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Abstract—Parallel applications are usually able to achieve high
computational performance but suffer from large latency in I/O
accesses. I/O prefetching is an effective solution for masking the
latency. Most of existing I/O prefetching techniques, however, are
conservative and their effectiveness is limited by low accuracy
and coverage. As the processor-I/O performance gap has been
increasing rapidly, data-access delay has become a dominant per-
formance bottleneck. We argue that it is time to revisit the “I/O
wall” problem and trade the excessive computing power with
data-access speed. We propose a novel pre-execution approach
for masking I/O latency. We describe the pre-execution I/O
prefetching framework, the pre-execution thread construction
methodology, the underlying library support, and the proto-
type implementation in the ROMIO MPI-IO implementation in
MPICH2. Preliminary experiments show that the pre-execution
approach is promising in reducing I/O access latency and has
real potential.

I. MOTIVATION

Parallel applications can benefit greatly from massive com-
putational capability, but their performance usually suffers due
to large latency in I/O accesses [13] [19] [22] [25] [27] [30].
Microprocessor performance has increased rapidly, and the
multi-core/many-core architecture has become the trend for
future high-performance processor chips. In the meantime,
disk performance has been increasing very slowly, causing a
huge processor-disk performance gap, as known as the I/O
wall problem. This gap has become a critical issue that limits
the sustained performance of parallel applications. Although
file-system level parallelism (i.e., parallel file systems such
as Lustre [4], PVFS [12] and GPFS [23]) and disk-level
parallelism (usually in the form of RAID) can greatly increase
the I/O throughput, they are not capable of reducing the I/O
latency effectively, especially in the case of a large number of
isolated or small accesses.

Several previous studies [9] [22] of I/O accesses on
distributed-memory systems have shown that many I/O re-
quests are small and exhibit irregular patterns. Madhyastha et
al. [18] and Smirni et al. [25] studied scalable I/O applications
and also concluded that many parallel I/O accesses are small,
non-contiguous and irregular. Although numerous studies have
been conducted and several well-known strategies, such as
collective I/O and data sieving [28] [22], have been proposed
and used to combine small I/O requests into large ones,
many small I/O requests cannot be eliminated due to the
inherent nature of the applications. I/O prefetching is another
effective latency-hiding solution in these scenarios and has

been widely used [5] [8] [19] [20] [21] [22]. However, the
traditional prefetching strategies, such as file-system level
approaches, are conservative. As the processor technology
evolves, the cost of computing power has been decreasing
rapidly. Computing power is plenty but data access is the
bottleneck. This trend provides the need and possibility to
conduct more comprehensive and aggressive data prefetching
to reduce I/O access latency efficiently. In the mean while,
the traditional concerns with prefetching strategies, such as
increased memory pressure, buffer cache pollution and in-
creased communication congestion, have been remedied well
by new technologies such as much larger memory at low cost,
dedicated memory portions for buffer cache, and much higher
I/O bandwidth and disk-level buffer cache.

Considering all these new technology trends and observa-
tions, we propose a novel pre-execution prefetching approach
to improve the I/O access performance of parallel applications.
This approach is able to explore parallel I/O concurrency
further in addition to existing approaches within MPI-IO, file
system, and disk levels. It avoids the limitation of traditional
prediction-based prefetching approaches that must rely on
perceivable patterns among I/O accesses, and is applicable for
many kinds of applications, including those with unknown
access patterns and random accesses. The proposed pre-
execution prefetching idea itself is general and also applicable
to sequential applications and POSIX I/O, but we investigate
this approach specifically for parallel I/O because parallel
applications are of more interest in terms of high performance
and high throughput I/O.

The rest of the paper is organized as follows. Section II
introduces the proposed pre-execution approach framework.
Section III and Section IV discuss the pre-execution thread
construction methodology in detail. Section V discusses the
library support for the proposed approach. Section VI presents
the preliminary experimental results and performance analysis.
Section VII compares our work with others, and we conclude
our discussions in Section VIII.

II. PRE-EXECUTION I/O PREFETCHING FRAMEWORK

The essential idea of the proposed approach is to overlap
the computation and I/O accesses via speculative prefetching.
This approach speculatively pre-executes a fragment of code
on each process to identify future I/O references and generate
prefetch requests. The speculative execution deals only with



I/O related operations and the computations that are critical
to the I/O access address. Since we assume that the compu-
tational capability is enormous and I/O is the performance
bottleneck, the computing power spent on pre-executing I/O
related operations is negligible and the overall performance is
improved. An underlying library collects and processes the
speculated I/O references identified and proactively fetches
data into a buffer cache near client nodes. The cached data
can be retrieved by the MPI-IO library to serve requests from
regular computation processes instead of stalling the process
and fetching data from the low-level storage. Therefore, the
process stall time on I/O accesses can be effectively masked.

Fig. 1. Pre-execution Parallel I/O Prefetching

Fig. 1 illustrates a high-level view of the proposed pre-
execution parallel I/O prefetching. The pre-execution is con-
ducted via a helper thread or prefetching thread/pre-execution
thread for each parallel process. Each original process forms
a main thread or computation thread. The prefetching thread
is composed of only I/O related operations of the original
process and is attached to each main thread to prefetch data
in advance. The original parallel application source code
is transformed either with the programmer’s intervention or
with a source-to-source pre-compiler to obtain the prefetching
thread. The prefetching thread shares certain resources with
the main thread, such as MPI file handles and process rank.
It runs ahead of the main thread because it only contains the
essential computation for data address calculation, and thus
is able to produce effective prefetches for the main thread.
The prefetching thread is supported by an underlying prefetch
function call library that provides the prefetch counterparts of
normal I/O function calls. It collects speculated future refer-
ences, generates prefetch requests, and schedules prefetches.
The prefetch library can also track function-call identifiers to
synchronize the prefetching thread and the computation thread
I/O calls, and to force the prefetching thread to run properly.
The cache buffer resides on the client side (in contrast, the
source data resides on the server side) and serves as the
prefetch destination. A caching library manages the actual

fetching of data to the buffer cache. The regular MPI-IO
library is enhanced to take advantages of the prefetched data
residing in the buffer cache.

As Fig. 1 demonstrates, the logical flow is that the prefetch-
ing thread communicates with the prefetching library, specu-
lates future requests, and fetches data into buffer cache through
the caching library. The computation thread is thus able to
access the cached data via the enhanced MPI-IO library and
mask the process stall time. The caching library and the regular
MPI-IO library talk to the underlying file system and perform
actual data transfer.

The proposed prefetching approach has many technical chal-
lenges that include generating accurate future I/O references,
guaranteeing expected program behavior, constructing the pre-
execution thread efficiently, synchronizing the pre-execution
thread with the main thread as necessary, and performing the
prefetching and caching with the library support. We address
these challenges in the following sections.

III. PRE-EXECUTION PREFETCHING THREAD
CONSTRUCTION METHODOLOGY

In this section, we analyze the pre-execution thread con-
struction problem in detail and present design considerations
of various aspects. An efficient method of extracting the I/O
related code to construct the pre-execution thread is discussed
in the following section. This section addresses the challenges
in generating accurate future I/O references, preserving correct
program behavior, and handling necessary synchronizations.

A. Design Considerations

The pre-execution thread runs at the same time with the
main thread, but usually ahead of the main thread to trigger I/O
operations earlier and warms up the underlying buffer cache
with prefetched data to reduce the access latency for the main
thread. This approach essentially tries to overlap the expensive
I/O access with the computation in the main thread as much
as possible.

The main design considerations include two aspects: cor-
rectness and effectiveness. Correctness means that the prefetch-
ing must not compromise the correct behavior of the main
computation thread. Since the prefetching thread shares certain
resources with the main thread, such as memory address
space, process identification, and opened file handles, an
inconsiderate design of the pre-execution prefetching might
result in unexpected results. We discuss in detail our design
to guarantee that the prefetching does not disturb the main
thread with regards to memory, communication, and I/O be-
havior. The design provides a systematic way to perform pre-
execution prefetching effectively and generate accurate future
I/O references.

B. Dealing with Memory Behavior

A straightforward design to guarantee the correct behavior
of the main thread is to perform store removal within the
pre-execution thread. After removing the potential writes to
shared variables between the main thread and the prefetching



thread, we prevent the possibility that the prefetching thread
can change the memory state of the main thread. Note that
store removal does not need to apply to automatic variables
(stack variables) because these variables are on the stack and
are private to each thread. This approach is widely used in
existing memory-level pre-execution prefetching work [7] [14]
[32]. The limitation of this approach, however, is that it affects
the accuracy of the pre-execution thread. This inaccurate
pre-execution behavior will not affect the correctness of the
program though. It merely decreases the accuracy of the
prefetching, and thus affects the effectiveness.

In this study, we use a code cloning or variable renam-
ing technique to increase the pre-execution accuracy while
guaranteeing the correctness in the meantime. This tech-
nique creates another separate variable (for the purpose of
speculative prefetching) whenever a variable is potentially
shared among the main thread and prefetching thread. It can
guarantee that the main thread’s memory state is untouched
while allowing the prefetching thread to run accurately. We
perform a source-level code cloning to realize the variable
renaming technique. The variable renaming, however, is not
free of cost. It consumes additional memory at runtime for
the prefetching thread even though it is safe to share the
memory region with the main thread. We assume that memory
space is not a factor in limiting performance considering
the trend of much larger memory at low cost. An advanced
technique, copy-on-write, can be used to reduce the memory
overhead. This technique tries to share the memory space as
much as possible and make extra copies only when necessary.
The copy-on-write technique is widely used in efficiently
constructing new processes (such as with the fork() system
call) by the operating-system kernel.

C. Dealing with Communication Behavior

In general, I/O related operations that constitute the pre-
execution thread of a specific process do not involve communi-
cation with other processes. If they do involve communication,
our design will preserve the correct communication behavior
for the main thread. The communication is in essence an ex-
change of memory state among multiple processes; therefore,
we can follow the memory-behavior handling to deal with
communication. It is possible to make the communication
among prefetching threads speculative (ignore certain sends
and receives) to accelerate the pre-execution. The drawback,
however, is similar to the store removal approach in the mem-
ory behavior handling, and can result in inaccurate prefetching
results. The approach we choose allows prefetching threads
to communicate with each other as normal, and uses special
message tags to isolate this communication from the commu-
nication in the main thread. We believe that a small commu-
nication overhead is justified for obtaining more accurate and
effective pre-execution results. This approach can be extended
to handle collective communication as well.

D. Dealing with I/O Behavior
To simplify the discussion and focus on the methodology

itself, we only deal with MPI-IO operations with individual file
pointers or with explicit offsets. The methodology, however, is
general and extensible for collective operations and operations
with shared file pointers.

1) MPI-IO Thread-safety: The underlying prefetching li-
brary provides prefetch counterparts of I/O functions to
support the proposed approach. MPI-IO function calls
(reads/writes) can be roughly classified into two categories,
one with hidden file pointer as the file offset and one with
explicit file offset. The one with explicit offset is thread-
safe because these functions use a specified offset to access
the file and do not rely on a hidden and shared file pointer
among multiple threads. The proposed approach employs a
separate thread to run ahead and prefetch data, and thus it
involves the thread-safety consideration. To solve this issue,
we introduce one more hidden file offset pointer, named
prefetch file pointer, within the opaque MPI file handle object
to track the prefetching thread file offset. The prefetch file
pointer is generally different from the normal file pointer,
and does not match with the system-level file pointer position
usually maintained in a MPI-IO library implementation. Note
that the prefetch version of the thread-safe functions does not
use the prefetch file pointer and they guarantee the thread-
safety naturally.

2) Dependence Considerations: The proposed pre-
execution I/O prefetching runs a fragment of code ahead
of the main thread to page in data into the buffer cache in
advance. It is possible that the pre-executed I/O operations
rely on previous reads/writes from the main thread. If we do
not resolve this issue carefully, we might break the sequential
semantics guaranteed by MPI-IO. This subsection discusses
the dependence considerations within a single process, and
Section III-D4 discusses preserving consistency semantics
among multiple processes.

Concurrent reads do not interfere with each other, but writes
can potentially conflict with other reads/writes. Therefore, to
preserve the correct dependence and consistency among I/O
calls and not disturb the main thread I/O behavior, the simplest
solution is converting write operations as synchronization
points when generating the pre-execution thread. To preserve
data integrity, only the main thread performs writes and
not the pre-execution thread. This approach is analogous to
partitioning a program into many segments delimited by write
operations. The pre-execution prefetching is available and safe
within each segment, but not across segments. Obviously,
the downside of this approach is that it limits the degree of
prefetching to explore the computation and I/O concurrency
because not all writes need to be immediately visible to the
process. Therefore, it is possible to speculatively perform
prefetching for the future reads if they are not conflicting with
prior writes.

We propose a delayed synchronization approach to tackle
this issue. The rationale of the approach comes from the
fact that only the RAW (Read After Write) dependency is



a true dependency, and only its corresponding writes need to
be visible to the reads. This approach allows the prefetching
thread to record the write byte ranges when encountering a
write and to continue to run ahead without synchronizing with
the main thread. This byte range is termed dirty range and
indicates the region of data that is supposed to be written
with new data from the main thread. However, as long as
the future reads do not need this data region, it is safe to
allow the prefetching thread to run ahead and page in required
data. When the prefetching thread encounters a read, it always
performs a boundary check with the current dirty range. If
the read region falls into or overlaps with the dirty range, we
perform a delayed synchronization to wait for the data from the
main thread to be written into the disk. The synchronization
is implemented by forcing the prefetching thread to wait until
the specified function is performed from the main thread. A
dependency analysis table is maintained to map the byte range
and the function identifier of the writes that contribute the dirty
range. This mapping is used to look up the function call that
needs to be synchronized for a certain dirty range. The dirty
ranges can be combined or split as the I/O reads, writes and
synchronizations go on.

3) Prefetch Conversions: Prefetch conversions are required
for the proposed pre-execution prefetching, either with the
programmer’s intervention or with an automatic tool such as
the pre-compiler discussed in the next section. The general
rules are to convert reads, writes, and seeks to prefetch coun-
terparts as supported by the prefetching library (reads/writes
are handled with the previous dependence analysis, and seeks
simply change the prefetch file pointer), and add in necessary
synchronization handling. This handling includes converting
file open/close operations and MPI File sync() and file at-
tribute modification operations (such as setting file size or
deleting a file) as synchronization points. The MPI file handles
are transformed to global variables to make them shareable
between the main thread and prefetching thread (different
from the memory behavior handling). The MPI initialization
is converted to MPI Init thread for thread support if that is
not the case.

4) Preserving MPI-IO Consistency Semantics: Pre-
execution prefetching also preserves MPI-IO consistency
semantics among multiple processes. As the MPI-2 standard
[33] indicates, MPI-IO provides weak consistency by default,
and for stronger semantics, users need to take explicit actions,
such as setting the atomic mode, closing and reopening
the file, or using MPI File sync() and MPI Barrier() to
prevent two concurrent overlapping writes. In all these
cases, the MPI-IO consistency semantics are preserved with
the prefetching methodology because the required locking
for the atomicity mode is performed for the prefetching
thread, MPI Barrier() semantic is also preserved, and the file
closing and opening, and MPI File sync() are turned into
synchronization points as required to preserve the consistency
semantics.

IV. AUTOMATING PRE-EXECUTION THREAD
CONSTRUCTION WITH PROGRAM SLICING

It is possible to follow the construction methodology and
utilize the caching library, prefetching library and enhanced
MPI-IO library to construct the prefetching thread manually
to benefit from pre-execution prefetching. The manual con-
struction, however, is tedious and error-prone. In this section,
we present the design of a prototype source-to-source pre-
compiler to address the challenges of constructing the pre-
execution thread automatically and efficiently.

A. Mapping Pre-execution Thread Construction to Program
Slicing

We use the program slicing technique [29] to automatically
construct a pre-execution prefetching thread. The program
slicing technique was originally proposed for debugging and
studying program behavior. It is a family of program decom-
position techniques based on extracting statements relevant to
computation within a program. Program slicing relies on Pro-
gram Dependence Graph (PDG) analysis [6], a combination of
control dependence and data dependence analysis of programs.
It takes the source code as input and computes a slice (a
subset of the original program) based on the slice criteria,
the variables or statements of interest. The construction of the
pre-execution thread can be mapped to the program slicing
problem because the pre-execution thread is essentially a sub-
set of the original program, where I/O variables and statements
are of interest. If we slice the original program with all I/O
function calls and their arguments as slice criteria, we obtain
all I/O related operations, that is, I/O operations and the critical
computations that might affect those I/O operations.

B. Program Slicing with Unravel

We employ a well-implemented open-source program slic-
ing toolkit, Unravel [15] [36], for our prototype pre-compiler
development. To compute program slices, Unravel parses the
source program and represents it as a flow graph of nodes
annotated with lists of variables and directed edges indicating
control flow. For each node, the annotation maintains a defined
variable set, a referenced variable set, and an active variable
set - the set of variables that the slicing criteria depend on
just before program execution reaches that node. The slicing
computation starts with all the active sets initialized to be
empty, except that the active set for the slicing criterion
statement is initialized to the criterion variable. The slice is
computed by propagating the active sets across the entire
flow graph until no changes occur to the active sets. The
computation of the active set for an arbitrary node is controlled
by comparing variables defined at that node with the active sets
of immediate successor nodes by slicing rules [15].

Fig. 2 illustrates the structure of the Unravel toolkit. Unravel
is composed of three main components: a source code analy-
sis component, a link component, and a slicing component.
Source files are transformed to a representation independent
of source language called language independent format (LIF)
by the analyzer. The analyzer is similar to a compiler with



a scanner to break the source code into tokens that are
recognized by a parser, but instead of generating object code,
it produces LIF code. The LIF files for a given program are
bound together by the linker into a single link file. The link
file is fed into the slicer, and the slicer outputs sliced code for
different slicing criteria.

Fig. 2. Unravel Structure Overview

C. Slicing for Pre-execution I/O Prefetching

The overview structure of our prototype pre-execution code
generation pre-compiler is shown in Fig. 3. The pre-compiler
is built upon Unravel and uses the Unravel analyzer and slicer
components to compute slices of I/O related codes based on
each individual I/O function call statements. The complete pre-
execution code is built via merging these slices and performing
necessary prefetch conversions with the LIF files and link file
support. The output of the pre-compiler is an optimized code
with pre-execution prefetching enabled, and the optimized
code uses the underlying library support to accomplish the
prefetching work.

Fig. 3. Pre-execution Code Generation Pre-compiler

The basic slicing algorithm for pre-execution is shown in
Fig. 4, where S<m,v> denotes the slice computed for the slice
criterion, variable v at statement m. The algorithm considers
all predecessor statements n in the PDG. If statement n does
not assign a value to the variable v, it is omitted from the slice,
and we recursively evaluate S<n,v>. Otherwise, if statement
n assigns a value to the variable v, it is included in the
slice for criterion < m, v >, and we recursively evaluate the
program slice for all referenced variables x used to compute v

at statement n (the second term), as well as the program slice
for all referenced variables y at all statements k that control
the execution of statement n, denoted by req(n) set (the third
term). The second term within the algorithm deals with the
data dependence among statements, while the third term deals
with the control dependence and includes necessary statements
into the slice.

Fig. 4. Basic Slicing Algorithm for Pre-execution

In addition to the basic slicing algorithm, we also use Un-
ravel features to support advanced analyses, such as arrays and
structures analysis, pointer analysis and procedure analysis to
provide more fine-grain dependence information and improve
the quality of the slice [15]. For instance, Unravel keeps
track of pointer assignments and references, and analyzes each
level of indirection when generating slices. It also supports
inter-procedural analysis to construct slices across procedure
boundaries. The basic algorithm and these advanced features
are sufficient for our purpose in building the pre-execution
thread construction pre-compiler. Some existing studies of data
flow analysis specifically for MPI programs [26] also provide
useful experiences for our study.

D. Effectiveness of Pre-execution Prefetching Thread

The prefetching thread is able to run ahead of the main
thread and is effective in fetching data in advance to overlap
the computation and I/O accesses for the following reasons. As
the previous discussion illustrates, the code not relevant with
I/O operations is sliced away, which makes the prefetching
thread contain only the essential I/O operations and the code
on the critical path to these operations. Therefore, the prefetch-
ing I/O thread is not involved in enormous computations and
runs much faster than the main thread. Secondly, the prefetch
version of I/O calls are used within the pre-execution thread
to replace normal I/O calls. These prefetch calls avoid the
cost of making an extra memory copy to the user buffer.
They can also be implemented with non-blocking accesses
to accelerate the prefetching thread. Other techniques, such as
delayed synchronization, also contribute to the fast execution
of the prefetching thread, and allow the prefetching thread
to speculate as far as allowed and generate accurate I/O
references. When the prefetching thread happens to lag behind
the main thread, the underlying library implementation makes
it able to detect that to skip prefetch calls and catch up with
the main thread.

V. PRE-EXECUTION I/O PREFETCHING LIBRARY SUPPORT

This section discusses the design of the underlying library
support for the proposed pre-execution parallel I/O prefetching
strategy [3], as well as the prototype implementation with
ROMIO [35] and MPICH2 [34].



A. MPI-IO Caching Library

To implement I/O prefetching, a cache closer to the com-
puting node is needed. Several research projects have been
working on MPI-IO caching libraries. Ma et al. proposed
active buffering [16] [17] and Liao et al. proposed collective
caching [10] [11]. Instead of reinventing a new caching library,
we chose the collective caching code [10] [11]. This code
is implemented within ROMIO [35] and maintains a global
buffer cache among multiple processes at the client side. Fig.
5 demonstrates the high-level view of the collective caching
design. Each client contributes part of its memory to construct
the global cache pool, and the high-speed interconnect network
enables the rapid transfer of cached data among clients.
A specialized cache-coherency protocol is used to maintain
consistency among cache copies in the cache pool. We have
customized the collective caching implementation for our
purpose, such as disabling write caching and enabling read
caching only. In addition, we utilize speculative execution
results to direct caching policy. For instance, if the speculated
future I/O references are already cached, these data blocks are
given a higher priority to stay in the cache buffer instead of
being replaced.

Fig. 5. Collective Caching

B. MPI-IO Prefetching Library

The prefetching library provides the implementation of
prefetch counterparts of MPI-IO read/write function calls.
The handling of writes for the pre-execution thread is as
discussed in Section 3. Fig. 6 shows the flow graph of the
general algorithm of the prefetching read library design and
implementation. The syntax and semantic of the prefetching
reads are quite similar to the existing MPI-IO library design,
but there are several key differences [3]. First, the prefetching
library calls do not have a user-specified buffer parameter. This
distinction is straightforward because the data fetched by pre-
execution calls are stored in client-side buffer cache and are
not supposed to return data to the user’s buffer. The second
difference is that the prefetching library does not update the
normal file pointers. It maintains a prefetch file pointer for
the pre-execution thread and always uses this file pointer to
access data blocks. Another difference is that the prefetching
reads perform a boundary check over the current dirty range
and performs necessary delayed synchronization as discussed

previously. The last difference is that, unlike ordinary MPI-
IO library calls, prefetching function calls are silent: they do
not return errors in general. The errors or exceptions caused
by prefetching are generally discarded, and previous states are
restored.

Fig. 6. Flow Graph of MPI-IO Prefetching Library Functions

Fig. 7. Flow Graph of Enhanced MPI-IO Regular Library Functions

C. MPI-IO Regular Library

To benefit from prefetching, the regular MPI-IO library
implementation is modified to be able to access the buffer
cache for requested data in addition to satisfying the requests
directly from the file system when the data is not found in the
cache. The flow graph shown in Fig. 7 describes the algorithm
of the general modifications to the existing implementation.
The algorithm divides the I/O request into blocks and checks
whether each block already resides in the buffer cache or not.
If the block is cached, we copy the block from buffer cache
to user’s buffer via memcpy(). If the block does not appear in
the buffer cache, we perform direct I/O reads from underlying
file system. This step is exactly the same as what the existing
ROMIO implementation does.



(a) NFS (b) PVFS

Fig. 8. PBench Results on NFS and PVFS with Pre-execution Prefetching

(a) NFS (b) PVFS

Fig. 9. Aggregate Sustained Bandwidth on NFS and PVFS with Pre-execution Prefetching

VI. PRELIMINARY EXPERIMENTAL RESULTS AND
PERFORMANCE ANALYSIS

We have carried out preliminary experiments to verify the
benefits of the proposed pre-execution prefetching for parallel
I/O applications. This section discusses the experimental setup
and experimental results. We evaluate the results with two ma-
jor metrics, execution time reduction and sustained bandwidth
improvement, that are widely used in common practice.

A. Experimental Setup

Our experiments were conducted on a 17-node Dell Pow-
erEdge Linux-based cluster. This cluster is composed of one
Dell PowerEdge 2850 head node, with dual 2.8 GHz Xeon
processors and 2 GB memory, and 16 Dell PowerEdge 1425
compute nodes with dual 3.4 GHz Xeon processors and 1 GB
memory. The head node has two 73 GB U320 10K-RPM SCSI
drives. Each compute node has a 40 GB 7.2K-RPM SATA hard
drive. The experiments were tested on both NFS and PVFS file
systems. PVFS [12] was configured with one metadata server

node, the head node, and 8 I/O server nodes. All compute
nodes were used as client nodes. The cache page size of the
collective caching was set as 64 KB and the buffer cache size
at each client was set as 32 MB.

B. Experimental Results

1) PBench Experimental Results: We have followed the
PIO-Bench framework [24] and developed a parallel I/O
benchmark, named PBench. PBench emulates a regular par-
allel application’s computation and I/O access behavior of
many small and non-contiguous accesses. The computation is
emulated with floating-point calculation, and the I/O accesses
are emulated with accessing huge two-dimensional double-
precision matrices. The difference between the PBench and
PIO-Bench is that PBench characterizes both computation and
I/O accesses, whereas PIO-Bench characterizes I/O behavior
only. PIO-Bench is usually used for measuring the peak I/O
performance with different access patterns, while PBench is
suitable for studying the sustained performance and the impact



of different optimization techniques, MPI-IO implementations,
and file systems.

We have conducted three sets of experiments with the
PBench on NFS and PVFS respectively. In each set, we tested
PBench with three settings: accessing a 4K by 4K, 8K by 8K,
and 16K by 16K matrices. In each test, every I/O access is
random, but the average request size is the row size. We flush
the buffer cache before every run. The total accessed data was
128 MB, 512 MB, and 2 GB, respectively. The computation
was configured as 1M iterations calculation of the accessed
data.

Fig. 8 shows the experimental results with 1, 2, 4, 8, and 16
processes on NFS and PVFS respectively. Each reported result
is the average of at least three runs. In each figure, the first bar
of every column represents the original execution time, and the
second bar represents the execution time with pre-execution
prefetching. The execution time was significantly reduced in
almost all cases. The execution time reduction was up to
37.92%, and the average reduction was 29%, 33%, and 26%
respectively in three cases when tested on NFS. When tested
on PVFS, the execution time reduction was up to 32.45% and
the average reduction was 23%, 24%, and 26%.

Fig. 9 shows another view of these results. It illustrates the
aggregate sustained bandwidth when testing PBench with a
16K by 16K matrix on NFS and PVFS. The sustained band-
width improved considerably with the pre-execution prefetch-
ing, and the bandwidth was much higher on PVFS than NFS.
Since the proposed approach is on top of existing optimization
techniques in MPI-IO or the file system, it complements the
existing approaches and can reduce I/O access latency further
when combined with them.

Fig. 10 demonstrates the performance of caching optimiza-
tion only with the PBench benchmarks. Since we disable write
caching, we have relatively large cache buffer for reads. The
caching improves the performance, but the improvement is
not very substantial due to several reasons. One reason is that
read caching can perform well if large amount of data reuse
exists. If there is no much data reuse, the read caching may
not perform as well as expected. In addition, caching might be
best for optimizing write intensive application performance,
while caching plus prefetching is best for optimizing read
performance. The proposed pre-execution prefetching is a
complementary technique to caching and an effective solution
for further improving I/O performance on top of caching.
Combining the prefetching with caching, the I/O performance
can be improved substantially as Fig. 8 demonstrates.

2) Tile 2D-convolution Experimental Results: Tile 2D-
convolution is a real application to conduct two-dimensional
convolution on paired tile images. Each process is responsible
for the 2D-convolution of two tiles. Each tile is composed of
N elements in both X and Y dimension. The size of each
element varies (e.g., 1 KB or 2 KB). The 2D-convolution uses
Fast Fourier Transform (FFT) as its kernel. It first takes a 2D-
FFT of each tile, then performs a point-wise multiplication
of the intermediate results from the 2D-FFT, followed by an
inverse 2D-FFT. A 2D-FFT can be performed by using a 1D-

FFT routine and performing the 1D-FFT N times along rows
followed by N times along columns. The procedure of 2D-
convolution can be described as following:

A = 2D − FFT (tile1)
B = 2D − FFT (tile2)
C = MM Point(A,B)
D = Inverse− 2DFFT (C)

Fig. 11 illustrates the experimental results of the tile 2D-
convolution application on PVFS. The first set of experi-
ments were conducted with 25 processes, where each process
performs the 2D-convolution of two tiles. The number of
elements was set as 100 and 200, and the element size was
set as 1KB and 2KB, respectively. The total accessed data was
256 MB, 512 MB, 1 GB and 2 GB, respectively. With pre-
execution prefetching, the sustained bandwidth improved by
up to 20.58% and the average improvement was 18.37%. The
second set of experiments used 100 processes; the number of
elements was set as 50 and 100, and the element size was set
as 1 KB and 2 KB respectively. The total accessed data was
the same as in the previous set of experiments. The sustained
bandwidth increased by up to 20.32%, and the average im-
provement was 14.71%. Both sets of experiments verified that
the pre-execution prefetching achieved considerable execution
time reduction and sustained bandwidth improvement.

VII. RELATED WORK

I/O prefetching techniques can be classified into two cat-
egories in general: heuristic prediction based and speculative
execution based [19]. The heuristic approach predicts future
accesses based on observed patterns among past access his-
tories. However, it only works if applications follow regular
and perceivable known patterns. When application accesses are
random, unknown, or lack regularity, the heuristic approach
cannot help. Speculative execution prefetching provides a
more general approach. Theoretically, it works for every appli-
cation and has high accuracy in discovering future references.
The proposed pre-execution approach in this study is such a
prefetching solution to reducing I/O latency.

Some other speculative execution approaches have been
proposed recently, such as Chang and Gibson’s SpecHint
[1], Patterson and Gibson’s informed prefetching TIP [21],
and Yang’s AASFP approach [31]. Both SpecHint and TIP
approaches demonstrate that it is fully feasible to speculate
future I/O accesses in time and reveal this information to
the underlying file system to fetch data in advance. However,
their approaches are conservative and only utilize idle cycles
to perform speculation. The AASFP approach provides an
application-level speculative execution solution. This approach
is light-weight and effective, but it is only designed for sequen-
tial applications. Our proposed approach is targeted for parallel
applications and has the merits of existing approaches. The
aggressive pre-execution approach is also being studied exten-
sively to reduce memory access latency to attack the “memory
wall” problem [2] [7] [14] [32]. Those approaches also usually
involve source code transformation and prefetching injection.
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Fig. 10. PBench Results on NFS and PVFS with Caching
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Fig. 11. Aggregate Sustained Bandwidth of Tile 2D-Convolution on PVFS

In addition, they generally assume certain hardware support
for fast pre-execution thread initialization and execution on a
SMT/CMP machine. The processor’s L1 cache is usually the
prefetching destination. However, none of existing approaches
investigate the pre-execution approach for the parallel I/O
latency problem yet. This study has proposed a pre-execution
prefetching system for parallel I/O to attack the “I/O wall”
problem, and has presented the design details. Our approach is
a purely software solution, and does not rely on any hardware
assumptions. The high disk latency and fast processor speed
can tolerate the overhead for initiating and executing the pre-
execution thread of a software approach. To the best of our
knowledge, this is the first work in this direction.

There are several recent efforts in hiding data access latency
in other directions, such as providing a caching layer on
the MPI-IO level. Collective caching [10] [11] and active
buffering [16] [17] are such examples. Collective caching
is an effective solution and can benefit both read and write
accesses. We have utilized the global buffer cache maintained

by collective caching as our prefetching destination in this
study. Our proposed approach is a complement to existing
caching approaches and can improve I/O access performance
further.

VIII. CONCLUSION

As the disk performance lags far behind the processor
performance, the long disk access delay has a severe impact
on parallel-application performance. In this study, we address
this issue by hiding disk access delay via a pre-execution
prefetching strategy. The main contributions of this study are
the following: (1) We argue that, as technology evolves, it
would be beneficial to utilize enormous computational capabil-
ity to perform comprehensive prefetching to reduce I/O access
latency; (2) We have proposed an innovative pre-execution
approach for trading computing power for more effective I/O
accesses. This approach can explore computation and I/O
concurrency well and hide the data access delay effectively; (3)
We have presented the system and underlying library design



[3] in detail and a prototype implementation with collective
caching, ROMIO, and MPICH2; (4) We have presented careful
design considerations for constructing the pre-execution thread
and an automatic construction pre-compiler that uses program-
slicing technique. The pre-execution prefetching is a promising
latency tolerance technique that uses helper threads running
with computation threads to trigger long-latency I/O accesses
early, hence overlapping the computation and I/O operation
latency. The preliminary experimental results have confirmed
that the proposed approach is beneficial and has real potential
to hide I/O access delay, and in turn reduce the execution time
and improve the sustained performance.
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