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Abstract. MPI defines one-sided communication operations—put, get,
and accumulate—together with three different synchronization mecha-
nisms that define the semantics associated with the initiation and com-
pletion of these operations. In this paper, we analyze the requirements
imposed by the MPI Standard on any implementation of one-sided com-
munication. We discuss options for implementing the synchronization
mechanisms and analyze the cost associated with each. An MPI imple-
menter can use this information to select the implementation method
that is best suited (has the lowest cost) for a particular machine envi-
ronment. We also report on experiments we ran on a Linux cluster and
a Sun SMP to determine the gap between the performance that could
be achievable and what is actually achieved with MPI.

1 Introduction

Over the past decade, one-sided communication has emerged as a promising
paradigm for high-performance communication on low-latency networks. The
advantage of one-sided communication lies in its asynchronous nature: Unlike
in point-to-point (or two-sided) communication where the sender and receiver
explicitly call send and receive functions, in one-sided communication only the
origin process calls the data-transfer function (put or get), and data transfer
takes place without the target process explicitly calling any function to transfer
the data. This model allows parallel programs to be less synchronizing and al-
lows communication hardware to move data from one process to another with
maximal efficiency. Nonetheless, some synchronization mechanism is needed in
the programming model for the target process to indicate when its memory is
ready for being read or written by a remote process and to specify when the
data transfer is completed.

Because of the growing popularity of one-sided communication, the MPI
Forum defined a specification for one-sided communication in MPI-2 [8]. MPI
defines three data-transfer functions for one-sided communication: put (remote
write), get (remote read), and accumulate (remote update). These data-transfer
functions must be used together with one of three synchronization mechanisms—
fence, post-start-complete-wait, and lock-unlock—as shown in Figure 1. Many
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Fig. 1. The three synchronization mechanisms for one-sided communication in MPI.
The numerical arguments indicate the target rank.

MPI implementations, including all vendor MPIs, support one-sided communi-
cation, with varying levels of optimization [1, 2, 4, 6, 7, 9, 10, 12, 14, 15]. Nonethe-
less, Gabriel et al. [3] found that, because of the synchronization overhead in
one-sided communication, regular point-to-point communication performs bet-
ter than one-sided communication in five MPI implementations: NEC, Hitachi,
IBM, Sun, and LAM. The only exceptions were NEC and Sun MPI when window
memory allocated with the special function MPI Alloc mem is used. Clearly, it
is necessary to study the costs associated with the synchronization mechanisms
and optimize the implementations. In this paper, we analyze the semantics of the
synchronization mechanisms, discuss options for implementing them, and ana-
lyze the overhead. This information is useful to MPI implementers in deciding
which implementation method to use for a particular machine environment.

2 Fence Synchronization

Figure 1a illustrates the fence method of synchronization. In MPI, the memory
region that a process exposes to one-sided communication is called a window,
and a collection of processes create a window object that is used in subsequent
one-sided communication functions. MPI Win fence is collective over the com-
municator associated with the window object. A process may issue one-sided
operations after the first call to MPI Win fence returns. The next call to fence



completes the one-sided operations issued by this process as well as the oper-
ations targeted at this process by other processes. An implementation of fence
synchronization must support the following semantics: A one-sided operation
cannot access a process’s window until that process has called fence, and the
second fence on a process cannot return until all processes needing to access
that process’s window have completed doing so.

2.1 Implementing Fence

In general, an implementation has two options for implementing fence: immediate
and deferred.

Immediate Method. This method implements the synchronization and com-
munication operations as they are issued. A simple implementation of this option
is to perform a barrier in the first fence; perform the puts, gets, and accumulates
as they are called; and perform another barrier at the end of the second fence
after all the one-sided operations have completed. The first barrier ensures that
all processes know that all other processes have reached the first fence and that
it is now safe to access their windows. The second barrier ensures that a process
does not return from the second fence until all other processes have finished
accessing its window.

On a distributed-memory environment without hardware support for barri-
ers, a barrier can be implemented by using the dissemination algorithm [5] with
0-byte messages. If p is the number of processes and α is the latency (or startup
time) per message, this algorithm costs (lg p)α. The immediate method requires
two barriers, which cost 2(lg p)α. This method is expensive in environments
where the latency is high, such as on clusters and networks running TCP. It is
appropriate for environments where barriers can be fast, such as shared-memory
systems or machines with hardware support for barriers, such as the Cray T3E
and IBM BG/L.

Deferred Method. This method [12] takes advantage of the MPI feature that
puts, gets, and accumulates are nonblocking and are guaranteed to be com-
pleted only when the following synchronization function returns. In the deferred
method, the first fence does nothing and simply returns. The ensuing puts, gets,
and accumulates are simply queued up locally. All the work is done in the second
fence, where each process first goes through its list of queued one-sided oper-
ations and determines, for every other process i, whether any of the one-sided
operations have i as the target. This information is stored in an array, such that
a 1 in the ith location of the array means that one or more one-sided opera-
tions are targeted to process i, and a 0 means otherwise. All processes then do
a reduce-scatter sum operation on this array (as in MPI Reduce scatter). As
a result, each process knows how many processes will be performing one-sided
operations on its window, and this number is stored in a counter in the window
object. Each process then performs the data transfer for its one-sided operations
and ensures that the counter at the target is decremented when all the one-sided



operations from this process to that target have been completed. As a result,
a process can return from the second fence when the one-sided operations is-
sued by that process have completed locally and when the counter in its window
object reaches 0, indicating that all other processes have finished accessing its
window.

This method thus eliminates the need for a barrier in the first fence and
replaces the barrier at the end of the second fence by a reduce-scatter at the
beginning of the second fence before any data transfer. After that, all processes
can do their communication independently and return when they are done (asyn-
chronously). This method also enables optimizations such as message reordering,
scheduling, and aggregation, which the immediate method does not.

On a distributed-memory system, a reduce-scatter operation on an array of
p short integers (2 bytes) costs (lg p)α + 2(p − 1)β [13], where β is the transfer
time per byte between two processes. Because of the lower latency term, this
method is preferred over the immediate method on systems where the latency
is relatively high, such as on clusters.

2.2 Performance

To determine how MPI implementations perform for fence synchronization, we
measured the cost of two MPI Barriers, one MPI Reduce scatter, and two
MPI Win fences on a Myrinet-connected Linux cluster at Argonne and a Sun
SMP at the University of Aachen in Germany. On the Linux cluster, we used a
beta version of MPICH2 1.0.2 with the GASNET channel on top of GM. On the
Sun SMP, we used Sun MPI. We performed the operations several times in a
loop, calculated the average time for one iteration, and then the maximum time
taken by all processes. We used MPI Alloc mem to allocate window memory and
passed assert MPI MODE NOPRECEDE to the first fence and (MPI MODE NOSTORE |
MPI MODE NOPUT | MPI MODE NOSUCCEED) to the second fence.

Figure 2 shows the results. On the Linux cluster, the cost of two barriers is
far more than the cost of a single reduce-scatter. Therefore, the deferred method
is the preferred option, which is what MPICH2 uses in this case. We see that
the cost of two fences is almost the same as that of a reduce-scatter. On the
Sun SMP, Sun MPI has a very fast implementation of barrier, and therefore the
immediate method is the preferred implementation strategy for fence. From the
graph, it appears that Sun MPI does use the immediate method, because the
time for two fences is only slightly higher than the time for two barriers.

3 Post-Start-Complete-Wait Synchronization

Fence synchronization, being collective over the entire communicator associated
with the window object, results in unnecessary overhead when only small subsets
of processes actually communicate with each other. To avoid this drawback, MPI
defines a second synchronization mechanism in which only subsets of processes
need to synchronize, as shown in Figure 1b. A process that wishes to expose its
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Fig. 2. Time taken for two barriers, one reduce-scatter, and two fences on a Myrinet-
connected Linux cluster using MPICH2 (left) and on a Sun SMP using Sun MPI (right).

local window to remote accesses calls MPI Win post, which takes as argument an
MPI Group object that specifies the set of processes that will access the window.
A process that wishes to perform one-sided communication calls MPI Win start,
which also takes as argument an MPI Group object that specifies the set of pro-
cesses that will be the target of one-sided operations from this process. After
issuing all the one-sided operations, the origin process calls MPI Win complete
to complete the operations at the origin. The target calls MPI Win wait to com-
plete the operations at the target.

An implementation of post-start-complete-wait synchronization must take
into account the following semantics: A one-sided operation cannot access a pro-
cess’s window until that process has called MPI Win post, and a process cannot
return from MPI Win wait until all processes that need to access that process’s
window have completed doing so and called MPI Win complete.

3.1 Implementing Post-Start-Complete-Wait

We again consider the immediate and deferred methods for implementing post-
start-complete-wait. A few intermediate options also exist [4, 8] but, for simplic-
ity, we do not consider them here.

Immediate Method. In this method, MPI Win start blocks until it receives a
message from all processes in the target group indicating that they have called
MPI Win post. Puts, gets, and accumulates are performed as they are called.
MPI Win complete waits until all one-sided operations initiated by that process
have completed locally and then sends a done message to each target process.
On the target, MPI Win wait blocks until it receives the done message from
each origin process. Assuming that the size of the origin and target groups is g,
the overhead of this method is 2gα. This method is appropriate in environments



with low latency and native support for one-sided communication, such as shared
memory, so that the data transfer can be initiated as soon as it is called.

Deferred Method. This method defers data transfer until the second syn-
chronization call [12]. In MPI Win post, if the assert MPI MODE NOCHECK is not
specified, the process sends a zero-byte message to each process in the origin
group to indicate that MPI Win post has been called. It also sets the counter in
its window object to the size of this group. On the origin side, MPI Win start
does nothing and simply returns. All one-sided operations are simply queued
up locally. In MPI Win complete, the origin process first waits to receive the
zero-byte messages from the processes in the target group. It then performs all
the one-sided operations and ensures that the window counter at the target gets
decremented when all the one-sided operations from this process to that target
have been completed. MPI Win complete returns when all its operations have
locally completed. On the target, MPI Win wait simply blocks and invokes the
progress engine until its window counter reaches zero, indicating that all origin
processes have finished accessing its window.

Thus the only synchronization in this method is the wait at the begin-
ning of MPI Win complete for a zero-byte message from the processes in the
target group, and this too can be eliminated if the user specifies the assert
MPI MODE NOCHECK to MPI Win post and MPI Win start (similar to MPI Rsend).
If the size of the origin and target groups is g, the overhead of this method is gα.
Therefore, the deferred method is faster in environments where latency is high.

4 Lock-Unlock Synchronization

In the lock-unlock synchronization method, the origin process calls MPI Win lock
to obtain either shared or exclusive access to the window on the target, as shown
in Figure 1c. After issuing the one-sided operations, it calls MPI Win unlock. The
target does not make any synchronization call. When MPI Win unlock returns,
the one-sided operations are guaranteed to be completed at the origin and the
target. MPI Win lock is not required to block until the lock is acquired, except
when the origin and target are one and the same process. Implementing lock-
unlock synchronization when the window memory is not directly accessible by
all origin processes requires the use of an asynchronous agent at the target to
cause progress to occur because one cannot assume that the user program at the
target will call any MPI functions that will cause progress periodically [8].

4.1 Implementing Lock-Unlock

We consider the immediate and deferred methods of implementing lock-unlock.

Immediate Method. In this method, MPI Win lock sends a lock-request packet
to the target and waits for a lock-granted reply. Puts, gets, and accumulates are
performed as they are called. MPI Win unlock waits until all one-sided operations



initiated by that process have completed locally and then sends an unlock request
to the target. It also waits to receive an acknowledgment from the target that all
the one-sided operations issued from this process have completed at the target,
as required by the semantics of MPI Win unlock. The cost for acquiring the lock
is 2α, and the cost for releasing the lock is also 2α. Therefore, the total cost of
this method is 4α, assuming no lock contention.

Deferred Method. In this method [12], MPI Win lock does nothing and simply
returns. All one-sided operations are simply queued up locally. In MPI Win unlock,
the origin sends a lock-request packet to the target and waits for a lock-granted
reply. It then performs the one-sided operations. When these operations have
completed locally, it sends an unlock request to the target and, in the general
case, waits for a reply from the target indicating that the operations have com-
pleted at the target.

The deferred method also costs 4α in the general case, but it permits several
optimizations that the immediate method does not. One optimization is that if
any of the one-sided operations is a get, it can be reordered and performed last.
Since the origin must wait to receive data in the get, when the get completes, it
implies that the one-sided operations have also completed at the target (assuming
ordered completion). In this case, an additional acknowledgment is not needed
from the target, thereby reducing the cost to 3α. Another optimization in the
case of a single put, get, or accumulate is that the origin can perform it as
an atomic lock-(put/get/accumulate)-unlock request without having to wait for
a lock-granted reply. If the operation is a get, even the additional completion
acknowledgment from the target is not needed. These optimizations reduce the
cost of lock-unlock to α and 0, respectively, because the lock request becomes
part of the data transfer.

5 Analysis for Shared-Memory Environments

Shared-memory environments offer unique opportunities for optimizing MPI one-
sided communication because of their support for atomic operations for fast
synchronization and the ability to directly copy data to/from the user’s buffer on
the target if the window memory was allocated with MPI Alloc mem. We analyze
in further detail the implementation of one-sided communication on shared-
memory environments with lock-unlock synchronization. Consider this simple
example that puts n longs into the memory window on the process specified by
rank:

MPI_Win_lock(MPI_MODE_EXCLUSIVE, rank, 0, win);
MPI_Put(buf, n, MPI_LONG, rank, 0, n, MPI_LONG, win);
MPI_Win_unlock(rank, win);

We assume that the window memory was allocated with MPI Alloc mem and is
directly accessible by a remote process. If we ignore error checking of function
parameters, an MPI implementation need perform only the following steps for
each of the above functions.



MPI Win lock
1. Make a routine call with four arguments
2. Convert win into an address (if not already an address)
3. Look up the address of the lock at the target (indexed access into win)
4. Check shared or exclusive access
5. Remote update for the lock

MPI Win put
1. Make a routine call with eight arguments
2. Convert win into an address (if not already an address)
3. Check that the remote memory is directly accessible
4. Get the base address of the remote memory (indexed access into win)
5. Get the displacement unit (indexed access into win)
6. Determine whether origin data is contiguous and get length (access datatype

and multiply count by datatype size)
7. Determine whether target data is contiguous
8. Perform the copy of local to remote memory

MPI Win unlock
1. Make a routine call with two arguments
2. Convert win into an address (if not already an address)
3. Look up the address of the lock at the target (indexed access into win)
4. Remote update for the unlock

While the number of steps may seem large, they in fact involve relatively few
instructions. However, the access to remote memory, either for the lock accesses
or for the memory copy at the end of the MPI Put step, may require hundreds of
processor cycles. To determine the cost of performing the above steps, we wrote
a shared-memory program using OpenMP [11] in which one thread performs the
equivalent of lock, put, and unlock on another thread. We wrote four versions
of this program:

1. A single routine OpenMP program where the lock, put, and unlock are all
performed in the main routine by simply setting and clearing a flag for the
lock and unlock steps and using memcpy to move the data.

2. The lock, put, and unlock operations are performed in separate routines,
thus adding function-call overhead.

3. An MPI Win-like structure is added so that the addresses of the lock and the
memory at the target have to be obtained by indexing into the structure.

4. The routines use the same arguments as the corresponding MPI functions.
This version adds more arguments to the routines and requires an extra
lookup in the win structure for the displacement unit at the target.

We ran these programs on a Sun SMP (Sun Fire E6900, 1.2 GHz Ultra Sparc
IV) at the University of Aachen with the Sun OpenMP compiler. We also ran
the MPI version of the program with Sun MPI and a beta version of MPICH2
1.0.2 with the sshm (scalable shared memory) channel. For windows allocated



Table 1. Time in seconds to perform a lock-put-unlock operation on a Sun SMP. n is
the number of longs (4 bytes) moved. OpenMP 1 is a simple OpenMP implementation
of this operation. The other three OpenMP programs add more features. OpenMP 4
mimics the steps an MPI implementation must implement. The last two columns show
the times for two MPI implementations: Sun MPI and MPICH2.

OpenMP 1 OpenMP 2 OpenMP 3 OpenMP 4
n (simple) (routines) (win struct) (all MPI args) Sun MPI MPICH2

8 4.5e-7 4.8e-7 4.9e-7 5.4e-7 1.1e-6 1.3e-6
256 1.1e-6 1.1e-6 1.1e-6 1.2e-6 1.7e-6 1.9e-6
1024 4.7e-6 4.9e-6 5.0e-6 5.1e-6 5.2e-6 6.6e-6
64K 2.5e-4 2.6e-4 2.6e-4 2.7e-4 4.3e-4 5.4e-4

with MPI Alloc mem, this version of MPICH2 uses the immediate method to
implement all three synchronization methods in the sshm channel.

Table 1 shows the time taken to move 8, 256, 1024, and 64K longs (4 bytes)
by these programs. The results show that the fastest MPI version is slower
by a factor of 1.4 to 2 than the OpenMP version with all MPI features. We
plan to investigate the cause of this difference in further detail, but preliminary
studies indicate that the cost of MPI Win lock followed by MPI Win unlock is
itself roughly twice as large as the equivalent steps in the OpenMP version. This
may be due to the difference in the handling of thread and process locks in the
operating system, and we plan to investigate this issue further.

6 Conclusions and Future Work

MPI one-sided communication has the potential to deliver high performance to
applications. However, MPI implementations need to implement it efficiently,
with particular emphasis on minimizing the overhead added by the synchro-
nization functions. In this paper, we have analyzed the minimum requirements
an implementation must meet to honor the semantics specified by the MPI
Standard. We have discussed and analyzed several implementation options and
recommended which option to use in which environments. Our analysis of the
performance of lock-put-unlock on the Sun SMP demonstrates that MPI imple-
mentations are not too far off from delivering what can be delivered by using
direct shared memory, although there is room for improvement. We plan to in-
vestigate in further detail where the additional gap lies and how much of it can
be reduced with clever implementation strategies.
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