2, 1,

([661504, request_size_2, 4]), 1}, {WRITE, initial position_3,

1, ([941868, request_size_3, 4]), 1}

Another interesting characteristic of trace signature of this

benchmark is that not only the initial position of each process is

different, but also the request size of each process. The initial

positions of the first pattern (i.e. initial position_1) of the

signature for the four processes are: 54680, 382360, 714136,

and 1050008. The request sizes of the first pattern (i.e.

request_size_1) are: 327680, 331776, 335872, and 327680. We

observe similar variation in initial positions and request sizes in

the two other patterns. This result is interesting because many

prefetching systems assume that each process requests the

same amount of data. However, in this benchmark, the I/O

signature demonstrates the necessity of a prefetching strategy

to adapt to variable sizes of requests among multiple processes.

From these observations, the pattern signature in all three

patterns in this test is: {Write, <non-contiguous, fixed strided>,

<single occurrence>, <fixed size, large>, <random>}.

We also tested this benchmark with 16 processes to verify

the variability of initial positions, offsets, and request sizes with

a different number of processes. The initial positions and

offsets with this test are different from those observed by

running the benchmark on 4 processes. However, the request

sizes are similar in both these tests. We have also observed that

the trace signature of I/O signature is the same for multiple

runs of the benchmark with the same number of processes. This

is useful for prefetching strategies to use an I/O signature when

running the benchmark with the same number or processes but

working on different datasets.

E. PIO-Bench

PIO-Bench is a synthetic parallel file system benchmark

suite that is designed to reflect I/O access patterns appearing in

typical workloads of real applications. This benchmark suite

tests several I/O access patterns including sequential, simple

strided, nested strided, random strided, segmented access, and

tiled patterns. We studied simple-strided, nested-strided and

segmented accesses of this benchmark. In each of the PIO-

Bench tests, we set various parameters including I/O operation,

type of access pattern, number of repetitions, and request size.

In these tests, we analyzed the read accesses. Tests with the

write operations also follow the same patterns.

In simple-strided test, we set the number of repetitions as

100, and the request size as 4096 bytes. All the running

processes use the same pattern, but with different initial

position. The trace signature of this test is: {READ, initial

position, 1, ([8192, 4096, 100]), 1} and the pattern signature of

this pattern is: {Read, <non-contiguous, fixed strided>, <single

occurrence>, <fixed size, small>, <random>}.

In nested-strided test, we set the number of repetitions as

100, and the request size as 4096 bytes. The trace signature of

this test is: {READ, initial position, 2, ([4096, 4096, 1],

[12288, 2048, 1], 100), 1} and the pattern signature of this

pattern is: {Read, <non-contiguous, fixed strided>, <single

occurrence>, <fixed size, small>, <random>}.

For segmented accesses test, processes access different

segments of a file. The local access pattern for each process is

contiguous. The trace signature for this test with request size

4096 bytes is: {READ, initial position, 1, ([4096, 4096, 100]),

1} and the pattern signature of this pattern is: {Read,

<contiguous>, <single occurrence>, <fixed size, small>,

<random>}.

VII. PERFORMANCE RESULTS WITH PREFETCHING

I/O signatures of an application are useful for preliminary

analysis of whether prefetching is beneficial in improving its

performance. From observation of I/O signatures, we can

conclude that the read pattern of IOR is contiguous, whose

benefit from prefetching is similar to that of PIO-Bench test

with simple strided pattern, where the stride is zero. MPI-tile-io

only has one read access, where prefetching is not be

beneficial. Flash IO only has writes and no reads. This leaves

PIO-Bench with simple strided patterns, PIO-Bench with

nested strided patterns, and BTIO are good candidates for

benefiting from prefetching. We conducted three sets of

experiments: two with strided and nested strided patterns using

PIO-Bench and another with BTIO benchmark. Each PIO-

Bench test is run with multiple strides by varying the number

of processors 2, 4, 8, and 16. For BTIO we evaluated Class B

I/O size with 4, 9, and 16 processors. We set the cache block

size for the collective prefetch cache as 64KB, and the prefetch

cache size at each client was set as 32MB. We ran these

experiments on the same 17-node Dell PowerEdge Linux-based

cluster as we mentioned above.

Figures 7 compares the I/O read bandwidth results of PIO-

Bench with 1-d strides (from 512 KB to 4MB) using NFS with

collective prefetch cache and native approach (without prefetch

cache). Figure 8 shows the same bandwidth results with PVFS.

In order to focus on the performance benefits of prefetching,

we measured only the time for I/O read requests. Each reported

result is the least value of multiple runs; we observed that the

variation among performance numbers in multiple runs was

negligible. With PIO-Bench, the amount of data transferred

between disks and MPI processes is higher as the size of stride

increases for the same number of I/O reads. Hence, there is an

increase in read bandwidth as the stride increases. From the

figures we can see that the I/O read bandwidth with prefetching

is better than that with no prefetching for all stride sizes with

various numbers of processors. On average, the performance

gain with prefetching for multiple stride sizes on NFS is ~23%.

On PVFS, the performance gain is lower than that on NFS,

probably because PVFS has optimizations for strided patters to

combine multiple accesses. Prefetching benefits are low for

small number of processors as well as for small stride between

successive I/O reads. As the number of processors increases,

the performance gains increase to ~14%.

Figure 8. Bandwidth of PIO-Bench, with Simple Strided pattern on

PVFS

Figure 7. Bandwidth of PIO-Bench, with Simple Strided pattern on NFS

Figure 9 compares the I/O bandwidth results of PIO-Bench

Nested strided pattern using NFS with and without prefetching,

and Figure 10 compares them with PVFS. The difference in

offsets between successive I/O reads is 2-d strided in these

tests. It is noticeable that bandwidth reduces as the number of

processes increase for smaller strides. The I/O read

performance with prefetching is better than that with no

prefetching in all cases here. The performance gain with

prefetching is low for small number of processors and it

increases as the number of processors grows in both NFS and

PVFS tests. In the 2-d strided I/O reads, there is a lack of

locality, which requires loading a different page for each

access. As the number of processors grows, serving each

processor increases the load on I/O servers and results in poor

performance. Prefetching methods benefits highly in these

cases by sending requests early. The average performance gain

on NFS is ~36% and that on PVFS for larger strides is ~20%.

Figures 11 and 12 compare the I/O bandwidth performance

of BTIO (Class B) with and without prefetching on NFS and on

PVFS, respectively. We can see that on both NFS and PVFS,

we can see I/O read bandwidth improvement with different

number of processors. The read accesses have fixed 1-d stride

pattern, and the prefetching benefits are similar to the case of 1-

d stride in the PIO-Bench test (Figures 7 and 8). The

performance gain for all processors is same on NFS (~25%).

On PVFS, with 4 processors, the gain is ~8%, and as the

number of processors increase, the performance gain increases

to 15% (9 and 16 processor tests).

VIII. CONCLUSIONS AND FUTURE WORK

Poor parallel I/O performance has been a bottleneck in

many data-intensive applications. Prefetching is an effective

latency hiding optimization. However, traditional prefetching

strategies limit themselves to simple strided patterns and avoid

complex prediction strategies so that a prefetching decision can

be made swiftly. In this study, we have introduced a

combination of post-execution analysis with runtime analysis

to reduce the overhead of predicting future I/O reads. We

expanded the classification of I/O accesses and introduced a

new I/O signature notation. This notation can be used in

reducing the size of trace file, in making decisions about

prefetching, and in selecting prefetching strategies. The

signature is predetermined and is attached to the underlying

application for future executions. In our prefetching strategy,

we used a separate thread to prefetch at runtime. We

implemented this in an MPI-IO implementation (ROMIO [38])

and our results show significant performance benefits. There is

no extra effort required by an MPI application developer to

utilize our prefetching strategy. In the future, we plan to extend

this research in two directions: (1) to move the prefetching

thread to the file system level, and (2) to use a separate server

to push data from I/O server nodes to client nodes. Moving the

prefetching thread into a file system removes overhead on the

client side, and the file system can combine multiple small I/O

reads of multiple processes and prefetch large chunks of data.

Using a separate server to move data reduces the burden on

both I/O servers as well as clients. We also believe that

prefetching is only one application of the signature-based

Figure 9. Bandwidth of PIO-Bench, with Nested Strided pattern on NFS

Figure 10. Bandwidth of PIO-Bench, with Nested Strided pattern on

PVFS

Figure 12. Bandwidth of BTIO Reads with Prefetching on PVFS

Figure 11. Bandwidth of BTIO Reads with Prefetching on NFS

approach. The signature approach has the potential to guide

data access optimizations of general heterogeneous computing

by describing data requirements and is worthy of further

investigation.

ACKNOWLEDGMENT

We are thankful to Dr. Wei-Keng Liao and Dr. Alok

Choudhary of Northwestern University for providing their

collective caching code.

REFERENCES

[1] Surendra Byna, Xian-He Sun, William Gropp and Rajeev Thakur,

“Predicting the Memory-Access Cost Based on Data Access Patterns”,

in Proceedings of the IEEE International Conference on Cluster

Computing, San Diego, September 2004.

[2] Y. Chen, S. Byna, X.-H. Sun, R. Thakur, W. Gropp. “Exploring Parallel

I/O Concurrency with Speculative Prefetching”, in Proc. 37th

International Conference on Parallel Processing (ICPP ’08), Sept. 2008.

[3] Phyllis E. Crandall, Ruth A. Aydt, Andrew A. Chien, and Daniel A.

Reed, “Input/output characteristics of scalable parallel applications”, in

Proceedings of the ACM/IEEE conference on Supercomputing, pp.59-

es, December 1995.

[4] Cluster File Systems Inc., “Lustre: A scalable, high performance file

system”, Whitepaper, http://www.lustre.org/docs/whitepaper.pdf

[5] F. Chang, “Using Speculative Execution to Automatically Hide I/O

Latency”, Carnegie Mellon Ph.D Dissertation CMU-CS-01-172,

December 2001.

[6] F. Chang and G.A. Gibson, “Automatic I/O Hint Generation through

Speculative Execution”, in Proceedings of the 3rd Symposium on

Operating Systems Design and Implementation, February 1999.

[7] P. H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur, “PVFS: A

Parallel File System For Linux Clusters”, in Proceedings of the 4th

Annual Linux Showcase and Conference, Atlanta, GA, October 2000,

pp. 317-327

[8] M. Dahlin, R. Wang , T. Anderson , D. Patterson, “Cooperative caching:

using remote client memory to improve file system performance”, in

Proceedings of the 1st USENIX conference on Operating Systems

Design and Implementation, November 1994.

[9] FLASH IO Benchmark, Routine – Parallel HDF5,

http://www.astro.sunysb.edu/mzingale/flash_benchmark_io/

[10] The HDF5 Group, HDF5 - A New Generation of Hierarchical Data

Format, http://hdf.ncsa.uiuc.edu/products/hdf5/index.html

[11] B. Hendrickson and D. Womble, “The torus-wrap mapping for dense

matrix calculations on massively parallel computers”, SIAM Journal of

Scientific Computing, 15(5), September 1994.

[12] K. Keeton, G. Alvarez, E. Riedel, and M. Uysal. “Characterizing I/O-

intensive Workload Sequentiality on Modern Disk Arrays”, in

Proceedings of the 4th Workshop on Computer Architecture Evaluation

using Commercial Workloads (CAECW-01), January 2001.

[13] D.F. Kotz and C.S. Ellis, “Prefetching in File Systems for MIMD

Multiprocessors”, IEEE Transactions on Parallel and Distributed

Systems, 1(2), pp. 218-230, 1990.

[14] David Kotz and Nils Nieuwejaar, “Dynamic File-Access Characteristics

of a Production Parallel Scientific Workload”, in Proceedings of

Supercomputing '94, pp. 640-649, November, 1994.

[15] W.K. Liao, K. Coloma, A. Choudhary, L. Ward, E. Russel and S.

Tideman, “Collective Caching: Application-Aware Client-Side File

Caching”, in Proceedings of the 14th International Symposium on High

Performance Distributed Computing, 2005.

[16] X. Ma, J. Lee and M. Winslett, “High-level Buffering for Hiding

Periodic Output Cost in Scientific Simulations”, IEEE Transactions on

Parallel and Distributed Systems, Vol. 17, No. 3, 2006.

[17] T.M. Madhyastha and Daniel A. Reed, “Learning to classify parallel

input/output access patterns”, in IEEE Transactions on Parallel and

Distributed Systems, Volume 13, Issue 8, pp. 802 – 813, Aug 2002.

[18] Ethan L. Miller , Randy H. Katz, “Input/output behavior of

supercomputing applications”, in Proceedings of the 1991 ACM/IEEE

conference on Supercomputing, pp. 567-576, November 1991.

[19] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Sally McKee, Bronis

de Supinski, and Andy Yoo, “METRIC: Memory tracing via dynamic

binary rewriting to identify cache inefficiencies”, ACM Transactions on

Programming Languages and Systems, 29(2), April 2007.

[20] J. May, “Parallel I/O For High Performance Computing”, Morgan

Kaufmann Publishing, 2001.

[21] Message Passing Interface Forum, “MPI: A Message-Passing Interface

Standard. Version 1.1”, June 1995. http://www.mpi-

forum.org/docs/docs.html

[22] Message Passing Interface Forum, “MPI-2: Extensions to the Message-

Passing Interface”, July 1997 1996. http://www.mpi-

forum.org/docs/docs.html

[23] NAS Parallel benchmarks,

http://www.nas.nasa.gov/Resources/Software/npb.html

[24] Nils Nieuwejaar, David Kotz, Apratim Purakayastha, Carla Schlatter

Ellis, and Michael Best, “File-Access Characteristics of Parallel

Scientific Workloads”, IEEE Transactions on Parallel and Distributed

Systems, 7(10) pp. 1075–1089, October 1996.

[25] R.H. Patterson and G. Gibson, “Exposing I/O Concurrency with

Informed Prefetching”, in Proceedings of the 3rd International

Conference on Parallel and Distributed Information Systems, 1994.

[26] Barbara Pasquale and George C. Polyzos, “A static analysis of I/O

characteristics of scientific applications in a production workload”, in

Proceedings of the 1993 ACM/IEEE Conference on Supercomputing,

pp. 388-397, December 1993.

[27] Barbara K. Pasquale and George C. Polyzos, “Dynamic I/O

characterization of I/O intensive scientific applications”, in Proceedings

of the 1994 Conference on Supercomputing, pp. 660-669, 1994.

[28] A. Papathanasiou and M. Scott, “Aggressive Prefetching: An Idea

Whose Time Has Come”, in Proceedings of the Tenth Workshop on Hot

Topics in Operating Systems, 2005.

[29] Apratim Purakayastha, Carla Ellis, David Kotz, Nils Nieuwejaar, and

Michael Best, “Characterizing Parallel File-Access Patterns on a Large-

Scale Multiprocessor”, In Proceedings of the Ninth International Parallel

Processing Symposium (IPPS), pp. 165-172, April, 1995.

[30] Parallel I/O Benchmarking Consortium, http://www-

unix.mcs.anl.gov/pio-benchmark/

[31] Daniel A. Reed, Ruth Aydt, Roger Noe, Philip Roth, Keith Shields,

Bradley Schwartz, and Luis Tavera, “Scalable Performance Analysis:

The Pablo Performance Analysis Environment”, in Proceedings of the

Scalable Parallel Libraries Conference, October 1993, pp. 104-113.

[32] F. Schmuck and R. Haskin, “GPFS: A Shared-Disk File System for

Large Computing Clusters”, in Proceedings of the First USENIX

Conference on File and Storage Technologies, pp. 231-244, USENIX,

January 2002.

[33] Frank Shorter, “Design analysis of a performance analysis standard for

parallel file systems”, Masters Thesis, August 2003,

ftp://ftp.parl.clemson.edu/pub/techreports/2003/PARL-2003-001.ps

[34] Scalable I/O Project Software Downloads, IOR software,

http://www.llnl.gov/icc/lc/siop/downloads/download.html

[35] Evgenia Smirni and Daniel A. Reed, “Workload Characterization of

Input/Output Intensive Parallel Applications,” Proceedings of the

Conference on Modeling Techniques and Tools for Computer

Performance Evaluation, Springer-Verlag Lecture Notes in Computer

Science, vol. 1245, pp. 169-180, June 1997.

[36] Evgenia Smirni and Daniel A. Reed, “Lessons from Characterizing the

Input/Output Behavior of Parallel Scientific Applications”, in

Performance Evaluation, volume 33, pp. 27-44, 1998.

[37] Rajeev Thakur, William Gropp, and Ewing Lusk, “Data Sieving and

Collective I/O in ROMIO”, in Proceedings of the 7th Symposium on the

Frontiers of Massively Parallel Computation, February 1999, pp. 182-

189.

[38] Rajeev Thakur, Robert Ross, Ewing Lusk, and William Gropp, “Users

Guide for ROMIO: A High-Performance, Portable MPI-IO

Implementation,” Technical Memorandum ANL/MCS-TM-234,

Mathematics and Computer Science Division, Argonne National

Laboratory, Revised May 2004.

[39] Nancy Tran, Daniel A. Reed. “Automatic ARIMA Time Series

Modeling for Adaptive I/O Prefetching,” IEEE Transactions on Parallel

and Distributed Systems, vol. 15, no. 4, pp. 362-377, April, 2004.

[40] Mustafa Uysal, Anurag Acharya, and Joel Saltz, “Requirements of I/O

Systems for Parallel Machines: An Application-driven Study”, Technical

Report, CS-TR-3802, University of Maryland, College Park, May 1997.

[41] C.K. Yang, T. Mitra and T. Chiueh, “A Decoupled Architecture for

Application-Specific File Prefetching”, in Freenix Track of USENIX

2002 Annual Conference, 2002.

