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Abstract

As parallel systems are commonly being built out of increasingly large multi-
core chips, application programmers are exploring the use of hybrid programming
models combining MPI across nodes and multithreading within a node. Many MPI
implementations, however, are just starting to support multithreaded MPI com-
munication, often focussing on correctness first and performance later. As a result,
both users and implementers need some measure for evaluating the multithreaded
performance of an MPI implementation. In this paper, we propose a number of
performance tests that are motivated by typical application scenarios. These tests
cover the overhead of providing the MPI THREAD MULTIPLE level of thread safety for
user programs, the amount of concurrency in different threads making MPI calls,
the ability to overlap communication with computation, and other features. We
present performance results with this test suite on several platforms (Linux cluster,
Sun and IBM SMPs) and MPI implementations (MPICH2, Open MPI, IBM, and
Sun).
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measurement, benchmarks

1 Introduction

Processor development has headed to an era where chips comprising multiple
processors per core are common. As a result, parallel machines are being built
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out of multicore chips as the basic building block. With multiple CPUs sharing
memory within a single node, application programmers are exploring the use of
hybrid programming models comprising MPI across nodes and threads within
a node. The threaded portion of the program is implemented either explicitly
with a threads library such as Pthreads [5] or implicitly by using compiler
directives such as OpenMP [9]. In either case, MPI functions could be called
from multiple threads of a process, and efficient support for multithreaded
MPI is needed.

MPI implementations, however, have traditionally not provided highly tuned
support for multithreaded MPI communication. In fact, many implementa-
tions do not even support thread safety (at the time of this writing, Microsoft
MPI, SiCortex MPI, NEC MPI, IBM MPI for Blue Gene/L, and Cray MPI
for XT4). Other implementations do support thread safety. However, devel-
oping a thread-safe MPI implementation is a fairly complex task, and the
implementers must make several design choices, both for correctness and for
performance [4]. To simplify the task, implementations often focus on cor-
rectness first and performance later (if at all). As a result, even though an
MPI implementation may support multithreading, its performance may be
far from optimal. Users, therefore, need a way to determine how efficiently
an implementation can support multiple threads. Similarly, as implementers
experiment with potential performance optimizations, they need a way to mea-
sure the outcome. To meet these needs, we have created a test suite that can
shed light on the performance of an MPI implementation in the multithreaded
case. We describe the tests in the suite, the rationale behind them, and their
performance with several MPI implementations (MPICH2, Open MPI, IBM
MPI, and Sun MPI) on several platforms.

Related Work. The MPI benchmarks from Ohio State University [10] con-
tain a multithreaded latency test, which is a ping-pong test with one thread
on the sender side and two (or more) threads on the receiver side. A num-
ber of other MPI benchmarks exist, such as SKaMPI [13] and the Intel MPI
Benchmarks [6], but they do not measure the performance of multithreaded
MPI programs.

Some research has been done in the area of implementing thread safety in
MPI. In [4], we described and analyzed what the MPI Standard says about
thread safety and what it implies for an implementation. We also presented
an efficient multithreaded algorithm for generating new context ids, which is
required for creating new communicators. Protopopov and Skjellum discuss a
number of issues related to threads and MPI, including a design for a thread-
safe version of MPICH-1 [12,14]. Plachetka describes a mechanism for making
a thread-unsafe PVM or MPI implementation quasi-thread-safe by adding an
interrupt mechanism and two functions to the implementation [11]. Garćıa et
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al. present MiMPI, a thread-safe implementation of MPI [3]. TOMPI [2] and
TMPI [15] are thread-based MPI implementations, where each MPI rank is
actually a thread. (Our paper focuses on conventional MPI implementations
where each MPI rank is a process that itself may have multiple threads, all
having the same rank.) USFMPI is a multithreaded implementation of MPI
that internally uses a separate thread for communication [1]. A good discussion
of the difficulty of programming with threads in general is given in [7].

2 Overview of MPI and Threads

To understand the test suite and the rationale behind each test, one must un-
derstand the thread-safety specification in MPI [8]. For performance reasons,
MPI defines four “levels” of thread safety and allows the user to indicate the
level desired—the idea being that the implementation need not incur the cost
for a higher level of thread safety than the user needs. The four levels of thread
safety are as follows:

(1) MPI THREAD SINGLE Each process has a single thread of execution.
(2) MPI THREAD FUNNELED A process may be multithreaded, but only the

thread that initialized MPI may make MPI calls.
(3) MPI THREAD SERIALIZED A process may be multithreaded, but only one

thread at a time may make MPI calls.
(4) MPI THREAD MULTIPLE A process may be multithreaded, and multiple

threads may simultaneously call MPI functions (with some restrictions
mentioned below).

An implementation is not required to support levels higher than
MPI THREAD SINGLE; that is, an implementation is not required to be thread
safe. A fully thread-compliant implementation, however, will support
MPI THREAD MULTIPLE. MPI provides a function, MPI Init thread, by which
the user can indicate the level of thread support desired, and the implemen-
tation will return the level supported. A portable program that does not call
MPI Init thread should assume that only MPI THREAD SINGLE is supported.
The tests described in this paper focus on the MPI THREAD MULTIPLE (fully
multithreaded) case.

For MPI THREAD MULTIPLE, the MPI Standard specifies that when multiple
threads make MPI calls concurrently, the outcome will be as if the calls ex-
ecuted sequentially in some (any) order. Also, blocking MPI calls will block
only the calling thread and will not prevent other threads from running or
executing MPI functions. MPI also says that it is the user’s responsibility
to prevent races when threads in the same application post conflicting MPI
calls. For example, the user cannot call MPI Info set and MPI Info free on
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Thread 0 Thread 1

MPI_Recv(src=0) MPI_Send(dest=0)MPI_Recv(src=1) MPI_Send(dest=1)

Thread 0 Thread 1

Process 0 Process 1

Fig. 1. An implementation must ensure that this example never deadlocks for any
ordering of thread execution.

the same info object concurrently from two threads of the same process; the
user must ensure that the MPI Info free is called only after MPI Info set

returns on the other thread. Similarly, the user must ensure that collective
operations on the same communicator, window, or file handle are correctly
ordered among threads.

A straightforward implication of the MPI thread-safety specification is that
an implementation cannot implement thread safety by simply acquiring a lock
at the beginning of each MPI function and releasing it at the end of the func-
tion: A blocked function that holds a lock may prevent MPI functions on other
threads from executing, a situation that in turn might prevent the occurrence
of the event that is needed for the blocked function to return. An example is
shown in Figure 1. If thread 0 happened to get scheduled first on both pro-
cesses, and MPI Recv simply acquired a lock and waited for the data to arrive,
the MPI Send on thread 1 would not be able to acquire its lock and send its
data; hence, the MPI Recv would block forever. Therefore, the implementation
must release the lock at least before blocking within the MPI Recv and then
reacquire the lock if needed after the data has arrived. (The tests described
in this paper provide some information about the fairness and granularity of
how blocking MPI functions are handled by the implementation.)

3 The Test Suite

Users of threads in MPI often have the following expectations of the perfor-
mance of threads, both those making MPI calls and those performing compu-
tation concurrently with threads that are making MPI calls.

• The cost of thread safety, compared with lower levels of thread support,
such as MPI THREAD FUNNELED, is relatively low.

• Multiple threads making MPI calls, such as MPI Send or MPI Bcast, can
make progress simultaneously.

• A blocking MPI routine in one thread does not consume excessive CPU
resources while waiting.

Our tests are designed to test these expectations; in terms of the above cate-
gories, they are as follows:
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Cost of thread safety One simple test to measure the overhead of
MPI THREAD MULTIPLE.

Concurrent progress Tests to measure concurrent bandwidth by multiple
threads of a process to multiple threads of another process, as compared with
multiple processes to multiple processes. Both point-to-point and collective
operations are included.

Computation overlap Tests to measure the overlap of communication with
computation and the ability of the application to use a thread to provide
a nonblocking version of a communication operation for which there is no
corresponding MPI call, such as nonblocking collectives or I/O operations
that involve several steps.

We describe the tests below and present performance results on the following
platforms and MPI implementations:

Linux Cluster We used the Breadboard cluster at Argonne, in which each
node has two dual-core 2.8 GHz AMD Opteron CPUs. The nodes are con-
nected by Gigabit Ethernet. We used MPICH2 1.0.7 and Open MPI 1.2.6,
which are the latest versions of those implementations at the time of this
writing. MPICH2 was configured with the default options, which result
in thread safety being enabled only if the user initializes MPI by calling
MPI_Init_thread with MPI_THREAD_MULTIPLE. For Open MPI, the process-
only tests used the default build, which does not support multithreading.
The threaded tests used a build configured with --enable-mpi-threads.
A third build with the additional option --enable-progress-threads was
used only for some tests in Section 3.6 (described further in that section).
Open MPI has a disclaimer that support for thread safety is not well tested
in the v1.2 series; nonetheless, we did not experience any crashes when
running with Open MPI.

Sun T5120 Server We used a Sun T5120 server from the Sun cluster at the
RWTH Aachen University. The specific machine we ran on was a Sun T5120
with eight 1.4 GHz UltraSPARC T2 (“Niagara2”) cores. It runs Sun’s MPI
(ClusterTools 6).

IBM SMP We also used an IBM p655+ SMP from the DataStar cluster
at the San Diego Supercomputer Center. The machine has eight 1.7 GHz
POWER4+ CPUs and runs IBM’s MPI.

We note that the results presented in the following sections are heavily im-
plementation dependent and may change substantially with newer versions of
the implementations. The goal of this paper is not to compare the different
implementations, but to illustrate the results provided by the test suite and
how these results should be analyzed.
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Fig. 2. Overhead of MPI THREAD MULTIPLE on the Linux cluster.
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Fig. 3. Overhead of MPI THREAD MULTIPLE on Sun and IBM SMPs.

3.1 Overhead with MPI THREAD MULTIPLE

Our first test measures the ping-pong latency for two cases of a single-threaded
program: initializing MPI with just MPI Init and initializing it with
MPI Init thread for MPI THREAD MULTIPLE. In the latter case, the implemen-
tation must assume the program is multithreaded and may call MPI functions
from any thread (even though this test does not). The test demonstrates the
overhead of ensuring thread safety for the MPI THREAD MULTIPLE case, which
is typically implemented by acquiring and releasing mutex locks.

Figures 2 and 3 show the results. On the Linux cluster, with both MPICH2
and Open MPI, the overhead of MPI THREAD MULTIPLE is less than 0.5 µs. On
the IBM SMP with IBM MPI, it is negligible. On the other hand, on the Sun
SMP with Sun MPI, the overhead is much higher—around 2.5 µs.
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Fig. 5. Concurrent bandwidth test on Linux cluster.

3.2 Concurrent Bandwidth

The second test measures the cumulative bandwidth obtained when multiple
threads of a process communicate with multiple threads of another process
compared with multiple processes instead of threads (see Figure 4). It demon-
strates how much thread locks affect the cumulative bandwidth; ideally, the
multiprocess and multithreaded cases should perform similarly.

Figure 5 and 6 show the results. On the Linux cluster, the tests were run on
two nodes, with all communication happening across nodes. We ran two cases:
one where there were as many processes/threads as the number of processors
on a node (four) and one where there were eight processes/threads running on
four processors. In both cases, there is no measurable difference in bandwidth
between threads and processes with MPICH2. With Open MPI, there is a
decline in bandwidth with threads in the oversubscribed case.

On the Sun and IBM SMPs, on the other hand, there is a substantial decline
(more than 50% in some cases) in the bandwidth when threads were used
instead of processes. It is harder to provide low overhead in these shared-
memory environments because the communication bandwidths are so high.
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Fig. 6. Concurrent bandwidth test on Sun and IBM SMPs.
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Fig. 7. Concurrent latency test on Linux cluster.

3.3 Concurrent Latency

Our third test is similar to the concurrent bandwidth test except that it mea-
sures the time for individual short messages instead of concurrent bandwidth
for large messages. Figures 7 and 8 show the results. On the Linux cluster with
both MPICH2 and Open MPI, there is about 30 µs overhead in latency when
using concurrent threads instead of processes. On the Sun and IBM SMPs,
the latency with concurrent processes is very low—in the range of 2–4 µs.
Comparatively, the overhead with threads is very high: On the Sun SMP, the
latency with threads rises to 10–16 µs; on the IBM system it shoots to 33–38
µs. Providing low overhead with threads is more challenging on these systems
because the basic message-passing latency itself is very low. Careful design
and tuning of code is needed to minimize the overhead.
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Fig. 8. Concurrent latency test on Sun and IBM SMPs.

3.4 Message Rate

This test is similar to the concurrent latency test except that it measures the
message rate for zero-byte sends. The message rate for each thread/process
is calculated as the reciprocal of the average latency for zero-byte sends ob-
served by that thread/process. The sender waits for a reply only once every
256 iterations, so it is not a ping-pong test. The individual message rates are
summed to determine the total message rate. As before, the case where multi-
ple threads of a process communicate with multiple threads of another process
is compared with processes communicating with processes.

Table 1 shows the message rate on the Linux cluster. The difference between
the 1T–1T and 1P–1P cases is that the former uses MPI_Init_thread with
MPI_THREAD_MULTIPLE and incurs the associated costs, whereas the latter just
calls MPI_Init. With both MPICH2 and Open MPI, the message rate is only
slightly lower when there is one thread versus one process, but it declines
substantially in the four-threads case, indicating locking overhead.

Table 2 shows the message rate on the Sun and IBM SMPs. Here, the overall
message rates are much higher because all communication takes place within
a node using shared memory. On the Sun machine, the message rate is sub-
stantially lower with threads, both in the one thread and four threads cases.
On the IBM system, the performance is good for one thread, but drops very
sharply in the four-threads case.
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Table 1
Message rate on Linux cluster (messages/sec)

1P–1P 1T–1T 4P–4P 4T–4T

MPICH2 322,892 290,790 637,486 184,191

Open MPI 285,672 212,657 613,333 144,131

Table 2
Message rate on Sun and IBM SMPs (messages/sec)

1P-1P 1T-1T 4P-4P 4T-4T

Sun MPI 762,251 262,239 2,845,098 465,120

IBM MPI 342,957 342,845 1,355,445 125,988

3.5 Concurrent Short-Long Messages

The fourth test is a blend of the concurrent bandwidth and concurrent latency
tests. It has two versions. In the threads version, rank 0 has two threads: one
sends a long message to rank 1, and the other sends a series of short messages to
rank 2. The second version of the test is similar except that the two senders are
processes instead of threads. This test tests the fairness of thread scheduling
and locking. If they were fair, one would expect each of the short messages to
take roughly the same amount of time.

The results are shown in Figures 9 and 10. (“Iteration” on the X-axis refers
to the iteration count of the loop that sends a series of short messages, one
per iteration.) With both MPICH2 and Open MPI, the cost of communicating
the long message is evenly distributed among a number of short messages. A
single short message is not penalized for the entire time the long message is
communicated. This result demonstrates that, in the threaded case, locks are
fairly held and released and that the thread blocked in the long-message send
does not block the other thread. With Sun and IBM MPI, however, one sees
spikes in the graphs. This behavior may be because these implementations
use memory copying to communicate data, and it is harder to overlap this
memory-copy time with the memory copying on the other thread.

3.6 Computation/Communication Overlap

Our fifth test measures the ability of an implementation to overlap commu-
nication with computation and provides users an alternative way of achieving
such an overlap if the implementation does not do so. The test has two ver-
sions. The first version has an iterative loop in which a process communicates
with its four nearest neighbors by posting nonblocking sends and receives,
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Fig. 9. Concurrent short-long messages test on Linux cluster.
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Fig. 10. Concurrent short-long messages test on Sun and IBM SMPs.

followed by a computation phase, followed by an MPI Waitall for the com-
munication to complete. The second version is similar except that, before the
iterative loop, each process spawns a thread that blocks on an MPI Recv. The
matching MPI Send is called by the main thread only at the end of the pro-
gram, just before MPI Finalize. The thread thus blocks in the MPI Recv while
the main thread is in the communication-computation loop. Since the thread
is executing an MPI function, whenever it gets scheduled by the operating sys-
tem, it can cause progress to occur on the communication initiated by the main
thread. This technique effectively simulates asynchronous progress by the MPI
implementation. If the total time taken by the communication-computation
loop in this case is less than that in the nonthreaded version, it indicates that
the MPI implementation on its own does not overlap communication with
computation.

Figures 11 and 12 shows the results. Here, “no overlap” refers to the test
without the thread, and “overlap” refers to the test with the thread. The
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Fig. 12. Computation/communication overlap test on Sun and IBM SMPs.

results with MPICH2 demonstrate no asynchronous progress, as the overlap
version of the test performs better. With Open MPI, we ran two experiments.
We first used the default build; the results indicate that it performs similarly to
MPICH2—no overlap of computation and communication. Open MPI can also
be optionally built to use an extra thread internally for asynchronous progress.
With this version of the library, we see that indeed there is asynchronous
progress, as the performance is nearly the same as for the “overlap” test with
the default build. That is, the case with the implementation-created progress
thread performs similarly to the case with the user-created thread.

We note that always using an extra thread for progress has other performance
implications. For example, it can result in higher communication latencies
because of the thread-switching overhead. Due to lack of space, we did not
run all the other tests with the version of Open MPI configured to use an
extra thread.
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The results on the Sun and IBM SMPs indicate no overlap. In fact, on the
IBM machine, the performance was worse with the overlap thread because of
the higher overhead when using threads.

3.7 Concurrent Collectives

Our sixth test compares the performance of concurrent calls to a collective
function (MPI Allreduce) issued from multiple threads to that when issued
from multiple processes. The test uses multiple communicators, and processes
are arranged such that the processes belonging to a given communicator are
located on different nodes. In other words, collective operations are issued by
multiple threads/processes on a node, with all communication taking place
across nodes (similar to Figure 4 but for collectives and using multiple nodes).

Figure 13 shows the results on the Linux cluster. MPICH2 has relatively small
overhead for the threaded version, compared with Open MPI.

3.8 Concurrent Collectives and Computation

Our final test evaluates the ability to use a thread to hide the latency of a
collective operation while using all available processors to perform computa-
tions. It uses p+1 threads on a node with p processors. Threads 0–(p − 1)
perform some computation iteratively. Thread p does an MPI Allreduce with
its corresponding threads on other nodes. When the allreduce completes, it
sets a flag, which stops the iterative loop on the other threads. The average
number of iterations completed on the threads is reported. This number is
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compared with the case with no allreduce thread (the higher the better).

Figure 14 shows the results on the Linux cluster. MPICH2 demonstrates a
better ability than Open MPI to hide the latency of the allreduce.

4 Conclusions

Supporting thread safety in MPI is not trivial or straightforward, and achiev-
ing good performance requires careful design and implementation. As increas-
ing numbers of MPI implementations support fully multithreaded MPI com-
munication, it is essential to have some measure of evaluating how efficient
they are. We have developed a test suite that provides such a quantitative
measure. We presented its performance on multiple platforms and implemen-
tations. The results indicate relatively good performance with MPICH2 and
Open MPI on the Linux cluster. The relatively slower communication method
(TCP over Gigabit Ethernet) masks some of the overheads associated with
maintaining thread safety. The performance results on the Sun and IBM SMPs
demonstrate that threading overhead is much more noticeable on such systems
because the overall communication through shared memory is very fast. Sig-
nificant research and development is needed to minimize threading overhead
in MPI on such platforms.

This test suite will continue to be extended and new tests will be added, such as
to measure the overlap of computation/communication with the MPI-2 file I/O
and connect-accept features. We will also accept contributions from others to
the test suite. The test suite can be downloaded from
www.mcs.anl.gov/~thakur/thread-tests.
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