
Hybrid Parallel Programming with MPI and
Unified Parallel C

∗

James Dinan
Dept. Comp. Sci. and Eng.
The Ohio State University

2015 Neil Avenue
Columbus, OH U.S.A.

dinan@cse.ohio-state.edu

Pavan Balaji
Math. and Comp. Sci. Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL U.S.A.

balaji@mcs.anl.gov

Ewing Lusk
Math. and Comp. Sci. Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL U.S.A.

lusk@mcs.anl.gov

P. Sadayappan
Dept. Comp. Sci. and Eng.
The Ohio State University

2015 Neil Avenue
Columbus, OH U.S.A.

saday@cse.ohio-state.edu

Rajeev Thakur
Math. and Comp. Sci. Division
Argonne National Laboratory

9700 S. Cass Avenue
Argonne, IL U.S.A.

thakur@mcs.anl.gov

ABSTRACT

The Message Passing Interface (MPI) is one of the most widely
used programming models for parallel computing. However, the
amount of memory available to an MPI process is limited by the
amount of local memory within a compute node. Partitioned Global
Address Space (PGAS) models such as Unified Parallel C (UPC)
are growing in popularity because of their ability to provide a shared
global address space that spans the memories of multiple compute
nodes. However, taking advantage of UPC can require a large re-
coding effort for existing parallel applications.

In this paper, we explore a new hybrid parallel programming
model that combines MPI and UPC. This model allows MPI pro-
grammers incremental access to a greater amount of memory, en-
abling memory-constrained MPI codes to process larger data sets.
In addition, the hybrid model offers UPC programmers an opportu-
nity to create static UPC groups that are connected over MPI. As we
demonstrate, the use of such groups can significantly improve the
scalability of locality-constrained UPC codes. This paper presents
a detailed description of the hybrid model and demonstrates its ef-
fectiveness in two applications: a random access benchmark and
the Barnes-Hut cosmological simulation. Experimental results in-
dicate that the hybrid model can greatly enhance performance; us-
ing hybrid UPC groups that span two cluster nodes, RA perfor-
mance increases by a factor of 1.33 and using groups that span four
cluster nodes, Barnes-Hut experiences a twofold speedup at the ex-
pense of a 2% increase in code size.

∗This work was supported in part by the Office of Advanced Sci-
entific Computing Research, Office of Science, U.S. Department
of Energy under contract DE-AC02-06CH11357; by the National
Science Foundation under grant #0702182; and by a resource grant
from the Ohio Supercomputer Center.

Copyright 2010 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by an employee,
contractor or affiliate of the U.S. Government. As such, the Government re-
tains a nonexclusive, royalty-free right to publish or reproduce this article,
or to allow others to do so, for Government purposes only.
CF’10, May 17–19, 2010, Bertinoro, Italy.
Copyright 2010 ACM 978-1-4503-0044-5/10/05 ...$10.00.

Categories and Subject Descriptors

D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel programming; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features—Concurrent programming struc-

tures

General Terms

Design, Languages, Performance

Keywords

MPI, UPC, PGAS, Hybrid Parallel Programming

1. INTRODUCTION
The Message Passing Interface (MPI) is considered to be the de

facto standard for parallel programming today [11]. The flexible,
feature-rich interface provided by MPI has successfully allowed
many complex scientific applications to be represented and mapped
efficiently to large-scale high-end computing systems. However,
the amount of memory available to an MPI process is limited by
each process’s virtual address space; and, for a variety of scientific
applications, this space is insufficient to solve emerging problems.

Many scientific applications today are written in MPI using a
one-process-per-core model that partitions memory among the cores.
As systems grow, memory per core remains constant or decreases.
Shared memory hybrid parallel programming withMPI and OpenMP
avoids partitioning of memory and, for some applications, provides
access to a large enough amount of memory to simulate increas-
ingly large problems [18]. For many other applications, however,
the memory requirement grows superlinearly with problem size.
In particular, the simulation of the phenomena n the nucleus of an
atom via the Green’s function Monte Carlo (GFMC) method has a
per process memory requirement that grows as 2A ·A! in the num-
ber of nucleons [17]. Hybridization of this MPI code with OpenMP
has successfully extended it to simulate carbon-12, which requires
roughly 0.5 GB memory per node. For larger atoms, however, the
per-MPI-process memory requirements quickly exceed the avail-
able memory per node. Thus, a new solution is needed.

Partitioned global address space (PGAS)models such as the Uni-
fied Parallel C (UPC) [21] are relative newcomers to large-scale sci-

entific computing. However, they are gaining popularity because of
their ability to provide access to a large, convenient shared global
address space. This global address space can span the memory of
multiple processes providing access to a large aggregate storage
space rather than being restricted by each process’s virtual address
space. This, together with powerful locality-aware one-sided mech-
anisms to access the global address space, makes UPC an attractive
model for space-constrained scientific codes. However, converting
existing parallel programs to UPC to take advantage of its global
address space is a daunting task and can require rewriting large
amounts of code.

In this paper, we present a new hybrid parallel programming
model that combines MPI and UPC, allowing the programmer to
leverage the strengths of both models. The hybrid model provides
an incremental pathway to extending existing MPI programs to uti-
lize UPC’s partitioned global address space and powerful one-sided
communication features. The hybrid model also enables UPC pro-
grammers to leverage MPI for process management and to cre-
ate static UPC groups connected with MPI communication links.
Such groups can be applied to static, distributed, shared multi-
dimensional arrays that provide the highest convenience and pro-
ductivity to UPC programmers. These static groups can eliminate
the complexity of manual redistribution of UPC shared data while
greatly improving the scalability of UPC codes that lose perfor-
mance through diminishing locality as the number of processors
grows. In addition, interoperability with MPI exposes opportuni-
ties for UPC programmers to take advantage of existing parallel
libraries and solvers, such as ScaLAPACK [5].

This paper presents a detailed description of the hybridMPI+UPC
parallel programming model and describes the tools and techniques
needed to enable hybrid execution and mitigate the complexity of
managing two parallel programming models. Using these tech-
niques, we demonstrate the effectiveness of the model in two ap-
plications: a random-access benchmark that models the charac-
teristics of the GFMC many-body simulation and the Barnes-Hut
cosmological n-body simulation [3]. Experimental results indicate
that for UPC global address spaces that span four cluster nodes, the
hybrid model offers up to a twofold speedup for Barnes-Hut and
a 25% performance boost for the random access benchmark when
compared with a baseline execution on the same number of proces-
sor cores. In the case of the Barnes-Hut benchmark, the complex-
ity cost of hybridization was a 2% in the number of lines of code.
To our knowledge, this is the first such demonstration of a hybrid
MPI+UPC application.

The rest of the paper is organized as follows. In Section 2 we
give an overview of the MPI and UPC parallel programming mod-
els and discuss why MPI-2 one-sided messaging extensions fall
short of providing the desired global address space programming
model. In Section 3 we describe the hybrid MPI+UPC program-
ming model, breaking it into three models that vary the relation-
ship between UPC and MPI: flat, nested-funneled, and
nested-multiple. In Section 4 we present an experimental
evaluation of the hybrid model in two applications: a random-
access benchmark and the Barnes-Hut n-body simulation.

2. OVERVIEW OFMPI AND UPC
In this section we provide an overview of the MPI and UPC

parallel programming models and discuss the strengths and weak-
nesses of each model in order to identify the advantages of combin-
ing them to form a hybrid programming model. Overall, we find
that hybridization with UPC compliments MPI codes by adding
a large, asynchronous global address space and that hybridization

with MPI enhances UPC by providing additional mechanisms for
locality control.

2.1 The Message Passing Interface
The Message Passing Interface (MPI) [11] is one of the most

prevalent and highly tuned parallel programming models and is
available on most high-performance computing systems. The MPI-
1 standard provides for two-sided messaging where communicat-
ing pairs of processes call Send and Recv to transmit a message,
as well as a variety of powerful and efficient collective operations.
The MPI-2 standard [12] added support for one-sided messaging
that allows processes to perform remote access to exposed regions
of memory. In this model, processes collectively expose windows
of memory for remote access. The window may then be accessed in
either active or passive target mode. Under the active target mode,
the host explicitly synchronizes its window between accesses; un-
der the passive target mode, remote processes may access the win-
dow without any explicit interaction from the host.

MPI-2’s passive mode provides a model similar to UPC’s global
address space programming model. However, while the passive
mode provides the capability to access remote memory in a one-
sided manner, it is more restrictive than a global address space
in terms of its consistency, coherence, and synchronization char-
acteristics [6, 20]. These restrictions have enabled MPI-2 to be
supported on a variety of systems, including those that do not pro-
vide a cache coherent memory system. However, on systems that
do provide memory coherence, these same portability restrictions
make it difficult for the programmer to get access to the productiv-
ity and performance gains provided by the hardware. In compari-
son, UPC’s model assumes memory coherence and is able to sup-
port fine-grained, asynchronous communication and dynamic dis-
tributed data structures that present challenges to the MPI-2 model.
For these reasons, MPI-2’s model is generally considered to pro-
vide one-sided messaging rather than a global address space. The
restrictions on passive mode communication can be summarized as
follows:

Access Epochs: The remote process must always lock a window
before accessing it. The time between lock and unlock op-
erations is referred to as the access epoch. All accesses, in-
cluding local accesses and accesses that do not overlap, must
occur within an access epoch; otherwise the program is in
error.

Ordering: During an access epoch, puts and gets to a window may
be reordered by the runtime system. Thus, if a location is
written to within an epoch, it cannot be read from or written
to again within the same epoch. This restriction makes algo-
rithms that perform read-modify-write operations extremely
difficult to implement.

Concurrency: All accesses to a window, whether local or remote,
must occur within a locked access epoch. Hence, concur-
rency may be greatly impacted if the number of windows is
low. Because MPI-2’s locks are associated with window ob-
jects, the programmer may be compelled to create multiple
windows in order to achieve finer-grained locking.

Window Creation: Window creation is a collective operation. Thus,
the creation of multiple windows to increase concurrency
must be done collectively. Hence, handling dynamic allo-
cation of elements in distributed data structures (e.g., trees)
may require the user to create a system for managing preal-
located buffers.

Shared Pointers: MPI window objects cannot be transferred be-
tween processes. Thus, creation of distributed linked data
structures requires extra bookkeeping in order to create an
out-of-band system for managing portable shared pointers.

2.2 Unified Parallel C
UPC is a extension of the C programming language that adds

support for parallel programming with distributed, shared data. UPC
is supported on both shared- and distributed-memory systems and
presents the programmer with a logically partitioned global address
space that is physically distributed across available memory do-
mains. Under UPC, every shared data element has affinity to a
distinct processor, and UPC exposes this data locality information
to the programmer so that it can be leveraged to enhance perfor-
mance. Shared data can be accessed through built-in language-level
support as well as through explicit one-sided communication oper-
ations. Regardless of location, all data in the global address space
can be accessed without explicit help from the data’s owner.

A distinct advantage of UPC over libraries such as MPI is that,
because of its language extensions, UPC can offer a tunable ap-
proach to performance. The programmer may start with a sequen-
tial program and convert it to a simple, shared-memory implemen-
tation. From this implementation, the programmer can then incre-
mentally enhance the performance by tuning data locality and array
distributions and by relaxing the memory model. For performance-
critical sections of the code, the programmer can delve more deeply
through explicit memory management and one-sided communica-
tion.

In spite of these advantages, UPC does not provide process groups,
and UPC’s distributions do not provide the flexibility needed to al-
locate distributed shared arrays on a subset of processors. Thread
teams have been proposed as a UPC extension. However, it is un-
clear how dynamically created teams can be applied to statically
declared distributed shared multidimensional arrays, which offer
the highest convenience to UPC programmers. As we discuss in
Section 3, the hybrid MPI+UPC model offers a solution that allows
the programmer to replicate static shared arrays over hybrid groups.

3. MPI + UPC HYBRID MODEL
The hybrid MPI+UPC programming model combines MPI and

UPC in the same program, allowing the programmer to take ad-
vantage of MPI’s locality control and UPC’s global address space.
Because UPC is an extension to the C programming language and
MPI is a library, a hybrid program is simply a UPC program with
calls to the MPI library. This program is compiled with the UPC
compiler and linked with the MPI libraries. Many existing scien-
tific applications are written in MPI using Fortran. These programs
can still benefit from hybridization by linking with an external UPC
library that provides access to data stored in a global address space.

In the UPC terminology, a single unit of execution is referred to
as a UPC thread. Each thread in a UPC execution is given the
constants MYTHREAD and THREADS to identify itself in the
computation. This terminology is meant to emphasize UPC’s goal
of providing shared-memory-like programming. In practice, how-
ever, most UPC distributions implement UPC threads as operating-
system-level processes. In this work we focus on this model, but
the techniques and hybrid programming model can also be applied
to UPC implementations that use threads. Thus, in our discussion
we assume that processes in a UPC application all share a common
global address space but have distinct private virtual address spaces
and instances of the MPI library. For this reason, unlike with hybrid
MPI+OpenMP model, sharing a single MPI rank between multiple
UPC processes is not easy. Yet such sharing is desirable because

(a) Flat (b) Nested-Funneled (c) Nested-Multiple

Figure 1: MPI+UPC hybrid execution models; gray circles rep-

resent hybrid MPI+UPC processes, and white circles represent

UPC-only processes.

we want UPC global address spaces to span multiple cluster nodes
and MPI does not support sharing a rank across cluster nodes.

We define the hybrid MPI+UPC programming model in terms of
submodels that vary the level of nesting and number of instances
of both models. A representation of these models is shown in Fig-
ure 1. The first model, referred to as the flat model, provides a
nonnested common MPI and UPC execution where each process is
a part of both the MPI and the UPC execution. Thus, each process
has both a unique MPI rank and a UPC thread identifier.

The second and third models show two nested modes where
multiple UPC executions have been launched in the context of a
single, outer MPI environment. Each UPC process can communi-
cate via UPC only within its group. Intergroup communication is
performed by using MPI. The nested-funneled model pro-
vides an operational mode similar to the funneled mode in hybrid
MPI+threads. That is, only the master process per group gets an
MPI rank and can make MPI calls. The nested-multiple
model, on the other hand, provides a mode where every UPC pro-
cess gets its own MPI rank and can make MPI calls independently.

When a hybrid MPI+UPC program is executed, the execution is
parameterized by a set of ranks and a set of group sizes. The hy-
brid model inherits the UPC constants THREADS and MYTHREAD,
which specify the number of UPC threads (i.e., processes) within a
UPC execution and an individual thread’s rank. Similarly, each pro-
cess in the outer MPI execution has a rank within the MPI WORLD
communicator and is provided with the size of the MPI execution.
In the nestedmodel, where multiple UPC instances are launched
as part of the same outer MPI environment, the execution is further
parameterized by a group rank and the number of groups.

Thus, from the point of view of a single computational entity in
a hybrid computation, the structure of the hybrid execution can be
fully described by the group, UPC THREAD ID, and MPI rank,

ID = 〈idgroup, idUPC , idMPI〉,

and by the number of UPC groups, UPC group size (we assume a
model where all UPC groups are the same size), and MPI commu-
nicator size,

N = 〈ngroup, nUPC , nMPI〉.

These two sets of parameters fully describe all hybrid MPI and
UPC combinations. However, this model may be unnecessarily
complex for some codes. In the next two subsections, we describe
two restrictions on this model, the flat and nested-funneled
models, which offer lower complexity when the full model is not
needed. We also describe the full nested-multiple model
and provide techniques to mitigate complexity and improve pro-
grammability. For each model, we give an example hybrid dot
product code. This simple code is not intended to motivate the
hybrid model because efficient MPI- and UPC-only implementa-

#include <upc.h>
#include <mpi.h>

#define N 100*THREADS
shared double v1[N], v2[N];

int main(int argc, char **argv) {
int i, rank, size;
double sum = 0.0, dotp;
MPI_Comm hybrid_comm;

MPI_Init(&argc, &argv);
MPI_Comm_split(MPI_COMM_WORLD, 0,

MYTHREAD, &hybrid_comm);
MPI_Comm_rank(hybrid_comm, &rank);
MPI_Comm_size(hybrid_comm, &size);

upc_forall(i = 0; i < N; i++; i)
sum += v1[i]*v2[i];

MPI_Reduce(&sum, &dotp, 1, MPI_DOUBLE,
MPI_SUM, 0, hybrid_comm);

if (rank == 0) printf("Dot = %f\n", dotp);

MPI_Finalize();
return 0;

}

Figure 2: Hybrid dot product example in the flatmodel.

tions are possible. Instead, we wish to more concretely describe
the model through these examples.

3.1 Flat Model
The flat model is the most straightforward hybrid MPI+UPC

model. This model, shown in Figure 1(a), restricts the full model
by fixing the number of groups at one. Thus, the model is com-
posed of conjoined UPC and MPI executions where all processes
participate in both UPC and MPI communication. In this model,
ngroup is 1, and thus the group rank and size can be ignored. Also,
nUPC = nMPI , allowing the programmer to eliminate either the
UPC or the MPI parameter. Thus, execution under this model can
be parameterized by ID = 〈idMPI〉 and N = 〈nMPI〉.

An example flat-style hybrid program is shown in Figure 2.
This program computes the dot product of two distributed shared
vectors by first finding the partial dot product of all the local ele-
ments and then using an MPI reduction to find the sum the partial
sums.

In this program, all UPC threads participate in MPI communi-
cation and must initialize MPI. There is no guarantee that MPI
will assign ranks equal to the UPC thread IDs because it is un-
aware of UPC. In order to renumber the MPI space so that MPI
and UPC ranks are equal, a new communicator is formed by call-
ing MPI_Comm_split(). In the call, all processes provide the
same color to indicate they all wish to join the same communica-
tor and provide their UPC thread ID as the key. The key values
are then sorted by MPI, and ranks are distributed in order of the
keys provided. Since each UPC thread provides MYTHREAD as
the key, its rank in the new MPI communicator will be equal to
MYTHREAD.

3.2 Nested Model
The nested model, shown in Figure 1(b) and 1(c), can be

viewed in two ways. For MPI programmers, this model reflects
an outer MPI execution that contains several UPC executions, each

with its own global address space. For UPC programmers, this
model can be viewed as multiple instances of their UPC program
connected using an outer layer of MPI. We refer to each UPC ex-
ecution as a UPC group and parameterize the nested execution
using the group rank and the number of groups as well as the num-
ber of UPC threads per group (we assume groups are of uniform
size) and the number of MPI ranks per group.

3.2.1 Nested-Funneled Model

When the number of MPI ranks per group is restricted to 1,
we call this the nested-funneled model. In this model, only
one process per UPC group can participate in MPI communica-
tion. The reason is UPC threads are generally implemented as
distinct processes that cannot share an MPI rank. Thus, in the
nested-funneledmodel, the number of MPI ranks must equal
the number of groups. This restriction allows the MPI rank of a
group to be used as its group ID and allows the total number of
MPI ranks to determine the number of groups. Thus, this model
is parameterized by the UPC and MPI ranks and process counts:
ID = 〈idUPC , idMPI〉 and N = 〈nUPC , nMPI〉.

In Figure 3 we show the dot product example written for the
nested-funneled hybrid model. In this model, only one mem-
ber of each UPC group (MYTHREAD == 0) initializes MPI and is
able to make MPI calls. Once this master thread has initialized
MPI, it does not need to remap MPI’s ranks, as in the flatmodel,
because the ranks will be used as the UPC group IDs. However,
the MPI rank and size must be made available to all UPC threads in
the group because they also indicate the group rank and number of
groups. Therefore, rank and size are stored in shared variables
accessible by all threads.

The nested hybrid model has two explicit levels of parallelism.
Hence, the work must be partitioned twice, once across groups
and again within groups. The partitioning across groups is done
in blocks with block size B. Partitioning within each UPC group
is done by using the upc_forall construct, which distributes it-
erations of the loop according to the affinity expression, &v1[i].
UPC will assign each iteration to the thread that has affinity to the
corresponding element of v1.

Once the partial sums are computed, they are accumulated into
a shared variable with locks to ensure atomicity. All UPC threads
wait at a barrier for the final sum to be available. Then the master
thread performs an MPI reduction to find the global sum. Only the
master thread finalizes MPI before the program exits.

3.2.2 Nested-Multiple Model

Nested-multiple is the most powerful because it allows
MPI to span all processes in all groups. However, this added flexi-
bility comes with greater complexity. Because the number of UPC
and MPI processes and groups may all differ, this model requires
the full parameterization: ID = 〈idgroup, idUPC , idMPI〉 and
N = 〈ngroup, nUPC , nMPI〉.

In Figure 4 we show the dot product example written for the
nested-multiple execution model. In the nested-multiple
model multiple UPC groups are launched, and all processes in each
group initialize MPI. There is no guarantee that MPI will be able
to assign ranks that are contiguous within a UPC group because it
is unaware of UPC. Thus, each group has to identify its group ID
using a separate mechanism. For example, all MPI processes with
UPC thread ID zero can exchange their MPI ranks with each other,
sort them, and use this ordering as its UPC group ID. However, if
the MPI ranks are renumbered to be contiguous across groups and
given that we have restricted groups to be of uniform size, we can
find the group ID by dividing the MPI rank of any process by the

#include <upc.h>
#include <mpi.h>

#define N 100*THREADS
shared double v1[N], v2[N];
shared double our_sum = 0.0;
shared double my_sum[THREADS];
shared int me, np;

int main(int argc, char **argv) {
int i, B;
double dotp;

if (MYTHREAD == 0) {
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD,(int*)&me);
MPI_Comm_size(MPI_COMM_WORLD,(int*)&np);

}
upc_barrier;

B = N/np;
my_sum[MYTHREAD] = 0.0;
upc_forall(i=me*B;i<(me+1)*B;i++; &v1[i])

my_sum[MYTHREAD] += v1[i]*v2[i];

upc_all_reduceD(&our_sum,&my_sum[MYTHREAD],
UPC_ADD, 1, 0, NULL,
UPC_IN_ALLSYNC | UPC_OUT_ALLSYNC)

if (MYTHREAD == 0) {
MPI_Reduce(&sum, &dotp, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);
if (me == 0) printf("Dot = %f\n", dotp);
MPI_Finalize();

}
return 0;

}

Figure 3: Nested-funneled dot product.

size of a group idgroup = idMPI/THREADS. Likewise, since
all processes are part of the outer MPI environment, the number of
groups can be found by dividing the number of MPI ranks by the
size of a group, ngroup = nMPI/nUPC .

This renumbering of MPI ranks can be accomplished by ex-
changing r0 the MPI rank of thread 0 in every group and calling
MPI_Comm_splitwith the same color and key = r0∗THREADS+
MY THREAD. The result is a new communicator where theMPI
ranks have been assigned contiguously across UPC groups.

Once renumbering is complete, the work is partitioned into blocks
of indices assigned to each group and again into individual iter-
ations assigned the each UPC thread within a group. In contrast
to the two-step reduction required by the nested-funneled
model, in the nested-multiple model where all threads par-
ticipate in the outer level of MPI parallelism the partial sums can
be reduced to the global sum directly through a collective call to
MPI_Reduce.

3.3 Launching Hybrid Computations
Launching a hybrid MPI+UPC application requires nesting one

or more UPC launches within an MPI launch. MPI and UPC both
require bootstrap mechanisms that spawn processes either through
an existing remote shell service or through specialized servers and
pass execution information to the new processes through the envi-
ronment or command line arguments. This information informs the
new process of how to join the computation, often by providing the

#include <upc.h>
#include <mpi.h>

#define N 100*THREADS
shared double v1[N], v2[N];
shared int r0;

int main(int argc, char **argv) {
int i, me, np;
double sum = 0.0, dotp;
MPI_Comm hybrid_comm

MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &np);

if (MYTHREAD == 0) r0 = me;
upc_barrier;
MPI_Comm_split(MPI_COMM_WORLD, 0,
r0*THREADS+MYTHREAD, &hybrid_comm);

MPI_Comm_rank(MPI_COMM_WORLD, &me);
MPI_Comm_size(MPI_COMM_WORLD, &np);

int B = N/(np/THREADS); // Block size

upc_forall(i=me*B;i<(me+1)*B;i++; &v1[i])
sum += v1[i]*v2[i];

MPI_Reduce(&sum, &dotp, 1, MPI_DOUBLE,
MPI_SUM, 0, hybrid_comm);

if (me == 0) printf("Dot = %f\n", dotp);

MPI_Finalize();
return 0;

}

Figure 4: Nested-multiple dot product.

location of a bootstrap server that can be reached over an existing
communication channel such as TCP/IP. In this section we describe
tools and techniques that can be used to launch hybrid computa-
tions. The complexity involved in launching hybrid jobs can easily
be hidden from the user via a wrapper that automates this process.

3.3.1 Nested-Funneled Launching

The nested-funneledmodel requires an MPI launcher that
supports MPMD launching in order to provide different parame-
ters to each UPC group. Below is an example launch where each
MPMD task provided to mpiexec is separated by a “:”.

$ mpiexec \

-env HOSTS=hosts.1 upcrun -n N myapp \

: -env HOSTS=hosts.2 upcrun -n N myapp \

: ...

In this example several MPI tasks are launched, each of which ex-
ecutes upcrun. Each instance of upcrun is supplied with a different
value for the environment variable HOSTS, which informs upcrun
which hosts it should launch the UPC group on. Once UPC has
bootstrapped and brought each group online, a single UPC thread
from each group will call MPI_Init to start MPI and request an
MPI rank.

3.3.2 Flat and Nested-Multiple Launching

When flat and nested-multiple hybrid applications are
launched, each task (i.e., UPC group) that the MPI launcher starts

will request multiple ranks. In contrast, in the nested-funneled
case each task requests only a single rank. We have extended the
Hydra process manager that is included with the MPICH2 MPI dis-
tribution [1] to allow the user to specify how many ranks will be
assigned to each task that is launched. This specification is accom-
plished through the -ranks-per-proc flag.

Using the Hydra process manager, a flat hybrid program is
launched as follows:

$ mpiexec --ranks-per-proc=N \

upcrun -n N myapp

In this case, a single task is launched that will in turn launch an N -
process UPC execution. Each UPC thread will then initialize MPI,
requesting N total ranks from the single task that mpiexec has
launched. Thus, -ranks-per-proc informs the MPI process
manager of this change in the MPI bootstrapping model.

A nested-multiple hybrid program is launched as follows:

$ mpiexec --ranks-per-proc=N \

-env HOSTS=hosts.1 upcrun -n N myapp \

: -env HOSTS=hosts.2 upcrun -n N myapp \

: ...

In this case, multiple MPI tasks are launched, and each will spawn
an N process UPC execution. The -ranks-per-proc flag is
used to inform the MPI process manager that each task it launched
will require N ranks.

4. EXPERIMENTAL EVALUATION
We evaluate the hybrid programming model using two bench-

marks: a random access benchmark and a hybrid implementation
of the Barnes-Hut cosmological n-body simulation. These appli-
cations were chosen because their baseline UPC implementations
exhibit poor performance as the number of processors is increased,
due to a corresponding decrease in locality. In addition, both hybrid
MPI+UPC benchmarks demonstrate the use of distributed, shared
data structures that are challenging to implement with MPI alone:
a distributed shared array that supports fine-grained, one-sided ac-
cess and a distributed shared tree.

4.1 Random-Access Benchmark
The random-access benchmark models an application where a

large, distributed shared array is accessed by all processors with
an irregular access pattern. Replicating the array on all processors
is not possible because of memory limitations, and exchanging in-
formation via a regular communication pattern is not feasible be-
cause of the irregular access pattern. This benchmark is motivated
by Green’s function Monte Carlo codes where irregular accesses
are performed on large shared arrays and information is accumu-
lated locally. Periodically this local information is contributed to
the global solution [17].

The random access benchmark uses a static UPC distributed shared
array of the form:

shared double data[n];

The array is cyclically distributed with the default block size of
1 across all threads. Once the array has been initialized, every pro-
cess performs a fixed number of accesses to random elements in
the array. For each access, they perform 1,000 floating-point op-
erations of computation. When run in full UPC mode, shown in
Figure 5(a), a single array of n elements is distributed across all
UPC threads. Thus n/THREADS elements are local to each

(a) Baseline UPC

(b) Hybrid MPI-UPC

Figure 5: Random-access benchmark snapshot on 4 processors.

In (a) a single copy of the array is distributed across all 4 pro-

cessors; in (b) two groups of size two each have a full replica of

the array. Elements with affinity to processor 0 are shaded; in

(b) twice as many elements are local to processor 0 than in (a).

thread. When run in hybrid mode, the benchmark executes in the
nested-multiple model, as shown in Figure 5(b). In this
model, multiple UPC groups will be launched, and each UPC group
will have a full replica of the array that is distributed across only the
UPC threads in the group. For groups of size G, therefore, n/G el-
ements will be local to each thread. This benchmark demonstrates
replication of shared arrays through hybridization and effectively
trades space for locality.

4.2 Hybrid N-Body Simulation
Barnes-Hut is an n-body cosmological simulation algorithm [3].

This algorithm simulates the pairwise gravitational interactions of
n bodies distributed through a 3D region of space. Each body has a
position, mass, and velocity associated with it; the algorithm sim-
ulates the motion and interaction of the bodies given their initial
conditions. Barnes-Hut improves on the naive O(n2) algorithm by
summarizing the interaction of distant bodies as an interaction with
the center of mass of their region of space. Thus, Barnes-Hut has a
computational complexity of O(n log n).

In Algorithm 1 we present the hybrid MPI+UPC Barnes-Hut al-
gorithm written for the nested- funneled execution model.
Barnes-Hut iterates the simulation for tmax time steps. In each
time step a new oct-tree is created to represent the decomposition of
the 3D region of space under simulation, and the bodies are loaded
into the tree. Each node in the oct-tree represents a volume of 3D
space. When a node is split, it is split in half along each dimension,
resulting in 23 = 8 new children.

Once the tree has been built, a bottom-up traversal is done to
summarize the center of mass for each subtree. Next, the bodies are
evenly partitioned across all processors using a space-filling curve.
When partitioning is complete, each process computes the interac-
tions of each of its bodies to find its state in the next time step.
Once all processors finish the force computation, the list of bodies
is updated to reflect their new states. Next, a groupwise gather is
done to assemble the new bodies into our_bodies. This group-
wise gather is characteristic of the nested-funneled model
because each group has a single MPI rank making for a multilevel
parallel programming model. Finally, the masters of each group
perform an MPI all gather to gather the updated list of bodies on
each UPC group.

The total number of source lines of code for the original UPC im-

Algorithm 1 Hybrid nested-funneledBarnes-Hut algorithm.

for i = 1 to tmax do

our_bodies← ∅
T ′ ← T
T ← Octtree_Create()
my_bodies← partition(T ′, bodies, group_id, thread_id)

for all b ∈ my_bodies do

T.insert(b)
end for

summarize_subtrees(T)
for all b ∈ my_bodies do

compute_force(b, T)
end for

for all b ∈ my_bodies do

advance(b)
end for

our_bodies = our_bodies ∪my_bodies
upc_barrier
if MY THREAD = 0 then

MPI_Allgather(our_bodies, bodies)
end if

end for

plementation of Barnes-Hut was 2,454 and the number of lines of
code after hybridization with MPI was 2,505. Thus, hybridization
resulted in 51 additional lines of code for an overall code size in-
crease of 2%. In the nested-funneled example in Figure 3 we
saw that the code required to manage both models is modest. New
code in Barnes-Hut comes primarily from enhancing work (body)
distribution to be multi-level parallel and from gathering of results.

4.3 Performance Evaluation
Experiments were conducted an 877-node IBM 1350 cluster lo-

cated at the Ohio Supercomputing Center. This cluster is config-
ured with two dual-core 2.6G Hz AMD Opteron processors and 8
GB RAM in each node; the interconnect is 10 GBps Infiniband.

For our evaluation we used the Intrepid GCCUPC v2.3.4.6 com-
piler with the Berkeley UPC v2.8.0 runtime. The runtime was con-
figured to use the high-performance Infiniband interconnect with
the SSH bootstrap. Using the SSH bootstrap instead of the default
MPI bootstrap allows us more flexibility in the interaction between
UPC and MPI. For our MPI we used MVAPICH-2 v1.2 with the
Hydra process manager, which provides MPMD launching support.
MPI and the Berkeley UPC runtime were compiled using the Intel
C compiler and hybrid applications were compiled using GCCUPC
and linked with the MPI and Berkeley UPC libraries.

For each benchmark we show the performance for a baseline
UPC version and hybrid MPI+UPC versions with groups of 4, 8,
and 16 cores. Groups of 4 cores span a single node and represent
an ideal performance because all data in the UPC global address
space is local. On this system, 4-core groups can also be achieved
by using the hybrid MPI with OpenMP or threads models. How-
ever, larger groups that span multiple nodes are not possible in these
models. In practice, the lower bound on group size will be dictated
by an application’s memory requirements and may require groups
that span multiple nodes.

4.3.1 Random-Access Benchmark Performance

Aweak scaling experiment was run with the random-access bench-
mark to show the effect of data locality on performance. Results

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 32 64 96 128 160 192 224 256

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Number of Processors

Hybrid-4
Hybrid-8

Hybrid-16
Baseline UPC

Figure 6: Random-access benchmark execution time for base-

line UPC and hybrid implementations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 32 64 96 128

P
e

rc
e

n
t

L
o

c
a

l
R

e
fe

re
n

c
e

s

Number of Processors

Hybrid-4
Hybrid-8

Hybrid-16
Baseline UPC

Figure 7: Random-access benchmark percentage of local refer-

ences vs number of processors.

in Figure 6 show the time required for each process to perform
1,000,000 random accesses to a distributed shared array with 1,000,000
elements. Timings are reported for the baseline UPC implementa-
tion and MPI+UPC implementations with group size 4, 8, and 16.
The ideal performance for this experiment is a flat line because the
work per processor is constant.

For the baseline UPC implementation, the time rapidly increases,
indicating that the average latency of each array access is increas-
ing proportionally to the number of processors. For the hybrid im-
plementations, however, the time remains flat indicating that the
average latency remains fixed regardless of the processor count.

This trend is explained by the data shown in Figure 7. In this
graph, we show the percentage of all accesses to the shared array
that access a local element of the array. Because the element ac-
cessed is chosen with uniform randomness, this data also shows the
percentage of the array that is local to any processor. For the base-
line UPC implementation, the percentage of local data decreases
proportional to the number of processes as n/THREADS. In
comparison, for a hybrid implementation with group sizeG the per-
centage of local data decreases in proportion with the group size as
n/G rather than with the number of processors.

If we express the average latency in terms of the latency ll to
access a local element, the latency lr to access a remote element,

 0

 50

 100

 150

 200

 250

 300

 0 32 64 96 128 160 192 224 256

S
p

e
e

d
u

p

Number of Processors

Hybrid-4
Hybrid-8

Hybrid-16
Baseline UPC

Figure 8: Barnes-Hut force calculation performance for base-

line UPC and hybrid implementations.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 32 64 96 128 160 192 224 256

P
e

rc
e

n
t

L
o

c
a

l
R

e
fe

re
n

c
e

s

Number of Processors

Hybrid-4
Hybrid-8

Hybrid-16
Baseline UPC

Figure 9: Barnes-Hut force calculation locality, shown as the

percentage of local data accesses.

and P (l) the probability that a randomly selected element will be
local, we have lavg = ll ·P (l)+lr ·(1−P (l)) = (ll−lr)·P (l)+lr.
Thus, as the number of processors is increased and P (l) approaches
0, the average latency approaches lr , which is reflected in the data
for the baseline UPC implementation on large processor counts.

4.3.2 Barnes-Hut Performance

Strong scaling experiments were conducted with the Barnes-Hut
force computation kernel. The results are reported in Figure 8 are
for a 150,000-body system. We show the speedup for the baseline
UPC implementation as well as for hybrid implementations with
UPC group sizes of 4, 8, and 16. In Figure 9 we show the percent-
age of node references in the shared oct-tree that were local as the
average over all processes.

From this data, we can see that the baseline UPC implementation
scales poorly because the number of nonlocal references is increas-
ing proportional to the number of UPC threads. In comparison, the
hybrid schemes offer better performance because the tree has been
replicated on each UPC group, giving a substantial increase in the
percentage of local data references over the baseline implementa-
tion. The hybrid scheme with group size of 4 achieves almost linear
scaling because this schemes fixes the group size at the size of an
SMP node and all data is local. When two nodes are combined to

form a group of size 8 and provide access to twice as much mem-
ory, a twofold performance increase over the baseline is achieved.

5. RELATED WORK
Hybrid parallel programming is the practice of combining mul-

tiple parallel programming models within a single application. Hy-
brid programming with MPI as an outer level of parallelism and
OpenMP or threads as an inner, nested level of parallelism is be-
coming increasingly popular and has been extensively explored [2,
10, 18]. In this context, hybridization has been shown to help pro-
vide more efficient use of memory and improve the performance of
many applications by leveraging shared memory to localize com-
munication and improving load balance through malleable paral-
lelism [9].

The Global Arrays (GA) toolkit for distributed, shared multidi-
mensional arrays [14] is a successful PGAS model that is compat-
ible with MPI for hybrid programming and provides a flat hybrid
model. However, GA focuses specifically on shared array data and
does not provide support for arbitrary shared, linked data structures.
The Aggregate Remote Memory Copy Interface (ARMCI) [13] de-
fines a low-level, one-sided communication library that provides
the PGAS substrate for GA. ARMCI is fully interoperable with
MPI and forms a hybrid MPI+PGAS programming model. How-
ever, ARMCI is very low level and does not provide the same con-
venience, programmability, and completeness (e.g., shared point-
ers, collectives) as UPC.

Some work has been done by the Berkeley UPC group to add
support for MPI compatibility to UPC [4]. This mode of hybridiza-
tion is targeted primarily at supporting the flat hybrid model for
interoperability with existing MPI parallel libraries. To our knowl-
edge, however, this paper presents the first exploration of a nested
MPI+UPC hybrid programming model. The idea of using groups
to improve the locality of PGAS applications has been explored in
the context of Global Arrays groups and mirrored arrays [15, 16].
In addition, processor teams have been proposed as an extension to
the UPC standard. However, these teams would not apply to static
shared multidimensional arrays and would require such arrays to be
dynamically allocated, complicating indexing. Hybrid MPI+UPC
groups offer an alternative approach to dynamic processor teams
by replicating static shared structures across groups.

Chapel [7], X10 [8], and Fortress [19] are new, high-productivity
parallel programming languages with features that offer a union of
benefits from MPI’s explicit control over data locality and UPC’s
convenient global shared view of data. For existing programs, there
is a significant barrier to adoption of these new models because of
the cost of reimplementation. Hybrid MPI+UPC offers an alterna-
tive incremental pathway adopting these features in existing pro-
grams. In addition it will offer a testbed for evaluation of the ben-
efits and trade-offs of partitioned-view versus global-view parallel
models with respect to performance and productivity through incre-
mental modification of existing applications. Thus, it can serve as a
testing ground for developing insights that will better facilitate the
development and implementation of new languages offering fea-
tures for locality control as well as shared-global views.

The MPI Forum is working toward the next MPI standard, MPI-
3, and is actively investigating enhancements to improve the flexi-
bility and usability of MPI’s one-sided communication model [20]
as well as improving interoperability for hybrid programming mod-
els, including UPC. Hybrid MPI+UPC can offer a different and
more convenient model than MPI with one-sided communication
because it is able to leverage UPC’s high-level programming inter-
face and tunable performance model in comparison with MPI’s li-
brary approach that requires explicit communication management.

6. CONCLUDING REMARKS
In this paper, we have explored the hybrid programming model

formed by combining MPI and UPC. This model offers an incre-
mental pathway that allows existing applications to take advan-
tage of MPI’s locality control and UPC’s global address space. In
addition, it can serve as a testbed for developing new program-
ming models that aim to combine these features. For memory-
constrained MPI codes, the hybrid model enables the processing of
larger problems by aggregating the memory of several nodes into a
single, shared global address space. For locality-constrained UPC
codes, the hybrid model can improve locality through the creation
of UPC groups that are connected with MPI.

We evaluated this new model on two benchmarks, a random ac-
cess benchmark and the Barnes-Hut n-body simulation. Compared
against a baseline execution on 256 cores, we found that, for groups
that span two cluster nodes, the hybrid random access benchmark
yields a 25% improvement in execution time and hybrid Barnes-
Hut experiences a twofold speedup. In the case of Barnes-Hut the
cost of hybridization was a 2% increase in code size.

7. REFERENCES
[1] MPICH2. http://www.mcs.anl.gov/research/

projects/mpich2/, December 2009.

[2] Eduard Ayguade, Marc Gonzalez, Xavier Martorell, and
Gabriele Jost. Employing nested OpenMP for the
parallelization of multi-zone computational fluid dynamics
applications. J. Parallel Distrib. Comput., 66(5):686–697,
2006.

[3] Joshua E. Barnes and Piet Hut. A hierarchical o(n log n)
force calculation algorithm. Nature, 324:446–449, 1986.

[4] Berkeley UPC. Berkeley UPC user’s guide version 2.8.0,
2009.

[5] L. S. Blackford, J. Choi, A. Cleary, E. D’Azeuedo,
J. Demmel, I. Dhillon, S. Hammarling, G. Henry, A. Petitet,
K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK user’s

guide. SIAM, Philadelphia, PA, 1997.

[6] Dan Bonachea and Jason Duell. Problems with using MPI
1.1 and 2.0 as compilation targets for parallel language
implementations. In 2nd Workshop on Hardware/Software

Support for High Performance Scientific and Engineering

Computing (SHPSEC), pages 91–99, 2003.

[7] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel
programmability and the Chapel language. Intl. J. High
Performance Computing Applications (IJHPCA),
21(3):291–312, 2007.

[8] Philippe Charles, Christian Grothoff, Vijay Saraswat,
Christopher Donawa, Allan Kielstra, Kemal Ebcioglu,
Christoph von Praun, and Vivek Sarkar. X10: An
object-oriented approach to non-uniform cluster computing.
In Intl. Conf. Object-Oriented Programming, Systems,

Languages, and Applications (OOPSLA), pages 519–538.
ACM SIGPLAN, 2005.

[9] Julita Corbalán, Alejandro Duran, and Jesús Labarta.
Dynamic load balancing of MPI+OpenMP applications. In
Intl. Conf. on Parallel Processing (ICPP), 2004.

[10] Haoqiang Jin and Rob F. Van der Wijngaart. Performance
characteristics of the multi-zone NAS parallel benchmarks.
In 18th Intl. Parallel and Distributed Processing Symp.

(IPDPS). IEEE, 2004.

[11] MPI Forum. MPI: A message-passing interface standard.
Technical Report UT-CS-94-230, University of Tennessee,
Knoxville, 1994.

[12] MPI Forum. MPI-2: Extensions to the message-passing
interface. Technical report, University of Tennessee,
Knoxville, 1996.

[13] Jarek Nieplocha and Bryan Carpenter. ARMCI: A portable
remote memory copy library for distributed array libraries
and compiler run-time systems. Lecture Notes in Computer
Science, 1586, 1999.

[14] Jarek Nieplocha, Robert J. Harrison, and Richard J.
Littlefield. Global Arrays: A portable “shared-memory“
programming model for distributed memory computers. In
Supercomputing (SC) ’94, pages 340–349, 1994.

[15] Jarek Nieplocha, Bruce Palmer, Vinod Tipparaju,
Manojkumar Krishnan, Harold Trease, and Edoardo Aprà.
Advances, applications and performance of the Global
Arrays shared memory programming toolkit. Int. J. High
Perform. Comput. Appl., 20(2):203–231, 2006.

[16] Bruce Palmer, Jarek Nieplocha, and Edoardo Apra. Shared
memory mirroring for reducing communication overhead on
commodity networks. In Intl. Conf. on Cluster Computing.
IEEE Computer Society, 2003.

[17] Steven C. Pieper. Quantum Monte Carlo calculations of light
nuclei. Nuclear Physics A, 751:516–532, 2005. Proceedings
of the 22nd International Nuclear Physics Conference (Part
1).

[18] Lorna Smith and Mark Bull. Development of mixed mode
MPI / OpenMP applications. Scientific Programming,
9(2,3):83–98, 2001.

[19] Guy L. Steele Jr. Parallel programming and parallel
abstractions in fortress. In 14th Intl. Conf. on Parallel
Architecture and Compilation Techniques (PACT), page 157,
2005.

[20] Vinod Tipparaju, William Gropp, Hubert Ritzdorf, Rajeev
Thakur, and Jesper L. Träff. Investigating high performance
RMA interfaces for the MPI-3 standard. In Proc. 38th Intl.

Conf. on Parallel Processing (ICPP), September 2009.

[21] UPC Consortium. UPC language specifications, v1.2.
Technical Report LBNL-59208, Lawrence Berkeley National
Laboratory, 2005.

