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Abstract — Parallel I/O prefetching is considered to be effective 

in improving I/O performance. However, the effectiveness 

depends on determining patterns among future I/O accesses 

swiftly and fetching data in time, which is difficult to achieve in 

general. In this study, we propose an I/O signature-based 

prefetching strategy. The idea is to use a predetermined I/O 

signature of an application to guide prefetching. To put this idea 

to work, we first derived a classification of patterns and 

introduced a simple and effective signature notation to represent 

patterns. We then developed a toolkit to trace and generate I/O 

signatures automatically. Finally, we designed and implemented a 

thread-based client-side collective prefetching cache layer for 

MPI-IO library to support prefetching. A prefetching thread 

reads I/O signatures of an application and adjusts them by 

observing I/O accesses at runtime. Experimental results show 

that the proposed prefetching method improves I/O performance 

significantly for applications with complex patterns. 
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I.  INTRODUCTION  

Many scientific and engineering simulations in critical 

areas of research, such as nanotechnology, astrophysics, 

climate, and high energy physics, are highly data intensive. 

These applications contain a large number of I/O accesses, 

where large amounts of data are stored to and retrieved from 

disks. However, disparity of technology growth is causing a 

gap between processor performance and storage performance 

that has been increasing over the last few decades. This poor 

I/O performance has been attributed as the cause of low 

sustained performance of existing supercomputers. Although 

advanced parallel file systems (such as PVFS [7], Lustre [4], 

GPFS [32]) have been developed in recent years, they provide 

high bandwidth only for large, well-formed data streams, but 

perform poorly in dealing with large number of small and 

noncontiguous data requests. While techniques such as 

collective I/O and data sieving [37] can be used to merge small 

I/O requests into large ones, many small I/O requests cannot be 

eliminated due to the inherent nature of the underlying 

applications. The so-called I/O wall is thus a critical 

performance bottleneck. 

I/O prefetching is a promising technique to improve file 

access performance of many applications [13][20][25][28]. The 

effectiveness of prefetching depends on determining future I/O 

accesses of an application and fetching data closer to it. I/O 

accesses follow regular patterns in many applications, where 

data is accessed regularly for processing, and the processed 

data is stored back in files [12][17][18][24]. In these 

applications, regular patterns of I/O accesses can be identified 

via post-analysis. We propose a prefetching method with a 

combination of post-analysis and runtime analysis of I/O 

accesses. The idea behind our method is to detect the pattern of 

I/O accesses of an application, store the pattern information as 

a signature representation, and use that signature in the future 

runs of the application. To develop the signature notation of 

I/O accesses, we present a classification of I/O access patterns 

based on a study of a collection of widely used parallel 

benchmarks. We developed a tracing library to collect 

information of an application’s MPI-IO calls. We analyzed 

these traces to generate a representation of an I/O access 

pattern, called I/O signature.  Conventional prefetching 

methods are fast, but simple, and only detect simple strided 

patterns. The reason is that complex data access patterns are 

difficult to identify and the pattern search methods take a 

longer time to learn. The signature-based approach reduces the 

runtime processing cost and makes in-time prefetching 

possible. In our design, a prefetching thread runs alongside the 

main computing thread during I/O operations to predict data 

requirements of the main thread and to bring that data into a 

prefetch cache that is closer to the application. This prefetch 

thread uses both the I/O signature and the information of I/O 

accesses during runtime to predict future I/O accesses. The 

prefetching thread does not perform any computing but is 

solely responsible for prefetching data into the prefetch cache. 

To store the prefetched data, we introduce a client-side prefetch 

cache for parallel applications. We have modified the MPI-IO 

library of MPICH2 to add the client-side cache to support 

prefetching. 
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CNS0509118, and CCF-0621435. 



The paper is organized as follows. Section II discusses 

related work in I/O prefetching and access pattern analysis. We 

present the overall I/O signature-based prefetching method in 

Section III. A classification of I/O access patterns, I/O 

signature representation of access patterns are presented in 

Section IV. The design and implementation of trace collection 

and analysis, the client-side prefetch cache, and prefetching 

method in the MPI-IO library are presented in Section V. I/O 

signatures of various benchmarks are presented in Section VI, 

and performance results with our prefetch strategy are given in 

Section VII. We conclude the paper in Section VIII with a 

discussion of our observations and future work. 

II. RELATED WORK 

A. I/O Prefetching 

Many I/O prefetching approaches have been proposed 

including Chang and Gibson’s SpecHint [5][6], Patterson and 

Gibson’s Informed Prefetching (TIP) [25], and Yang’s AAFSP 

[41]. SpecHint and TIP use idle cycles to speculate future I/O 

accesses. The AAFSP technique is lightweight, but is only 

designed for sequential applications. Our client-side 

prefetching cache technique is targeted for parallel applications 

that have I/O access patterns with some degree of regularity. 

Static information about the I/O pattern is captured during post-

execution analysis. A prefetching thread then adjusts the 

pattern information based on dynamic observation of I/O 

accesses. PPFS2 [39] offers runtime optimization for caching, 

prefetching, data distribution, and sharing. In our approach, we 

use a combination of trace analysis from previous runs and 

runtime adjustment of the I/O signature. This reduces the 

overhead of detecting patterns at runtime, especially for regular 

but complex patterns, which require more time in detecting 

patterns. 

B. I/O Access Patterns 

Several previous parallel I/O studies observed that the I/O 

accesses of many applications follow certain patterns. Miller 

and Katz [18] studied several applications running on a Cray 

Y-MP vector computer and detected that these applications 

access data in chunks ranging from 32 KB to 512 KB. They 

concluded that I/O access sizes of the tested applications were 

relatively constant, cyclic, bursty, and predictable. Keeton et al. 

[12] observed small and large jumps (stride or difference 

between file offsets) among sequential accesses and 

interferences between concurrent accesses. Pasquale et al. 

[26][27] observed similar regularity among I/O patterns on a 

Cray C90. Studies of I/O accesses on distributed memory 

systems such as CM-5, iPSC/860, and the Intel Paragon XP/S 

[3][14][29] show that many I/O requests are small and have 

irregular patterns. Crandall et al. [3], Madhyastha et al. [17], 

and Smirni et al. [35] studied scalable I/O applications and 

provided a classification of patterns based on three dimensions 

of file access features: Type of I/O operation (read/write), 

sequentiality, and size of I/O requests. In this study, we classify 

access patterns further in the dimensions of repetitiveness and 

temporal behavior. Using these dimensions, we provide a 

representative notation for I/O accesses. Marathe et al. [19] 

used a notation to represent memory access traces that 

represents the length of a memory access and sequentiality. Our 

pattern representation notation is for I/O accesses and covers 

more information in multiple dimensions. Each of these 

dimensions can contain complex nested pattern notation. This 

notation not only reduces the size of traces, but is also useful in 

selecting prefetching strategies. 

C. Client-side Caching 

Many attempts have been made to use caching at the MPI-

IO level, including collective caching [15] and active buffering 

[16]. Application-aware collective caching at the MPI-IO level 

[15] is an effective solution in caching data that is used 

frequently. This can be used for both reads and writes. We use 

the collective cache approach in our prefetching cache design. 

Our prefetching cache is a complement to the caching approach 

and further improves I/O read performance. 

III. I/O SIGNATURE-BASED PREFETCHING 

I/O signature-based prefetching is a two step process. In the 

first step, traces of a running application are collected and 

analyzed to detect any patterns among them. The detected 

patterns are stored as an I/O signature. An I/O signature 

contains information regarding the strides between successive 

I/O accesses (spatial pattern), how many times the pattern is 

repeated, its temporal pattern, the size of requested data, etc. 

We give more details about the I/O signature in Section IV. 

The second step involves prefetching at runtime, where 

signatures of an application are read, verified, and used to 

prefetch data when a stable pattern is found. 

Figure 1 illustrates the prefetching thread operations of one 

 
 

Figure 1. I/O thread and prefetching thread operations from a single MPI 

process view 



client node. Our design follows the design of client-side 

collective caching [15], which was developed to cache 

frequently used pages. Since we designed our prefetching 

strategy to work within an MPI-IO library, our prefetch caching 

also uses the MPI communicator of an MPI program to detect 

the scope of processes that collaborate with each other in 

performing prefetching. We intend to preserve MPI-IO 

optimizations such as data sieving and collective I/O [37]. 

Therefore, we integrate our prefetching design in the ADIO 

(Abstract Device Interface for I/O) layer used in the ROMIO 

implementation of MPI-IO. As shown in Figure 1, a 

prefetching thread starts for each MPI process when the first 

file is opened and ends when the last file is closed. The 

prefetching thread initiates a user level prefetching cache and 

reads I/O signatures from a file (I/O signature DB). The 

parameters of the I/O signatures are adjusted dynamically by 

observing the I/O accesses of the MPI process to which the 

prefetching thread is attached. The main thread communicates 

I/O access information to its prefetching thread using shared 

variables. When the prefetching thread finds a stable pattern, it 

starts prefetching data into the prefetching cache, which the 

main thread looks up before sending a request to its underlying 

file system. If data is found in the prefetch cache, the main 

thread accesses that data. Otherwise, its normal operation of 

sending an I/O request to file system is performed. 

IV. I/O ACCESS PATTERNS 

I/O accesses of parallel applications can be divided into 

local patterns and global patterns. Local patterns are 

determined per process (or thread), showing how a file is 

accessed by a local process. Global patterns are over the 

parallel application, representing how multiple processes 

access a file. For example, a file can be accessed sequentially 

by all processes of an application, where every process reads a 

chunk of data. Many parallel file systems, including PVFS [7], 

Lustre [4], GPFS [32], provide optimizations to stripe files on 

disks efficiently to improve the locality of global patterns. In 

this study, we focus on local patterns of each process.  

Classifying I/O accesses into a set of patterns gives us an 

opportunity to tune performance. Prefetching strategies can 

utilize these patterns to predict future I/O accesses. I/O 

accesses can be reordered to improve cache reuse by having the 

information of access patterns. For instance, in out-of-core 

applications, data processing operations can be performed on 

all the data that has been fetched into memory before it is 

swapped to disk. Access pattern information is also helpful in 

selecting efficient cache replacement strategies. 

In previous work, we classified the memory access patterns 

of an application based on distances between successive 

accesses and request size [1]. We extend that classification for 

I/O accesses. Based on our study of various I/O benchmarks 

that represent real parallel applications, we introduce a five-

dimensional classification for access patterns of a local process. 

The five dimensions are spatiality, request size, repetitive 

behavior, temporal intervals, and type of I/O operation, as 

shown in Figure 2. The sequence of file locations accessed 

represents the spatial pattern of an application. They can be 

contiguous or non-contiguous or a combination of both. Non-

contiguous accesses refer to gaps (or strides between 

successive file offsets) in accessing a file. These gaps can be of 

fixed size or variable size. Variable size gaps can follow a 

pattern of two or more dimensions (2d or kd). Another possible 

pattern is one with decreasing (negative) strides. Some I/O 

accesses have no regular pattern, where the strides are random. 

Applications exhibit repetitive behavior when a loop or a 

function with loops issues I/O requests. We classify I/O access 

patterns either with repetitive behavior or without (i.e., pattern 

occurs only once). When I/O access patterns are repetitive, 

caching and prefetching can effectively mask their access 

latency. By capturing repetitive behavior, cached data can be 

kept longer or accesses can be reordered in a way that the 

fetched data is completely used before replacing it by new 

pages of data. Prefetching can utilize this repetitive behavior by 

storing previous pattern information and reuse that information 

to calculate future I/O access offsets without running prediction 

routines to search for the same pattern multiple times. We use 

this approach in our I/O signature-based strategy. 

Request sizes can be small, medium, or large. The sizes of 

requests can be either fixed or varying. We characterize a 

request as a small request when it is only a fraction of a page 

size, and as a large request when it is multiple times larger than 

a page size. Because of the high I/O latency, small I/O requests 

commonly cause performance bottlenecks if disks must be 

accessed multiple times for a small number of bytes. If 

possible, multiple small accesses can be combined into a larger 

contiguous request to reduce the number of disk seeks. 

Temporal patterns capture regularity in I/O bursts of an 

application. They can occur either periodically (at fixed 

intervals) or irregularly. Capturing temporal regularity can be 

used in prefetching strategies to initiate prefetch requests in 

time, so that prefetched data reaches its destination cache 

neither too early nor too late. 

The type of I/O operation is the last criteria for pattern 

classification. We classify the operations as read, write, or 

read/write. 

Spatial Patterns

� Contiguous
� Non-contiguous

� Fixed strided
� 2d-strided
� Negative strided
� Random strided
� kd-strided

� Combination of contiguous 
and non-contiguous patterns

Repetition

� Single occurrence
� Repeating

Request size

� Fixed
� Variable

� Small
� Medium
� Large

Temporal Intervals

� Fixed
� Random

I/O Operation

� Read only
� Write only
� Read/write

 
Figure 2. I/O access pattern classification 

 



Compared to the I/O access pattern classification provided 

by previous characterization studies [3][35][36], we add two 

more dimensions: repetition and temporal intervals. In the 

spatial pattern dimension, we classify existing variably strided 

pattern further into various non-contiguous patterns. This 

further classification is useful in selecting prediction methods 

of future I/O accesses by a prefetching strategy, reordering I/O 

accesses, and choosing victim pages by replacement policies. 

A. I/O Signature Notation 

We have developed a set of notations to describe I/O access 

patterns, which we call the I/O signature of access patterns for 

an application. The I/O signature can be given in two forms; 

the first describing the sequence of I/O accesses in a pattern 

and the second identifying I/O patterns. We call the description 

of a sequence of I/O accesses in a pattern a Trace Signature, 

and the abstraction of a pattern a Pattern Signature. Using the 

five dimensions mentioned above, trace signature takes the 

form as follows: 

{I/O operation, initial position, dimension, ([{offset 

pattern}, {request size pattern}, {pattern of number of 

repetitions}, {temporal pattern}], […]), # of repetitions} 

It stores information of an I/O operation, starting offset, 

depth of a spatial pattern, temporal pattern, request sizes, and 

repetitive behavior. In some instances, offsets, request sizes, 

timing, and number of repetitions also contain a pattern. 

Random temporal patterns are not captured in the trace 

signature, as the usage of randomness is limited.  

To illustrate I/O signature with an example, we use I/O 

traces of out-of-core LU decomposition [11][40]. This 

application accesses an 8192 x 8192 matrix of double-precision 

elements. Table 1 shows the trace information of the first few 

I/O reads. It has a 3-dimensional stride access pattern. We use 

italicized, bold face, and normal fonts to represent three 

dimensions of patterns. The initial position of read accesses is 

1049088. The first dimension of offsets (italicized in Table 1) 

has a pattern {1049088, 1, (524544, 1)}, where initial offset is 

1049088. The next offset is 1573632 (i.e. 1049088+ 524544). 

This stride pattern has only one access in each iteration, and the 

request size is 524544 bytes. The second dimension of offsets 

(bold faced) start at 524544. In this dimension, the sizes of 

requests also follow a pattern where each request size is 4096 

bytes less than the previous request. There is no temporal 

pattern due to lack of regularity among I/O read times. The 

number of repetitions also has a pattern, where the number of 

repetitions in an iteration is one more than that of the previous 

iteration. The third dimension of the offsets starts at the start of 

the file (0), and accesses 522368 bytes of data. This 3-

dimensional pattern repeats 125 times. The overall trace 

signature is shown below: 

{READ, 0, 3, ([{1049088, 1, [{(524544, 1)}, 524544], 1}],  

      [{524544, 1, [{524544}, {518272, 1, (-4096)}, {1, (1)}}],  
      [{0, 1, [(0, 522368, 1])}] ), 125}  

While a trace signature provides a way to reconstruct the 

sequence of I/O accesses, a pattern signature provides an 

abstract description that explains the nature of a pattern. A 

pattern signature takes the following form: 

{I/O operation, <Spatial pattern, Dimension>, <Repetitive 

behavior>, <Request size>, <Temporal Intervals>} 

In a pattern signature, we store information consisting of all 

five factors of our classification. Here random temporal 

patterns are represented. An example of pattern signature for 

the out-of-core LU traces is shown below: 

{READ, <Non-contiguous, 3d strided>, <repetitive>, 

<large, variable size>, <random>} 

The use of an I/O signature has multiple advantages. An I/O 

signature provides an automatic and systematic way of 

describing the I/O property of an application. I/O access 

optimization methods work effectively for specific patterns. 

Having an I/O signature that can be recognized automatically 

gives an opportunity to select efficient caching and prefetching 

optimization strategies based on patterns. This notation is 

useful in performing cost-benefit analysis of prefetching to 

decide whether to use prefetching. If the I/O signature of an 

application indicates complex access patterns that require more 

computing overhead to detect (the prediction cost is high), it is 

advisable to avoid prefetching in that case. The trace signature 

of an I/O signature reduces the size of trace files when regular 

patterns exist. Instead of having traces with regular patterns 

repeating throughout trace files, our representation can 

compress those repetitions into an I/O signature. 

A significant advantage of an I/O signature, which has been 

the motivation behind this research, is its usage in predicting 

future I/O accesses and prefetching that data. Post-execution 

analysis of an application’s I/O accesses can be stored as a 

TABLE 1. TRACES OF LU DECOMPOSITION 

Offset Request size 

1049088 524544 

524544 518272 

0 522368 

1573632 524544 

524544 518272 

1049088 514176 

0 522368 

2098176 524544 

524544 518272 

1049088 514176 

1573632 510080 

0 522368 

2622720 524544 

524544 518272 

1049088 514176 

1573632 510080 

2098176 505984 

0 522368 

3147264 524544 

524544 518272 

1049088 514176 

1573632 510080 

2098176 505984 

2622720 501888 

0 522368 

 



signature, which can be used by a prefetching strategy as hints 

for generating prefetching requests. Let us take an example 

where a process is accessing I/O in a strided pattern. Assume a 

fixed stride of 8192 bytes and each I/O read request is of 2048 

bytes. The trace signature of that pattern is {READ, initial 

position, 1, ([8192, 4096, 100]), 1}. Prefetching strategies can 

use this trace signature to calculate future file offsets from 

initial position, i.e. (0 * 8192, 1 * 8192, 2 * 8192,… , 99 * 

8192). 

A limitation of the trace signature is its usage for 

representing random accesses. While usage of trace signature 

for regular patterns reduces the size of a trace file, there is no 

such benefit for representing random I/O accesses. For random 

accesses, the storage space required for a trace signature 

representation and a trace file are of the same order. In such 

cases, instead of having a large trace signature, providing a 

pattern signature can itself express the information that these 

I/O accesses are random. This can guide history-based 

prefetching strategies to avoid trying to predict future offsets, 

as it is difficult to predict random I/O accesses from the history 

of accesses. 

Another limitation in using an I/O signature, which is 

obvious to any post-execution analysis of traces, is the 

variation of values of its elements when an application is rerun 

or when the stride pattern changes with the input values. While 

the pattern signature for most applications does not change 

with multiple runs and with different inputs, the trace signature 

must be modified in this situation. For example, the initial 

position or request size can vary based on the number of 

processes. As shown in the fixed stride I/O signature above, 

initial position can be process dependent, where a process i 

may start accessing data from i*partition, where partition is a 

function of process rank. In these cases, the I/O signature can 

be adjusted during runtime analysis, which is the second step of 

our signature-based prefetching method. In most cases, using a 

pattern signature itself is sufficient for adaptively selecting a 

future I/O access prediction algorithm of a prefetching strategy. 

V. IMPLEMENTATION OF SIGNATURE-BASED PREFETCHING 

Implementation of I/O signature-based prefetching contains 

many challenges including detecting patterns in history of I/O 

accesses and generating signatures with post-execution 

analysis, implementing the prefetch cache, collecting runtime 

information to adjust signatures that are generated offline, 

developing a software library to issue prefetch requests, 

synchronizing main and prefetching threads in fetching data, 

and maintaining coherence of prefetched data when it is 

updated by a process. We discuss solutions to each of these 

issues in the following subsections.  

A. Trace Collection and Analysis 

Characterizing I/O workloads typically starts with tracing 

application I/O requests. Each trace record contains the 

information of the type of request (read, write, seek, etc.), 

initial position, size of request, time stamp, client process that 

is accessing the file, file offset, and file which is being 

accessed. Madhyastha et al. have used Pablo [31] to trace I/O 

calls and to store traces in Self-Defining Data Format (SDDF). 

As our focus is entirely on studying MPI-IO calls, we 

developed a tracing tool that traces all MPI-IO read and write 

related calls. To capture MPI-IO calls, we use the profiling 

interface of MPI [20], which provides a convenient way for us 

to insert our code in an implementation-independent fashion. In 

MPI implementations, every function is available under two 

names, MPI_ and PMPI_. User programs use the MPI_ version 

of the function, for example, MPI_File_read. We intercept the 

user’s call to MPI_File_read by implementing our own 

MPI_File_read function in which we retrieve information 

required for tracing and then call PMPI_File_read to do actual 

file read. As a result, application programs do not need to be 

recompiled; they need only to be re-linked with our version of 

the MPI functions appearing before the MPI library in the link 

command line. Traces are stored in a text file, with a header 

describing the records of each trace. 

Automatic generation of I/O signatures from trace files is 

necessary to use them in a prefetching environment. We 

developed an analysis tool that reads through traces and gives 

the I/O signatures of an application as output. It has five pattern 

detectors for finding patterns among initial positions, offsets, 

request sizes, temporality, and repetitions. Each of these 

patterns follows the algorithm shown in Figure 3. For 

successive trace records, we search for various patterns 

including fixed strided, k-d (k = 2 and 3), and negative strided 

patterns. While searching for patterns, we keep three states: 

initial state, learning state, and stable state. The search is in the 

initial state at the beginning and goes into learning state when a 

Algorithm detect_pattern  
Input: Trace file containing IO Read access information 
Output: Pattern of a field in a trace file 
{ 
        for (each trace record)  {     
 read a target field of trace record 
 if (state = init) 
      read next record 
 else { 
       search for fixed stride pattern 
       if (pattern found) 
            state = stable 
       else { 
            read next record 
            search for k-d stride pattern  
  /* k=2 and 3 i.e. 2-d  and 3-d nested patterns*/ 
                  If (k-d pattern found)  
                           state = stable 
            else { 
  read next record 
              find negative strides and search for pattern 
              If (pattern found)  
      state = stable 
  else { 
                     read next record 
      (search for pattern using Markov chains  
               for 1st level strides) 
           If (pattern found)  
           state = stable 
           else { 
                 state = init 
                 read next record 
  } } } } } } } 

 
Figure 3. I/O Pattern Search Algorithm 



pattern is first detected. If the same pattern is detected in the 

following traces, the search state becomes stable. Otherwise, it 

returns to the learning state and searches for next type of 

pattern. If no pattern is found, the search will be in initial state. 

Once a pattern is in stable state, it is written into a signature 

and the number of repetitions is updated in the signature during 

the next iterations of the algorithm. All the sub-signatures are 

combined to form trace signature and pattern signature. 

B. Prefetch Cache 

A prefetch cache is necessary to store the data that has been 

prefetched. It is also necessary to keep the data coherent. 

Several researchers have been working on the idea of a cache 

on the client side. Cooperative caching has been proposed as a 

solution for caching and coherence control [8]. Active 

buffering is an optimization for MPI collective write 

operations. Liao et al. developed an application-aware 

collective caching library at the MPI-IO level [15]. Collective 

caching maintains a global buffer cache among multiple 

processes in the client side. We use this library as a starting 

point for our prefetch cache. We modified the cache to hold 

prefetched pages. Figure 4 shows the high-level design of our 

collective cache. Each client contributes part of its memory to 

construct the global cache pool and the high-speed interconnect 

network between client nodes enables the rapid transfer of 

cached data among clients. Metadata of cached blocks is 

maintained to locate them. The contents of metadata include 

the file descriptor, file offset, rank of process that prefetched 

the block, and dirty status. A specialized cache-coherency 

protocol is used to maintain consistency among cache copies in 

the cache pool. In our prefetch cache, all write caching is 

disabled and only prefetched pages are cached. We also use a 

prediction-based replacement policy combined with LRU 

policy for this cache. In this policy, if a victim is chosen by the 

LRU policy, and if it is among the pages to be accessed in the 

near future, it will get a higher priority to stay in the prefetch 

cache and a different page is selected for replacement. 

C. Adjusting Signatures 

The post-execution analysis generates I/O signatures of an 

application and stores them in a text file. Prefetching threads, at 

runtime, reads the corresponding signature of an application. In 

order to start prefetching, it is necessary to verify whether the 

signature is following the current I/O requests of the main 

thread. It is possible that a trace signature values depend on the 

rank of an MPI process and according to the current I/O 

accesses of an MPI process, the signature has to be adjusted to 

start prefetching data efficiently. We implement this signature 

adjustment process using shared variables. The main thread 

uses these shared variables to communicate with the 

prefetching thread. These variables, which are protected with a 

POSIX mutex, include file handle of the file that is being read, 

file location (i.e. where in the file the I/O read is occurring), 

and request size of an I/O read. When the shared variables are 

available, the prefetching thread reads them and compares them 

with the current signature. Figure 5 shows the algorithm to 

adjust signatures. If the stride (sign_stride) and request size 

(sign_req_size) of the current signature are same as the stride 

(main_stride) and request size  (main_req_size) of the main 

thread I/O reads, respectively, then the prefetching thread 

assumes that the signature is in a stable state and issues 

prefetching requests. The initial file location in the trace 

signature is set from the current file location from shared 

variables. If either the strides or request sizes of the signature 

are different with current I/O read parameters (from shared 

variables), the prefetching thread stays in the learning state and 

retrieves current strides or request size values to adjust the 

signature. If both strides and request sizes are different from 

current I/O read values, prefetching thread does not issue any 

prefetching requests assuming that prefetching thread does not 

have the correct signature.  

D. Prefetching and Reading from MPI-IO 

After a stable pattern is found, prefetching has to be 

performed to fetch data from I/O servers to prefetch cache. We 

developed a prefetching library by adding functionality to MPI-

IO library. The implementation of the prefetching request has 

similarities to the implementation of the MPI-IO read function, 

 
 

Figure 4. Collective client-side prefetch cache 

 
 

Figure 5. Adjusting I/O Signatures using Shared Variables 



but there are some differences. Prefetching requests have a 

special client-side prefetch cache into which they load, whereas 

MPI-IO fetches data into the user-specified buffer. Also, 

prefetching calls do not modify the file pointers. To implement 

prefetching, we maintain a separate file pointer and offset 

pointer for the prefetching library, which do not interfere with 

the original MPI-IO implementation. Prefetching requests are 

given lower priority over regular MPI-IO requests. If there is 

contention between a regular I/O request and a prefetching 

request, the regular request is served first. Also, errors and 

exceptions caused by prefetching requests are discarded. 

Figure 6 shows the execution flow of performing a 

prefetching request. First, the metadata of the requested page is 

obtained. If the requested block is in the local client prefetch 

cache, nothing has to be done and the block is ready to be 

accessed by the main thread. If it is in the global prefetch cache 

(at another MPI process’s local client prefetch cache), the data 

will be migrated into the local client cache. If a requested block 

(page) is not prefetched by any of the clients, data is prefetched 

from file system. We use a tag to differentiate regular I/O 

requests from prefetching requests. 

To benefit from prefetching, the regular MPI-IO library 

implementation is modified to be able to access the prefetch 

cache for requested data in addition to sending the requests to 

underlying file system. We modified the MPI-IO read 

operation to lookup in the client-side prefetch cache before 

issuing a request to the file system. First, the prefetch cache is 

searched for data. If the data is found in the prefetch cache, 

data is copied into user buffer. If not, a read request is sent to 

the file system as in the unmodified version of code. More on 

design and implementation of prefetching library are available 

in [2].  

E. Synchronization of Main and Prefetching Threads 

The prefetching thread of an MPI process has to issue 

prefetching requests early enough to bring data into the cache 

by the time a regular I/O read is issued by the main thread. in 

order to be efficient. In our prefetching implementation, we set 

a prefetch distance of eight. The prefetch distance here we 

mean how many strides away in a pattern we want to prefetch. 

For instance, if the prefetch distance is eight, prefetching thread 

requests for data which is eight strides away from current 

regular I/O read file location, i.e. in a 1-d stride pattern, 

prefetch position = sign file position + (8 * stride). However, it 

is possible that the main thread of an MPI process goes ahead 

of its prefetching thread in sending its regular I/O reads. 

Prefetching thread has to adjust its prefetching distance in such 

cases. The prefetching thread again uses shared variables to 

monitor the progress of regular I/O reads. If prefetching thread 

is falling behind, we adjust the file position of the signature to 

progress further and prefetch data ahead.  

F. Maintaining Coherence of Prefetched Data 

Maintaining coherence of prefetched data is important. It is 

possible that data, which has been prefetched, be modified by 

another client. In that case, a client reading stale prefetched 

data causes undesirable results. To avoid that, we use 

invalidation method to protect coherency of prefetched data. 

We modify the implementation of MPI-IO write operation to 

look up data blocks that have been prefetched and invalidate 

them in the prefetch cache if they are found. No data transfer 

occurs to or from the prefetch cache to avoid an increased 

overhead on a write operation. 

VI. I/O SIGNATURES OF BENCHMARKS 

In our experiments, we carried out experiments first to 

obtain the I/O signatures of a variety of benchmarks that are 

widely used to study the behavior of I/O accesses in parallel 

workloads. From the analysis of their pattern signatures, we 

then selected I/O workloads that would benefit from 

prefetching. We discuss I/O signatures of benchmarks in this 

section, and analyze prefetching performance results in the 

following section. The benchmarks we studied include IOR 

[34], mpi-tile-io [30], ASCI FLASH [9], BTIO from NAS 

parallel benchmark set [23], and PIO-Bench [33]. We 

characterized the I/O accesses of each benchmark using our 

classification of patterns and determined their I/O signature.  

We ran our experiments on a 17-node Dell PowerEdge 

Linux-based cluster. This cluster has one Dell PowerEdge 2850 

head node with dual 2.8 GHz Xeon processors and 2 GB 

memory, and 16 Dell PowerEdge 1425 compute nodes, each 

with dual 3.4 GHz Xeon processors and 1 GB memory. The 

head node has two 73GB U320 10K-RPM SCSI drives. Each 

compute node has a 40 GB 7.2K-RPM SATA drive. These 

nodes are connected with 10/100 Mb/s Ethernet. We conducted 

our experiments using NFS and PVFS [7]. The PVFS server 

was configured with one metadata server node and 8 I/O server 

nodes. All 16 compute nodes were used as client nodes. 

A. IOR 

Interleaved Or Random (IOR) [34] is a parallel file system 

benchmark developed at Lawrence Livermore National 

Laboratory. It is available with three APIs: MPI-IO, POSIX, 

and HDF5. In this study, we present the results with MPI-IO. 

This test performs write and read operations to a file using 

MPI_File_write_at and MPI_File_read_at function calls. In our 

test, each client writes and reads a contiguous chunk of data of 

size 128 MB overall, and each I/O call writes or reads data of 

size 32 KB. The total number of writes is 4096 (i.e. 128 MB / 

32 KB) and the number of reads is 4096. 

 
 

Figure 6. The execution flow for a prefetch request to a file block  



We observed offset patterns for write and read operations. 

The trace signature of IOR for our test is as follows: 

{WRITE, 0, 1, ([{0, 32768, 1}, 32768, 4096]), 1}, {READ, 

0, 1, ([{0, 32768, 1}, 32768, 4096]), 1} 

In these patterns, WRITE and READ operations follow a 

fixed stride of 32768 bytes offsets and access a fixed size 

request of 32768 bytes in each I/O operation. This makes the 

pattern of IOR spatially contiguous, repeating 4096 times. 

From the trace signature, the pattern signature can be derived 

as: {Write (or Read), <Contiguous>, <single occurrence>, 

<fixed size, medium>, <random>}. 

B. MPI-tile-IO 

MPI-tile-io [30] is a test application that implements tiled 

access to a two-dimensional dense dataset. This benchmark 

tests the performance of the noncontiguous access pattern 

obtained by logically dividing a data file into a dense two-

dimensional set of tiles. In this test, we studied read operations 

of MPI-tile-IO. Each process accesses a chunk of data based on 

the size of each tile and the size of each element. For example, 

we set the size of the tile in the both x and y directions to 100. 

The size of each element is 1024 bytes, which makes the size 

of each tile 10240000 bytes. The trace signature for each 

process is: {READ, initial position, 1, ([0, 1024000, 0]), 1}, 

where initial position is calculated based on the process rank. 

For example, for process i, the initial position is 

(i*sz_tile_x*sz_element). From the I/O signature, it can be 

observed that there is no local spatial pattern because there is 

only one access from each process. The trace signature of 

READ operation is similar to that of WRITE pattern. 

The pattern signature for MPI-tile-IO traces is: {Write (or 

Read), <No spatial pattern>, <single occurrence>, <fixed 

size, large>, <no temporal pattern>}. As there is only one I/O 

operation (write or read) in this trace, a spatial and temporal 

pattern cannot be defined. 

C. NAS Parallel Benchmarks – BTIO 

The BT benchmark [23] is based on a CFD code that uses 

an implicit algorithm to solve the 3D compressible Navier-

Stokes equations. A finite-difference grid is assumed, and 

systems of 5 x 5 blocks at each node are solved using a block-

tridiagonal solver. The BTIO version of the benchmark uses 

the same computational method, but with the addition that the 

results must be written to disk at every fifth time step. We have 

tested the CLASS B benchmark with 16 processes (NPROCS= 

16) using full subtype, which uses collective file operations and 

describes the solution vector with MPI derived datatypes [22]. 

This benchmark uses a matrix with a size of (102 x 102 x 102). 

The trace signature of I/O signatures for BTIO class B full 

benchmark running on 16 processes is: {WRITE, initial 

position, 1, ([42450944, 5308416, 40]), 1}, {READ, initial 

position, 1, ([42450944, 5308416, 40]), 1} 

The write and read operations of this benchmark are fixed 

strided with fixed request size and single occurrence. The 

initial position of processes are 0, 1*5308416, 2*5308416, …, 

15*5308416 for 0-to-15 process, respectively. 

The pattern signature of the BTIO test is: {Write (Read), 

<Non-contiguous, fixed strided>, <single occurrence>, <fixed 

size, large>, <random>}. 

D. ASCI Flash I/O 

ASCI FLASH [9] is a parallel application that simulates 

astrophysical thermonuclear flashes. It uses the MPI-IO parallel 

interface [22] to the HDF5 data storage library [10] to store its 

output data, which consists of a checkpoint file, a plotfile with 

centered data, and a plotfile with corner data. The plotfiles have 

single-precision data. In this benchmark, the underlying MPI-

IO functions are used to create a single file. All processes write 

data directly to this file with the size of a standard grid of 8 x 8 

x 8. This data is of double-precision. The computational 

domain is divided into blocks, which are distributed across the 

processors.  Each block contains 8 zones in each coordinate 

direction (x,y,z) and a perimeter of guard-cells (4 zones deep) 

to hold information from the neighbors. Typically, there are 24 

variables per zone, and fit about 100 blocks on each process. 

So, the size of each record in each process is (8 bytes/number * 

8 zones in x * 8 zones in y * 8 zones in z * 100 blocks) = 400 

KB. 

In this test, we executed the Flash IO benchmark with 4 

processes to retrieve its I/O access patterns. Each process calls 

the collective write function (MPI_File_write_all) 50 times. 

There is no regular pattern among all 50 writes; however, there 

are three sets of patterns, while the remaining accesses are 

random. The trace signature of the I/O signature for the 

patterns is:  {WRITE, initial position_1, 1, ([1323008, 

request_size_1, 25]), 1}, {WRITE, initial position_2, 1, 

([661504, request_size_2, 4]), 1}, {WRITE, initial position_3, 

1, ([941868, request_size_3, 4]), 1} 

Another interesting characteristic of trace signature of this 

benchmark is that not only the initial position of each process is 

different, but also the request size of each process. The initial 

positions of the first pattern (i.e. initial position_1) of the 

signature for the four processes are: 54680, 382360, 714136, 

and 1050008. The request sizes of the first pattern (i.e. 

request_size_1) are: 327680, 331776, 335872, and 327680. We 

observe similar variation in initial positions and request sizes in 

the two other patterns. This result is interesting because many 

prefetching systems assume that each process requests the 

same amount of data. However, in this benchmark, the I/O 

signature demonstrates the necessity of a prefetching strategy 

to adapt to variable sizes of requests among multiple processes. 

From these observations, the pattern signature in all three 

patterns in this test is: {Write, <non-contiguous, fixed strided>, 

<single occurrence>, <fixed size, large>, <random>}. 

We also tested this benchmark with 16 processes to verify 

the variability of initial positions, offsets, and request sizes with 

a different number of processes. The initial positions and 

offsets with this test are different from those observed by 

running the benchmark on 4 processes. However, the request 



sizes are similar in both these tests. We have also observed that 

the trace signature of I/O signature is the same for multiple 

runs of the benchmark with the same number of processes. This 

is useful for prefetching strategies to use an I/O signature when 

running the benchmark with the same number or processes but 

working on different datasets. 

E. PIO-Bench 

PIO-Bench is a synthetic parallel file system benchmark 

suite that is designed to reflect I/O access patterns appearing in 

typical workloads of real applications. This benchmark suite 

tests several I/O access patterns including sequential, simple 

strided, nested strided, random strided, segmented access, and 

tiled patterns. We studied simple-strided, nested-strided and 

segmented accesses of this benchmark. In each of the PIO-

Bench tests, we set various parameters including I/O operation, 

type of access pattern, number of repetitions, and request size. 

In these tests, we analyzed the read accesses. Tests with the 

write operations also follow the same patterns. 

In simple-strided test, we set the number of repetitions as 

100, and the request size as 4096 bytes. All the running 

processes use the same pattern, but with different initial 

position. The trace signature of this test is: {READ, initial 

position, 1, ([8192, 4096, 100]), 1} and the pattern signature of 

this pattern is: {Read, <non-contiguous, fixed strided>, <single 

occurrence>, <fixed size, small>, <random>}. 

In nested-strided test, we set the number of repetitions as 

100, and the request size as 4096 bytes. The trace signature of 

this test is: {READ, initial position, 2, ([4096, 4096, 1], 

[12288, 2048, 1], 100), 1} and the pattern signature of this 

pattern is: {Read, <non-contiguous, fixed strided>, <single 

occurrence>, <fixed size, small>, <random>}. 

For segmented accesses test, processes access different 

segments of a file. The local access pattern for each process is 

contiguous. The trace signature for this test with request size 

4096 bytes is: {READ, initial position, 1, ([4096, 4096, 100]), 

1} and the pattern signature of this pattern is: {Read, 

<contiguous>, <single occurrence>, <fixed size, small>, 

<random>}. 

VII. PERFORMANCE RESULTS WITH PREFETCHING 

I/O signatures of an application are useful for preliminary 

analysis of whether prefetching is beneficial in improving its 

performance. From observation of I/O signatures, we can 

conclude that the read pattern of IOR is contiguous, whose 

benefit from prefetching is similar to that of PIO-Bench test 

with simple strided pattern, where the stride is zero. MPI-tile-io 

only has one read access, where prefetching is not be 

beneficial. Flash IO only has writes and no reads. This leaves 

PIO-Bench with simple strided patterns, PIO-Bench with 

nested strided patterns, and BTIO are good candidates for 

benefiting from prefetching. We conducted three sets of 

experiments: two with strided and nested strided patterns using 

PIO-Bench and another with BTIO benchmark. Each PIO-

Bench test is run with multiple strides by varying the number 

of processors 2, 4, 8, and 16. For BTIO we evaluated Class B 

I/O size with 4, 9, and 16 processors. We set the cache block 

size for the collective prefetch cache as 64KB, and the prefetch 

cache size at each client was set as 32MB. We ran these 

experiments on the same 17-node Dell PowerEdge Linux-based 

cluster as we mentioned above. 

Figures 7 compares the I/O read bandwidth results of PIO-

Bench with 1-d strides (from 512 KB to 4MB) using NFS with 

collective prefetch cache and native approach (without prefetch 

cache). Figure 8 shows the same bandwidth results with PVFS. 

In order to focus on the performance benefits of prefetching, 

we measured only the time for I/O read requests. Each reported 

result is the least value of multiple runs; we observed that the 

variation among performance numbers in multiple runs was 

negligible. With PIO-Bench, the amount of data transferred 

between disks and MPI processes is higher as the size of stride 

increases for the same number of I/O reads. Hence, there is an 

increase in read bandwidth as the stride increases. From the 

figures we can see that the I/O read bandwidth with prefetching 

is better than that with no prefetching for all stride sizes with 

various numbers of processors. On average, the performance 

gain with prefetching for multiple stride sizes on NFS is ~23%. 

On PVFS, the performance gain is lower than that on NFS, 

probably because PVFS has optimizations for strided patters to 

combine multiple accesses. Prefetching benefits are low for 

small number of processors as well as for small stride between 

successive I/O reads. As the number of processors increases, 

the performance gains increase to ~14%. 

 
 

Figure 8. Bandwidth of PIO-Bench, with Simple Strided pattern on 

PVFS 

 

 
 

Figure 7. Bandwidth of PIO-Bench, with Simple Strided pattern on NFS 



Figure 9 compares the I/O bandwidth results of PIO-Bench 

Nested strided pattern using NFS with and without prefetching, 

and Figure 10 compares them with PVFS. The difference in 

offsets between successive I/O reads is 2-d strided in these 

tests. It is noticeable that bandwidth reduces as the number of 

processes increase for smaller strides. The I/O read 

performance with prefetching is better than that with no 

prefetching in all cases here. The performance gain with 

prefetching is low for small number of processors and it 

increases as the number of processors grows in both NFS and 

PVFS tests. In the 2-d strided I/O reads, there is a lack of 

locality, which requires loading a different page for each 

access. As the number of processors grows, serving each 

processor increases the load on I/O servers and results in poor 

performance. Prefetching methods benefits highly in these 

cases by sending requests early. The average performance gain 

on NFS is ~36% and that on PVFS for larger strides is ~20%. 

Figures 11 and 12 compare the I/O bandwidth performance 

of BTIO (Class B) with and without prefetching on NFS and on 

PVFS, respectively. We can see that on both NFS and PVFS, 

we can see I/O read bandwidth improvement with different 

number of processors. The read accesses have fixed 1-d stride 

pattern, and the prefetching benefits are similar to the case of 1-

d stride in the PIO-Bench test (Figures 7 and 8). The 

performance gain for all processors is same on NFS (~25%). 

On PVFS, with 4 processors, the gain is ~8%, and as the 

number of processors increase, the performance gain increases 

to 15% (9 and 16 processor tests). 

VIII. CONCLUSIONS AND FUTURE WORK 

Poor parallel I/O performance has been a bottleneck in 

many data-intensive applications. Prefetching is an effective 

latency hiding optimization. However, traditional prefetching 

strategies limit themselves to simple strided patterns and avoid 

complex prediction strategies so that a prefetching decision can 

be made swiftly. In this study, we have introduced a 

combination of post-execution analysis with runtime analysis 

to reduce the overhead of predicting future I/O reads. We 

expanded the classification of I/O accesses and introduced a 

new I/O signature notation. This notation can be used in 

reducing the size of trace file, in making decisions about 

prefetching, and in selecting prefetching strategies. The 

signature is predetermined and is attached to the underlying 

application for future executions. In our prefetching strategy, 

we used a separate thread to prefetch at runtime. We 

implemented this in an MPI-IO implementation (ROMIO [38]) 

and our results show significant performance benefits. There is 

no extra effort required by an MPI application developer to 

utilize our prefetching strategy. In the future, we plan to extend 

this research in two directions: (1) to move the prefetching 

thread to the file system level, and (2) to use a separate server 

to push data from I/O server nodes to client nodes. Moving the 

prefetching thread into a file system removes overhead on the 

client side, and the file system can combine multiple small I/O 

reads of multiple processes and prefetch large chunks of data. 

Using a separate server to move data reduces the burden on 

both I/O servers as well as clients. We also believe that 

prefetching is only one application of the signature-based 
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Figure 12. Bandwidth of BTIO Reads with Prefetching on PVFS 
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approach. The signature approach has the potential to guide 

data access optimizations of general heterogeneous computing 

by describing data requirements and is worthy of further 

investigation. 
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