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Abstract

The MPI-IO standard creates a huge opportunity to

break out of the traditional file system I/O methods. As

a software layer between the user and the file system, an

MPI-IO library can potentially optimize I/O on behalf of

the user with little to no user intervention. This is all pos-

sible because of the rich data description and communica-

tion infrastructure MPI-2 offers. Powerful data descriptions

and some of the other desirable features of MPI-2, however,

make MPI-IO challenging to implement. By creating a new

collective I/O implementation that allows developers to eas-

ily tinker and play with new optimizations or combinations

of different techniques, research can proceed faster and be

quickly and reliably deployed.

1 Introduction

MPI is undoubtedly a critical component of any cluster

computing system without which the power of these sys-

tems would be far less accessible. As the number of pro-

cessors in clusters and more specialized parallel systems

continually grows, I/O is often a bottleneck for many ap-

plications ranging from climate modeling to computational

physics. MPI-IO provides a portable means of accessing

storage while also allowing for system specific optimiza-

tions. The MPI-2 collective I/O routines were included to

preserve some semantic relationship between the I/O op-

erations of several processes. Optimizations for this set

of I/O functions can easily become very complex behind

the scenes, sometimes limiting both the possible parame-

ter variations and the number of developers and contribu-

tors. The ROMIO implementation of MPI-IO is very com-

mon, as it is distributed with Argonne National Laboratory’s

MPICH and several other MPI implementations. Working

with ROMIO allows for a potentially broad impact on many

high performance computing installations. Our new imple-

mentation seeks to provide similar behavior to ROMIO with

respect to the two-phase I/O optimization while simultane-

ously delivering a cleaner code base and more avenues for

research. The key goals for the new implementation are

flexibility, developer friendliness, and performance. These

compose an ideal research platform and important frame-

work for further exploration. As an example, several varia-

tions on the two-phase I/O optimization are explored.

In Section 2 we describe collective I/O principles and the

relevant MPI-IO specifications. Then in Section 3 we touch

on related research, in particular the two-phase collective

I/O optimization, before continuing on to describe the goals

and design for the new implementation in Section 4. Im-

plementation is discussed in Section 5, and performance for

several benchmarks is analyzed in Section 6. Finally, in

Section 7, the impact and benefits of the new implementa-

tion are considered.

2 Collective I/O

MPI-IO is a subset of the MPI-2 [7] specification. By us-

ing MPI derived datatypes, data can be transferred between

complex file and memory layouts in single MPI-IO func-

tions. A memory datatype describing how data should be

accessed in memory is passed to the directly to the MPI-

IO read and write functions. The file view for a particular

process is described in a separate collective call with a file

datatype and displacement. The file view sets out the acces-

sible regions of a file by using the file datatype as a template

and repeating it starting from the byte displacement. Figure

1 illustrates the construction of a file view and its compo-

nents. The primary benefit of such a descriptive I/O inter-
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file view

etype

MPI_File_set_view (fh, disp, etype, filetype, datarep, info)

filetype

disp = 2 (in etypes)

Figure 1. File views illustrated: Filetypes are

built from etypes which themselves may be de
rived datatypes. The filetype access pattern

is implicitly iterated forward starting from the

disp. An actual count for the filetype is not re
quired as it conceptually repeats forever, and

the amount of I/O done is dependent on the

buffer memory type and count.

face is the preservation of application intent. Rather than

performing individual contiguous transfers between mem-

ory and file, the MPI library can capture a number of re-

lated I/O requests in an application and make optimizations

to improve overall I/O performance. One such notable op-

timization is data sieving [14].

The collective I/O interfaces for MPI-IO retain the use of

derived datatypes both for memory and file description, but

they are also designed to allow cooperative I/O optimiza-

tions across processes by preserving higher-level access pat-

terns. Collective I/O acknowledges that processes may be

accessing storage in some meaningful way as a group. As

the collective I/O functions are virtually identical to the in-

dependent I/O functions, they do not necessarily preclude

the use of any independent I/O optimizations. As described

in [15], the ROMIO [13] implementation uses both data

sieving and the two-phase I/O method (a collective I/O op-

timization), developed by del Rosario [6]

The base collective I/O routines are:

MPI_File_set_view (fh, disp, etype,

filetype, datarep, info)

MPI_File_read_all (fh, buf, count,

datatype, status)

MPI_File_write_all (fh, buf, count,

datatype, status)

File Realm of
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Processor 0 Processor 1
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Figure 2. In the read case, data flows down

ward to processor memory. In the write case,
data flows up to the file.

3 Related Work

Two-phase I/O conceptually consists of an I/O phase and

a data exchange phase, but there is some additional inci-

dental implementation specific communication. Figure 2

illustrates this idea. In the I/O phase, designated I/O ag-

gregators in the collective communicator group are exclu-

sively responsible for access to non-overlapping sections of

the file, and perform I/O on behalf of all the processes. De-

termining these file realm assignments as well as which pro-

cesses will be aggregators is left up to the implementation,

which in turn may choose to defer to the user. For clarity’s

sake, clients will refer to a process in its capacity as the user

source of the I/O requests, and aggregators refer to a pro-

cess in its capacity as a point of I/O request gathering. All

the processes involved in the collective I/O call are clients,

but not all of those processes necessarily act as I/O aggre-

gators. The communication phase moves file data to and

from the appropriate processes. Whether the I/O call is a

read or write determines the order of the two phases. In the

read case, data is first read by the aggregators and then dis-

tributed to the requesting processes. In the write case, data

is first sent to the aggregators and then written to the file by

the aggregators. By combining I/O requests at the aggrega-

tors, overall I/O can be made more efficient. The number

of I/O calls may be reduced, and the size of the aggregated

remaining I/O calls may be increased. IBM’s General Pur-

pose File System (GPFS) has a feature called data shipping

[11] which uses I/O aggregators in a similar way, but at the

file system level, allowing for use in independent as well as

collective I/O routines.



The disk directed collective I/O technique [9] allows I/O

servers to optimize disk use across process requests. Be-

cause collective I/O is synchronized, I/O servers can accu-

mulate the I/O requests from all the processes and then or-

der block accesses in the best way possible. Performance is

likely much better than if I/O requests had been handled in

the order they happen to arrive in the collective I/O call.

The “Clusterfile” Parallel File System [8] uses both disk

directed I/O and two-phase I/O together with a global file

cache. This tight integration, as well careful attention paid

to extracting parallelism from other subsystems such as

memory and global file cache, result in significant perfor-

mance improvements.

Persistent File Realms (PFRs)[5] use a modified two-

phase I/O algorithm to maintain file system cache co-

herency within an MPI-IO application. Rather than opti-

mizing file realm assignments for each individual collective

read or write, file realms for the entire file are set during

the first collective I/O routine, and remain unchanged be-

tween subsequent collective I/O calls until the file is closed.

Since only one aggregator can access any given byte in the

file (because file realms are non-overlapping), and all re-

quests to that byte are funneled through that aggregator, all

the processes’ views of that byte are coherent. As a side

benefit, though not insignificant, I/O locality is greatly im-

proved since I/O aggregators are always accessing the same

regions.

The datatype I/O method [3], illustrates the benefits of

passing memory and file datatypes over the network de-

scribing non-contiguous regions rather than a one-to-one

file mapping as in list I/O [2] where each contiguous file

access is explicitly listed in some data structure. Oper-

ating on the datatypes directly instead of “flattening” the

datatypes or entire accesses into offset/length pairs can also

ease memory requirements of representing and storing data

layout descriptions [16]. There is a threshold where stor-

ing datatypes does require more memory than storing the

flat offset/length pairs representing the datatypes. The rela-

tive efficiency of each method, of course, depends on how

exactly datatypes are stored, and the particular datatype in

question.

4 Design and Motivation

In addition to the performance and portability goals of

MPICH, the goals of the new collective I/O implementation

are:

• Flexible Tuning

• Better Research Platform

• Easier Maintenance

The new two-phase I/O routines are implemented to re-

duce communication costs, scale, and take advantage of col-

lective communication routines while retaining the current

optimizations.

In addition to occasionally eliminating small inefficien-

cies, the new design allows for flexible tuning of more pa-

rameters. While this may not translate into something great

for users, it provides systems developers and researchers

with many more performance parameters. These parame-

ters can then be tuned at a specific installation, or better yet,

automatically determined at run-time with minimal user in-

teraction.

Since supporting the rich descriptions of MPI-IO on any

file system is a challenge, any implementation is bound to

have a relatively high level of complexity. The necessity of

adding in optimizations to realize the benefits of the MPI-

IO interface also adds a degree of additional complexity.

The new implementation exploits some of the opportunities

for code reuse that were left out in the last implementation.

The developers of the original ROMIO collective I/O func-

tions had actually opted for less code reuse for a heavier

emphasis on performance. While there is no way of com-

pletely eliminating complexity from the two-phase collec-

tive I/O code, the amount of code can certainly be reduced

and modularized. The hope is that by making the code eas-

ier to study and understand, even more people will be able

to use ROMIO as an I/O research platform, and success-

ful ideas can be more easily and reliably integrated into the

distribution.

5 Changes and Improvements

5.1 More Code Paths with Less Code

One potential advantage of the original collective I/O

code is its tight integration with data sieving. Since data

sieving is implemented directly in the collective I/O rou-

tines, the data sieve buffer also serves as the collective I/O

buffer. From a performance perspective, this is very good,

but from a maintenance and research perspective, it is chal-

lenging to have two separate data sieving implementations

for collective I/O and independent I/O. The primary benefit

of the integrated approach is one less buffer (and the result-

ing reduction of buffer copies) than the new code which uses

the existing independent I/O internal calls and does not di-

rectly manage the data sieve buffer. In addition to the main-

tenance aspect, the new code can also easily leverage any

of the optimizations to the internal independent I/O calls.

For instance with a simple MPI hint, one could easily use

the PVFS list I/O interface through MPI-IO [1], instead of

data sieving beneath the MPI-IO collective I/O calls. Using

list I/O would, incidentally, eliminate the double buffering

issue since list I/O does not require an extra data buffer.



Furthermore, the entire collective I/O call needs not stick

to only one optimization approach. Within one collective

call, an aggregator may have to move data between the col-

lective buffer and storage several times. Because the col-

lective buffer is accessed in a single non-contiguous inter-

nal I/O call, it can potentially use a different optimization

(preferably the best one) to do so each time. There is more

fine-grained control over optimizations even within a single

collective I/O call. Neither switching the I/O technique for

accessing the collective buffer, nor the fine-grained control

of those techniques can be easily added to the present code

base. The last code path advantage of the new approach

worth mentioning is the more efficient use of the collective

I/O buffer. Unlike the data sieve buffer of the integrated

approach, no unnecessary data (data sieving’s gap data) re-

sides in the collective buffer.

5.2 File Realms

File realm assignment is critical to the performance of

two-phase I/O. These assignments affect the amount of data

that needs to be redistributed across the network and the

amount of data each aggregator needs to access. The cur-

rent implementation found in ROMIO partitions the aggre-

gate access region evenly among the I/O aggregators. The

aggregate access region is the overall start and end file offset

of the combined accesses of all the processes. This division

and assignment is intended to keep the actual I/O responsi-

bilities of the aggregators balanced so that in any given col-

lective I/O, each aggregator ends up doing approximately

the same amount of I/O. Note that this is a heuristic and

not necessarily true for every access pattern. This method

is best suited for combined accesses that are somewhat

evenly distributed throughout the aggregate access region.

Sparse clusters of data may create severe imbalances where

some aggregators perform significantly more I/O than oth-

ers. Since a collective I/O call can only be as fast as the

slowest aggregator to return, this imbalance is a cause for

concern.

By default, the new implementation uses the same aggre-

gate access region based algorithm. The implementation,

however, is built such that any arbitrary set of datatypes

can describe the file realms. This feature necessitates a

more general-purpose implementation since file realms are

no longer assumed to be identical or even contiguous. In the

general case, deciding what file realm a particular byte be-

longs to is no longer a simple O(1) calculation, but a search.

Since file realms in the new version are described using a

datatype and a file offset (similar to a file view), one can

easily plug in a new optimization function to determine the

file realms in a completely different scheme. For instance,

aggregator I/O loads could be better balanced. In hierarchi-

cal or very widely distributed systems, file realms could be

offsets = [0, 2]

lens = [1, 1]

count = 2

Flattened Datatype

type = vector

count = 2

stride = 2

blocklen = 1

Higher−level Datatype

count = 6

lens = [1, 2, 2, 2, 1]

offsets = [0, 2, 5, 8, 11, 14]

Flattened Access Pattern

Access Pattern

Datatype

Data Pattern Representation

Figure 3. While the storage size of data pat
terns is important, one must consider any ex

tra processing overhead involved. With re

spect to just storage size, the particular pat
tern determines which representation is best.

distributed based on other system factors (such as network

proximity). On a BG/L machine, it might be advantageous

to ensure that aggregators sharing the same I/O node have

adjacent file realms, thus improving cache locality on the

I/O node.

Because of the flexibility of file realm datatypes, imple-

menting PFRs is a fairly easy task. The original collective

I/O implementation had to be heavily modified in order to

get persistent file realms to work. PFRs allow for many

more states than the original code had been designed to han-

dle. The primary difference with PFRs is file realms need

to designate region assignments for the entire file, not just

the region being accessed in one collective I/O call.

5.3 Storing, Processing, and Communicating
Datatypes

Both data communication and I/O request communica-

tion are significantly overhauled. The basic terms used are:

• M is the total number of offset/length pairs for the ac-

cess

• A is the total number of aggregators

• mi is the number of offset/length pairs generated for

aggregator i where
∑A

i=0
mi = M

• D is the number of offset/length pairs to represent the

datatype



The original I/O access communication is discussed first,

and for simplicity, the discussion is in terms of a single

client and multiple aggregators. The basic steps involved

are as follows:

• client: flatten entire I/O access pattern into off-

set/length pairs (M )

• client: send appropriate offset/length requests to each

aggregator (M )

• aggregator: receive applicable requests for its file

realm from each client

• aggregator: processes each offset/length pair it re-

ceives (mi)

• client: processes each of its offset/length pairs as ag-

gregators make requests (M )

This basic algorithm is quite computationally efficient since

its run-time is governed only by the number of offset/length

pairs the client has from both the client perspective as well

as the aggregator perspective. In the actual implementation,

some user’s offset/length pairs may be broken up, making

the number of offset/length pairs dealt with more than M ,

but does not increase algorithmic complexity from O(M).
Space and communication time, however, are also linearly

correlated with the number of offset/length pairs. For ac-

cess patterns with numerous offset/length pairs, this mem-

ory cost can be prohibitive.

Potentially better alternative representations include

storing the offset/length pairs of the datatypes themselves

and storing the datatypes in an even higher level description

as in Figure 3. Depending on the particular datatypes them-

selves, any one of the representations may be more space

efficient than the other. The penalty for these more succinct

access storage mechanisms, however, is more processing

time. The new algorithm uses flattened datatypes and looks

like this:

• client: flatten entire filetype into offset/length pairs

(D)

• client: send flattened filetype to each aggregator

• aggregator: receive flattened filetype from each client

• aggregator: process flattened filetype looking for rele-

vant data (M )

• client: process flattened filetype separately for each ag-

gregator (MA)

The final step introduces extra work on the aggregator. In-

stead of simply being informed of the required accesses, it

must calculate them itself. For the old scheme, between the

client and aggregators, all offset length/pairs are processed

in O(M) times where M is the total number of offset/length

pairs. In the new scheme, O(MA) offset/length pairs are

processed where A is the number of aggregators. The client

needs to keep track of how each aggregator is progressing

independently, so it must process its offset/length pairs once

per aggregator. Conversely, each aggregator must basically

process the client’s entire access. While the aggregators

can work in parallel, the client cannot, so the run time is

O(MA) as opposed to the O(M) run time of the original

collective I/O code. On the client side, a binary heap is used

to mitigate this and achieve O(MAlogA) time, and because

of the iterative nature of datatypes, not all M offset/length

pairs need to be processed. The latter technique, however,

does not yield an algorithmic run-time change. Since the

new file realms are simply datatypes, these are processed in

a similar manner. The generalization of the interface results

in a performance tradeoff.

While the original collective I/O code is very efficient

from the computation standpoint of processing I/O re-

quests, memory and communication requirements can be-

come quite high for access patterns with many pieces. By

only storing the offset/length pairs of the datatypes describ-

ing the access patterns and passing them around, memory

and communication overheads are reduced. The cost of this

design choice is the additional computation of aggregators

processing each client’s filetype.

5.4 Data Communication Optimizations

Although the original collective I/O code uses non-

blocking communication frequently, it still performs all the

communication at once. It first posts all the MPI Irecvs,

then posts all the MPI ISends, and then waits until all

communication is complete. The new code uses either

MPI Alltoallw (an MPI-2 function) or non-blocking

communication. MPI Alltoallw allows aggregators to

perform non-contiguous communication directly from the

collective buffer. Similarly, it also allows consumer pro-

cesses to do communication directly from the user buffers.

Some recent high performance computing architectures,

most notably IBM’s BG/L, incorporate a separate network,

or are at least highly optimized for, collective communi-

cation. In case such a specialized network is not avail-

able, the communication phase is also implemented with

non-blocking communication in such a way as to overlap

data communication with internal computation (e.g. file and

memory address calculations).



6 Performance Testing

6.1 Machine Configuration

All of our tests were run on ASC Vplant at Sandia Na-

tional Laboratories. Vplant is a large Linux cluster where

each compute node has dual-processor 2.4 GHz Pentium

4 Xeons with 2 GB of main memory and Myrinet inter-

connect. Since, however, compiling MPICH2 with GM is

tricky, TCP/IP was used. Tests were performed using the

Linux 2.6.9 kernel running over a Lustres file system. Since

the file system is shared between several clusters, each with

many users, the best result out of five runs is reported for

each experiment. While this methodology should better

represent performance characteristics, it is also more sus-

ceptible to outliers and transient behaviors.

6.2 HPIO, Scalability, and Smarter Datatypes

HPIO [4], is a very flexible I/O benchmark useful for

both performance and verification tests. HPIO builds regu-

lar datatypes that are characterized by a region size, count,

and spacing. These datatypes are used to represent mem-

ory and/or file. The most common I/O patterns found in

scientific computing involve non-contiguous access to files

[10]. For Figure 4, data in both memory and file are non-

contiguous. Regions of data are separated by 128 bytes of

space, and there are 4096 regions per client. The amount

of aggregate data accessed is between 2MB and 1 GB. The

three I/O methods are the new collective I/O code run with

a very succinct MPI “struct” datatype describing the non-

contiguous patterns, the new collective I/O code with an

MPI vector type explicitly enumerating the entire access,

and finally, the original collective I/O code also with the

MPI vector type. Since the original code flattens the entire

access out, using the struct type with it makes no difference.

The consistently better performance of the new collec-

tive I/O with the struct datatype versus the new code with

the vector datatype comes from several places. As shown in

Section 5.3, using the shorter struct datatype should reduce

the amount of data transferred over the network to exchange

data layouts. Most of the difference in performance, how-

ever, is attributed rather to more efficient processing of the

struct datatype than the full vector datatype. With the full

vector datatype describing the entire access, clients must

stop and evaluate each offset/length pair. An internal opti-

mization allows processes to skip full datatypes in evaluat-

ing offset/length pairs, so that with such a succinct data de-

scription, processes may be able to skip many offset/length

pairs while the runs with the vector datatype could not. As

region sizes get larger, I/O time becomes a more significant

factor, mitigating the benefits of the struct type. This is quite

apparent when HPIO was run with only 8 aggregators.

Although the new collective I/O implementation fails to

consistently match the performance of the older implemen-

tation, performance with the struct type is comparable in

about half of the cases. MPE logging was used to identify

the slow parts of the code, and it turns out that the main

cause for the differences is the additional computational

overhead tied directly to the number of aggregators. Dou-

ble buffering between the separate collective and data sieve

buffers also contributes to the performance differences. In

the 8 aggregator case, the differences are pronounced be-

cause with fewer aggregators, each aggregator has to do

more I/O, repeatedly going through both the collective and

data sieve buffer for each I/O request to the file system. As

the number of aggregators increases, the extra buffer copies

become less significant, but the amount of computation in-

creases.

With respect to performance, there is some room for im-

provement, and this is expected to come as the new code

matures. The slight loss in performance is part of the trade-

off for opening more research opportunities by providing

a relatively easy means for testing new optimizations as

demonstrated in the following results sections.

6.3 Conditional Data Sieving with HPIO

In this experiment, the idea of conditional data sieving

is introduced to the collective I/O routines using a simple

metric. Aggregators can be directed to conditionally use

different I/O techniques to access the file based on a charac-

teristic or characteristics of the access pattern. In this test,

two methods for writing contiguous data in the collective

buffer to non-contiguous file space are tested. One uses a

data sieving routine, and the other uses a naive routine that

fulfills each contiguous request to the file with its own file

system I/O call. In each graph, the datatype extent is held

constant, and between graphs the file size is held constant

at 1 GB. The amount of aggregate data accessed grows lin-

early along the X-axes from 32 MB to 1 GB. The initial

theory tested is that a good means for determining when to

use data sieving is based on the relative amount of useful

data acquired in each file system I/O call. Our experiments

in Figure 5 show that for HPIO, the extent of the datatype

is more indicative of which method is more efficient. Naive

I/O beneath two-phase is more suitable than data sieving

for datatypes with larger extents. Conversely, data sieving

is more efficient for smaller extents. The crossover is right

around a 16 KB datatype extent. This threshold is very eas-

ily implemented so that user need not worry about where

these crossover points are. The spikes most evident in the

naive case are result of I/O access alignment. They occur in

4KB intervals, the page size for Lustre. The final spikes at

the 100% points are a result of “the contiguous in memory

to contiguous in file” code path being taken where compu-
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implementation in many cases, in other cases, the new implementation fares significantly worse.

This is due primarily the additional overhead required to process datatypes.
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Figure 5. The percentages on the Xaxes indicate the amount of useful data in the datatype relative to

the entire extent of the datatype. This percentage is not as important a factor as the actual datatype

extent in deciding whether or not to use data sieving or naive I/O to fill the collective buffer. The
regularly spaced spikes are a result of I/O aligning nicely with the 4KB page size on the file system.
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I/O Access Pattern and Parameters

t0

t1
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Figure 6. One noncontiguous collective write

call is made per time step. Each data point is
accessed with an interleaved pattern  in this

case, four processes access an element each

in every data point.

tational overhead is significantly lower for two-phase I/O.

The conditional formula used to determine the best I/O tech-

nique could easily accommodate the alignment behavior as

well. The percentage of useful data in the data sieving op-

erations may still become a factor for a very narrow band of

extent values somewhere between 8KB and 16KB. These

exact numbers, of course, are unique to the particular sys-

tem used. This set of experiments merely demonstrates the

potential for a number of parameter and combinational opti-

mization studies enabled by the new implementation. More

in-depth analysis of these behaviors is warranted, and it is

much easier to do.

6.4 Persistent File Realms and File Realm Align
ment

In high performance computing, files are often written

but never read back in the same application. The PFR per-

formance test code uses this principle to demonstrate the

usefulness of an incoherent client-side file system cache in

a write-only scenario. The analogy used in the construction

of the program consists of a number of multi-variable data

points distributed across the file where all the time steps

for the same data point are kept together. The time steps

can alternatively be thought of as a third spatial dimension,

and seeing as the time steps are not indefinite, a fixed three-

dimensional space with multiple variables makes sense as

well. The size in the third dimension determines how many

I/O calls are made. This access pattern is illustrated in Fig-

ure 6, and is similar to what may be generated by a higher-

level library such as NetCDF [12]. Such a pattern ought to

make good use of a client-side write-back cache.

File realm alignment is another easy optimization made

in the new collective I/O routines. By aligning file realms
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Figure 7. Careful alignment of file realms

can ease the burden on file systems trying
to maintain cache coherency and/or strict

POSIX semantics.

with the file system stripe size (and more importantly, the

page size), much of the overhead involved with locking

and cache coherence in the underlying file system can be

avoided. In this experiment on Lustre, file realms are

aligned with the 2MB stripe size. The alignment is added

as a new ROMIO hint, as there is really no portable way of

determining the stripe size at run time.

One thing is clear from Figure 7, using PFRs with file

realm alignment is a definite win. File realm alignment al-

lows for nice accesses with respect to Lustre, and PFRs im-

prove locality. Direct comparisons between each method

are less straight forward, however. The nominal band-

width numbers are low because the access pattern consists

of sparse small data, and because data sieving is always on.

The PFR code was run with 32 byte elements, 100 elements

per data point, 2048 data points, and 32 time steps on Lus-

tre. Under these options, only 6.5 MB of aggregate data is

written in one collective write. Half of the total clients were

also used as aggregators. Working on the assumptions that

using file realm alignment is better than not, and that using

PFRs is better than not, one would expect that using either

of them should always be better than using neither. Exper-

imentally, this is not always the case. Except for he results

using just file realm alignment for 48 and 64 processes, us-

ing just one optimization is actually worse than not using

any at all. This is an artifact of each of these cases gen-



erating slightly differing file realms. Without PFRs, the file

realm sizes may remain the same as with PFRs, but the start-

ing points move along the file with the actual access region,

the PFR file realms are always anchored at byte zero of the

file. PFRs establish a file realm assignment for all of the

collective writes (because the file realms are anchored at 0),

and without file realm alignment the Lustre lock manager

is still engaged in lock granting and revocation. Similarly,

without PFRs and with file realm alignment, the file realm

alignment pays off for 48 and 64 processes, but with only

16 or 32 processes, the file realms that file realm alignment

produces are just too imbalanced to effect a performance

improvement.

7 Conclusions

Performance is certainly one area of weakness, but

should get better with further development. By using

datatypes to describe file realms, file realms can be fur-

ther optimized for the general case as well as carefully tai-

lored for specific applications, systems, and environments.

Though the use of datatypes entails more processing over-

head, for very large applications and large amounts of data,

the network, memory, and I/O will likely be the predomi-

nant constraints. Better I/O aggregator load balancing is one

obvious opportunity to leverage datatype based file realms,

as well as more complex means of determining the appro-

priate I/O optimizations at run-time with little to no user

intervention. The opportunity for improvements like these

is the fundamental purpose of the new collective I/O imple-

mentation in its role as a powerful framework for future I/O

research.
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