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Abstract

In this paper, we evaluate the impact on performance of various implementation
techniques for collective 1/O operations, and do so across four important parallel ar-
chitectires. We show that a naive implementation of collective 1/O does not result in
significant performance gains for any of the architectures, but that an optimized imple-
mentation does provide excellent performance across all of the platforms under study.
Furthermore, we demonstrate that there exists a single implementation strategy that
provides the best performance for all four computational platforms. Next, we evalu-
ate implementation techniques for thread-based collective 1/O operations. We show
that that the most obvious implementation technique, which is to spawn a thread to
execute the whole collective 1/O operation in the background, frequently provides the
worst performance, often performing much worse than just executing the collective 1/0O
routine entirely in the foreground. To improve performance, we explore an alternate
approach where part of the collective 1/O operation is performed in the background,
and part is performed in the foreground. We demonstrate that this implementation
technique can provide significant performance gains, offering up to a 50% improvement
over implementations that do not attempt to overlap collective /O and computation.
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1 Introduction

Parallel computers are increasingly being used to solve large, I/O-intensive applications in
several different disciplines. However, in many such applications the I/O subsystem performs
poorly and represents a significant obstacle to achieving good performance. The problem
is often not with the hardware; many parallel 1/O subsystems offer excellent performance.
Rather, the problem arises from other factors, primarily the 1/0O patterns exhibited by many
parallel scientific applications [9, 18, 2, 3, 22, 24, 25, 28]. In particular, each processor tends
to make a large number of small 1/O requests, incurring the high cost of 1/O on each such
request. One reason for this access pattern is that parallel scientific codes frequently involve
large arrays distributed across the processor’s local memory. After a processor performs
some computation on its local array, it will often need to read/write its portion of the array
from a common file. If the processor’s local portion of the array is not stored in a logically
contiguous fashion, the processor will be forced to make a series of disjointed 1/O requests
to complete the operation. While each processor may need to perform several, disjointed
requests, it is often the case that in the aggregate the whole array is being written to or
read from the file. The application can use this knowledge to significantly improve its 1/O
performance.

The technique of collective 1/0 has been developed to better utilize the parallel 1/0
subsystem [10, 26, 27, 4, 17, 23, 5, 8]. In this approach, the processors exchange information
about their individual I/O requests to develop a picture of the aggregate 1/0 request. Based
on this global knowledge, 1/0 requests are combined and submitted in their proper order,
making a much more efficient use of the I/O subsystem.

There are three approaches to collective I/O: two-phase 1/0 [10, 26, 27], disk-directed 1/0O
[17, 19], and server-directed 1/0O [7, 23] The primary distinction between these approaches
is the level at which the optimal 1/O strategy is derived and carried out. In disk-directed
I/0, the collective 1/0O request is sent to the disk controllers which collectively determine
and carry out the optimal 1/O strategy. In server-directed 1/0, the 1/O servers collectively
determine and carry out the optimal strategy, and in two-phase 1/0O, the application pro-
cessors collectively determine and carry out the optimized approach. In this paper, we deal
only with two-phase collective 1/0.

To help understand how two-phase 1/O can improve performance, consider a collective
read operation. If the data is distributed across processors in a way that conforms to the
way it is stored on disk, each processor can read its local array in one large 1/O request. This
distribution is termed the conforming distribution and represents the optimal 1/O perfor-
mance. Assume the array is not distributed across the processors in a conforming manner.
The processors can still perform the read operation assuming the conforming distribution,
and then use interprocessor communication to redistribute the data to the desired distri-
bution. Since interprocessor communication is, in general, orders of magnitude faster than
I/O operations, it is possible to obtain performance that approaches that of the conforming
distribution. Our research shows up to a 1000% improvement in performance when using a
collective 1/O approach rather than a non-collective approach.

There have been several studies in the literature that document excellent performance



using two-phase 1/0 [4, 12, 27]. However, two important issues have not yet been ad-
dressed. The first issue has to do with the sensitivity of the two-phase 1/O algorithm to
various implementation approaches. In a previous study [12], it was shown that for at least
one architecture, the Intel Paragon, a “naive” implementation of two-phase 1/O provided a
bandwidth of 78 Megabytes per second (MB/sec), but that an optimized two-phase I/O im-
plementation provided a bandwidth of 440 MB/sec. In this paper, we extend these results to
three other computational platforms and demonstrate that there exists one implementation
approach that provides the best performance across all four architectures.

The next issue has to do with mechanisms by which the impact of large 1/O require-
ments can be further reduced. It can be argued that basic collective 1/O techniques are
maturing, and that other approaches must be developed to further reduce the impact of 1/O
requirements on large, scientific computations. A very promising approach for obtaining
high performance is to use threads to execute the collective 1/O in the background while
continuing with other computation in the foreground. This approach does not reduce the
cost of collective I/O per se, but can significantly reduce the impact of collective 1/O by
overlapping its execution with other computation.

We study the potential benefits of thread-based collective /O by taking the best collective
I/O implementation found in this study, and attempting to overlap its execution with com-
putation occurring in the foreground. We show that the most natural implementation choice,
to simply spawn off a thread to perform the whole collective I/O routine in the background,
is quite often the worst implementation option. We demonstrate that this approach improves
performance on only one architecture and produces significantly worse performance on two of
the four architectures. To overcome this poor performance, we developed a technique where
part, but not all, of the collective 1/0O is performed in the background. We demonstrate
that this modified technique, in general, is a much better implementation option than either
performing the whole collective 1/O operation in the foreground or performing the whole
operation in the background.

There are three important contributions of this research. First, it serves as a guide for
implementation techniques for two-phase 1/O on a wide range of parallel architectures. Sec-
ondly, it provides significant insight into the development of implementation techniques for
the split-collective parallel 1/0 operations defined in MPI-2 [21]. These operations provide
an implementation the opportunity to perform collective I/O in the background, but there
are currently no implementations that do so. The wide-spread use of MPI, and the impor-
tance of developing portable parallel 1/0O operations, make this a very important and timely
application of this research. Thirdly, this research sheds new light on the use of threads
for collective 1/O and disproves the commonly held belief that simply spawning a thread to
perform work in the background leads to significant performance gains.

The rest of the paper is organized as follows. In Section 2, we discuss the technique of
two-phase collective 1/O in more detail. In Section 3, we outline various implementation
techniques for two-phase 1/0, and we study their performance in Section 4. In Section 5,
we discuss the split-collective parallel /O operations defined in MPI-2, and we investigate
approaches to their implementation in Section 6. In Section 7 we discuss the implications
of this research for real-world applications and benchmarks. In section 8 we discuss related
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Figure 1: Example system with four compute processors, four 1/O processors and a 4 X 4
array.

work, and we provide our conclusions and future work in Section 9.

2 Two-Phase I/0

In this section, we provide a simple example to demonstrate the two-phase 1/O technique
and show how it can significantly improve performance. The architecture chosen for this
discussion is based on the two distributed memory architectures studied, the Intel Paragon
and the IBM SP2 (we discuss all of the architectures in the next section).

Most parallel architectures provide some form of hardware support for parallel /0. In
the case of the two distributed memory architectures studied, this support consists of a set
of 1/O processors, each of which controls some number of disks. The data in a file is divided
into a set of striping units, each of which represents a logically contiguous portion of the
file data. These striping units are (generally) distributed among the disks in a round robin
fashion and are contiguous on a disk. Performance is enhanced because concurrent requests
to different positions within the same file can be serviced in parallel by the 1/O subsystem.
To illustrate how a two-phase algorithm can exploit this hardware consider the following
simple example.

Assume an SPMD computation where each processor computes over a different region of
a two dimensional array. Further, assume there are four compute nodes, four I/O processors
and that a 4 X 4 array of integers is distributed across the local memories of the processors
(see Figure 1). The array is stored on the disks in row-major order with a striping unit
equal to one row of the array. The array is distributed among the processors in a block-block
distribution as shown in Figure 1.

Assume the processors are all ready to write their data to disk. In the two-phase 1/0
approach, the processors first communicate with each other to determine the aggregate 1/0
request and the optimal strategy for performing this request. In this example, the whole



array is being written to disk. Since the conforming distribution is row major, the optimal
I/0 strategy is for each processor to write out one full row of the array to disk in one request.
Assume the derived strategy is for PO to write row 0 of the array to disk, for processor P1 to
write row 1 to disk and so forth. Then the processors must use interprocessor communication
to permute the data to match the conforming distribution. In particular, processor 0 must
send data elements (1,0) and (1,1) to P1, P1 must send to P0 data elements (0,2) and (0,3),
P2 must send to P3 elements (3,0) and (3,1), and P3 must send to P2 data elements (2,2)
and (2,3). After this exchange is completed, each processor is able to write out its row in
one 1/0O operation.

Contrast this with the 1/O activity required in the non-collective 1/O implementation.
Processor PO would have to make two separate I/O calls, one to write array elements (0,0) and
(0,1), and another to write elements (1,0) and (1,1). Similarly, each of the other processors
would have to make two I/O requests to write their data to disk resulting in eight small I/O
operations. Performance is degraded even more since processors PO and P1 contend for 1/O
processors [OP0 and IOP1, and processors P2 and P3 contend for /O processors [OP2 and
[0P3.

As can be seen, using a collective 1/O strategy can significantly reduce the (very ex-
pensive) calls to the I/O subsystem. The next task is to determine the best collective I/O
implementation for each architecture and to determine if there exists a single implementation
that provides the best performance across all of the architectures under study. We begin
with a more detailed description of the four parallel machines used in this study.

3 Experimental Design

3.1 Computational Platforms

Of the four architectures studied, two of the machines, the IBM SP2 and the Intel Paragon,
are distributed memory architectures. The other two, the SGI Origin 2000 and the HP
Exemplar, are distributed shared memory (DSM) architectures. The IBM SP2 used in these
experiments is located at Argonne National Laboratory, and consists of 80 compute nodes
and 4 1/0 processors. Each 1/O processor controls 4 SSA disks, each with a 9 Gigabyte
capacity. The Intel Paragon used is located at the California Institute of Technology, and is
configured with 381 compute nodes and 64 1/0O processors. Each 1/O processor controls a
4-Gigabyte Seagate drive.

The SGI Origin2000 used in these experiments, is also housed at Argonne National Labo-
ratory, and was configured (at the time of these experiments) with ten fiber channel connec-
tions to an array of 90 9-Gigabyte disks. The Origin had 128 processors that were configured
as three separate machines, the largest of which (and the one used in this study) contained
96 compute processors. The fiber channels are shared by all of the processors, and the 1/0O
traffic shares the same routers and Cray links as does the memory traffic. However, the 1/O
traffic does not interact directly with any of the compute processors.

The HP Exemplar, located at the California Institute of Technology, is configured with
256 compute processors grouped in clusters termed hypernodes. Each hypernode consists of



16 compute processors and 4 Gigabytes of shared random-access memory connected through
a non-blocking 8 X8 cross-bar switch. Each hypernode has its own local file system, and a
file system cannot span more than one hypernode. In general, the file systems consist of
eight disks with a total of 35 Gigabytes of storage although there is some variation from
hypernode to hypernode. Since a file system cannot span more than one hypernode, parallel
access by more than 16 processors must all flow through the same hypernode on which the
file system is located. As with the SGI Origin2000 however, the 1/O traffic flows directly
into the file system buffer and and does not interact with the host processors.

3.2 Application

The goal of this research was to determine the best implementation strategy for collective
I/O, and to use this implementation as the basis for thread-based collective I/O. Thus we
were interested in the performance characteristics of various implementation options for the
collective 1/O routine itself, and for different implementation techniques for thread-based
collective 1/O. For this reason, we used a simple test application which did nothing but
make repeated calls to the various implementations of the collective I/O and the thread-
based collective /O operations. Another constraint on the application is that the number of
processors must be a power of two, and that the array being written must be two dimensional,
where the number of rows is equal to the number of columns. However, the principles apply
to more general cases as well. Also, the collective /O operation called by the application
was a collective write operation. We focused on write operations because it is usually more
difficult to obtain high performance for parallel writes than for parallel reads.

3.3 Implementation Options for Two-Phase I/0

The motivation for this phase of the research arose while implementing a set of collective
I/O routines on the Intel Paragon. We had developed a rather simple implementation that
provided much better performance than non-collective 1/0O operations, but did not achieve
anywhere close to the available bandwidth. We then experimented with several implementa-
tion options to determine their impact on the performance of two-phase I/O and to quantify
the improvement in performance due to various approaches. In this section, we describe the
steps we took to achieve high performance collective [/O operations on the Intel Paragon and
show that these same techniques can improve performance over a wide range of architectures.

3.3.1 Initial Implementation

The initial implementation of the two-phase 1/0 algorithm used in these experiments is
quite simple. First, the processors exchange information related to their individual 1/O
requirements to determine the aggregate 1/0 requirement. Next, each processor goes through
a series of sending and receiving messages to redistribute the data into the conforming
distribution. When a processor receives a portion of its data it performs a simple byte for
byte copy into its write buffer. When a processor sends a portion of its data, it performs
a byte for byte copy from its local array into the send buffer (this is not always necessary
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as discussed below). After all data has been exchanged, each processor performs its write
operation in one large request. This initial implementation uses both blocking sends and
blocking receives. We refer to this implementation option as Stepl. The pseudo code for
Stepl is shown below.

Begin Two-phase I/0
exchange information regarding write requests ;
Use this information to determine collective strategy;
for (1 =1 ; i < numProcs; i++)
{
source = (mynode - i + numProcs) J numProcs ;
dest (mynode + i) % numProcs
do I need to send dest some of my data 7

if (yes)
{
copy portion of local array into send buffer ;
Send to dest ;
X

does source have data to send me 7
if (yes)
{
walit for message from source ;
copy into write buffer ;

b
do I need to copy some of my data into write buffer?
if (yes)
{
copy portion of my local array into write buffer ;
i
i

Write my write buffer to disk in a conforming manner ;
End Two-phase I/0

It is important to note that the copy from the local array into a send buffer is not
necessary when the data is distributed among the processors in a block-block distribution
and the conforming distribution is row major (as assumed in these experiments). This is
because in such cases the data to be redistributed is contiguous within the local array. In
the general case however, such as when the data is distributed in a block-cyclic manner or
when the local array has a ghost area, this copying would be required. To make our results



as general as possible we include the cost of such copying in our algorithm. Also note that
the copy from the receive buffer into the write buffer is necessary in our example because
the received data cannot be stored contiguously in the write buffer.

3.3.2 Step2: Reducing Copy Costs

As can be seen, the two-phase 1/O operation requires a significant amount of copying to
and from various buffers. For this reason, it would be expected that modifications to the
implementation which reduced the cost of copying data would have a significant impact on
performance. The next step then was to change all of the copy routines to use the memcpy ()
library call whenever possible. We term this implementation approach Step2.

3.3.3 Step3: Asynchronous Communication

The next step (Step3) investigated the use of asynchronous rather than synchronous com-
munication. In this approach, the processor first posts all of its sends (using MPI_Isend)
and then posts all of its receives (using MPI_Irecv). After posting its communications, the
processor copies any of its own data that it will write to disk from its local array into its
write buffer. The processor then goes into a loop polling for messages, and copies the mes-
sages into its write buffer as they arrive. Finally, it waits for all of the send operations to
complete and then performs the write to disk. This approach can increase paging costs since
the application will allocate memory for many communication buffers, but should decrease
waiting time since the runtime system can complete any message when it arrives rather than
waiting for a particular message.

3.3.4 Step4: Reversing the Order of Asynchronous Communication

The next approach (Step4) reverses the order of the asynchronous communications. Thus
a processor first posts all of its receives, and then posts all of its sends. The idea behind
this optimization is that communication in MPI is faster if the application has posted a
buffer into which a message may be received, rather than first receiving the message into a
system buffer and then copying it into the application buffer [16]. As noted above however,
pre-allocating all of the communication buffers can result in increased paging costs.

3.3.5 Step5: Combining Synchronous with Asynchronous Communication

The final optimization (Step5) combined asynchronous receives with synchronous sends. The
idea behind this optimization is to reduce communication costs by posting asynchronous
receives and to reduce paging costs by having only one send buffer allocated at any given
time.

3.4 Experiments

We compared the performance of each approach across all computational platforms, where
the metric of interest was the bandwidth achieved by each implementation. In this set of



experiments, a 64 Megabyte array of integers was distributed across the processors in a
block-block distribution as shown in Figure 1. On the IBM SP2 and the SGI Origin2000, we
used 4, 8, 16, 32, and 64 processors. On the HP Exemplar we also used 128 processors. Due
to memory constraints, we employed 16, 32, 64 and 128 processors on the Intel Paragon. All
experiments on the Intel Paragon, the HP Exemplar and the SGI Origin2000 were performed
with the machine in dedicated mode. On the SP2, we used the average of the results of thirty
separate trials, taken at the same time of day, over a course of three weeks.

Another important issue we wanted to investigate was how each approach scaled as the
size of the array and the number of processors were simultaneously increased. To test this,
we employed the largest number of processors with which the application could be configured
on the given machine, and varied the size of the file from four Megabytes to one Gigabyte.
We used 64 processors on the Intel Paragon and SGI Origin2000, 128 processors on the HP
Exemplar, and 256 processors on the Intel Paragon. We tested each approach with 4, 16,
64, 256 and 1024 Megabyte files.

Lastly, we wanted to investigate the impact of executing the collective I/O operation in
the background while the main thread continues with other computation in the foreground.
We provide a detailed description of these experiments in Section 5.

4 Experimental Results

The results of these experiments are shown in Figure 2 and Figure 3. To reduce complexity,
we show only the results of the non-collective approach, Stepl, Step2 and Step5. This is
because across all architectures, the results for Step3 and Step4 generally fell between the
results for Step2 and Stepb.

The power of collective I/O techniques can be seen from the fact that there was a signifi-
cant increase in performance when moving from the non-collective I/ O approach to the unop-
timized collective approach for all architectures. These results also clearly demonstrate that
the chosen implementation strategy for the collective /0O algorithm does have a significant
impact on performance. In particular, Step5, which combines asynchronous receives with
synchronous sends, provided the best performance across all architectures. As noted above,
this approach balances reduced paging costs (only the receive buffers are pre-allocated), and
reduced waiting costs (the system can receive any message as it becomes available).

It is helpful to consider the results obtained for each architecture in more detail.

4.1 IBM SP2

The importance of both software techniques and the 1/O subsystem hardware is clearly
demonstrated by the results obtained for the IBM SP2 used in these experiments. The
optimized two-phase 1/0 algorithm (the software technique) resulted in a bandwidth of 68
MB/sec compared to 5 MB/sec for the non-collective approach (with 64 processors). How-
ever, the under-configured 1/O subsystem (only four I/O processors) resulted in a maximum
bandwidth of 79 MB/sec (obtained using 32 processors), which was the smallest maximum
bandwidth observed across all architectures studied.
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Figure 2: This figure shows the bandwidth achieved (in Megabytes per second) with non-
collective 1/O and three different implementation options for collective I/O (Stepl, Step2,
and Stepb).
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The impact of the under-configured I/O subsystem is also evident when comparing the
results obtained for 32 and 64 processors. With 32 processors, there was an increase in
bandwidth of 310% when going from the non-collective approach to the initial collective
I/O implementation, a 95% increase between Stepl and Step2, and a further 10% increase
between Step2 and Steph. With 64 processors however, there was a greater increase between
the non-collective approach and Stepl (740%, showing the non-collective approach does not
scale), a reduced improvement of 62% between Stepl and Step2, and no improvement in
performance between Step2 to Step5. This decrease in relative performance is due to a sig-
nificant increase in contention for the four I/O processors with 64 application processors.
This increased contention makes the write to disk much more expensive than the cost of
data permutation, and thus techniques that modify only the data permutation costs (which
include all of the implementation techniques outlined here) have less of an impact on perfor-
mance as the actual write becomes the dominant cost. The impact of the contention for the
I/O processors was also demonstrated by the fact that there was a decrease in bandwidth as
the number of processors was increased from 32 to 64.

It is interesting to note that the difference in performance between Stepl, which uses a
byte for byte copy, and Step2, which uses memcpy whenever possible, also began to shrink
as the number of processors increased from 32 to 64. This also was due to the fact that the
cost of permuting the data, which included the cost of copying, became less important as
the number of application processors contending for the 1/O processors became large.

These same trends are seen in Figure 3 where we held the number of processors at 64 and
increased the file size from 4 MB to 1024 MB. Again we observed no difference in performance
between Step2 and Stepd because the cost of performing the actual write to disk was the
dominant cost. Also, the poor scalability of the non collective approach becomes even more
apparent as the file is increased to 1 Gigabyte.

4.1.1 HP Exemplar

The HP Exemplar used in these experiments also demonstrated the impact of both hardware
and software design on the performance of the file system. In particular, the defining feature
of the Exemplar file system is that a file cannot span more than one hypernode. Thus
whenever more than 16 processors access the same file, all of the file activity is being funneled
into one particular hypernode (or more specifically one particular file system buffer) creating
a significant bottleneck. This bottleneck is clearly demonstrated by the fact that the highest
observed bandwidth (140 MB/sec using Step5) was obtained with eight processors.
Consider the results for Steph in more detail. It is interesting that as the number of
processors increased from 8 to 16, the bandwidth actually decreased even though all 16
processors resided on the same hypernode. What is happening is that system processes,
such as the file system daemon, must execute on one of the 16 processors in a hypernode,
and thus on that node(s) there was competition between the collective I/O process and the
system process(es) thereby reducing performance. It is also interesting to note that there was
a modest increase in performance as the size of the file remained constant and the number of
processors was increased from 16 to 128. However, as shown in Figure 3, when the number
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of processors was held at 128 and the size of the file grew to one Gigabyte, the cost of all
128 processors performing their write into the same file system buffer became prohibitive
and overall performance was reduced (by approximately 20%). The Exemplar was the only
architecture for which such a reduction in performance was observed.

Now consider the results of Stepl in more detail. With four and eight processors, the
non-collective approach outperformed the collective approach by a rather significant margin
(62 MB/sec versus 23 MB/sec with eight processors). What was happening was that the
cost of data permutation was much more expensive than the cost of writing to disk. In
fact, our measurements indicated that with eight processors it took on the order of twice
as long to permute the data as it did to perform the actual write to disk. This somewhat
surprising observation again had to do with contention. In this case however the contention
was for memory bandwidth as the processors, which all shared the same region of memory,
exchanged information and data. However, as the number of processors increased to 16 and
beyond, the cost of data permutation began to decrease, and the cost of many processors
performing small, independent writes to disk, began to increase. With 128 processors, the
non-collective approach degraded to a bandwidth of less than 1 MB/sec, and the unoptimized
collective I/O approach achieved a bandwidth of 72 MB/sec.

Another interesting result is that as the number of processors increased, the difference in
performance between Stepl and Step2 virtually disappeared. In fact in the limit, as shown
in Figure 3, Stepl significantly outperformed Step2. This is certainly counter-intuitive since
the only difference between the two implementations is that Step2 used memcpy, rather than
a byte for byte copy, whenever possible. The explanation for this result is as follows.

Consider the results for a 256 MB file with a 128 processors shown in Figure 3. With
this configuration, the data permutation cost associated with Stepl was approximately three
times as great as that for Step2 (as would be expected). However, the cost of performing the
actual write to disk was less than one half the cost incurred by Step2. Given that the write
to disk is very expensive with 128 processors, the net result is that Stepl achieved a higher
bandwidth than Step2 (108 MB/sec versus 75 MB/sec). The most reasonable explanation
for this significant difference in the cost of performing the write to disk is that performing a
byte for byte copy helped to separate (in time) the concurrent writes, thereby reducing 1/0
contention. We conducted a simple experiment to test this hypothesis.

In this experiment, we removed the impact of data permutation and focused on the actual
write to disk. We conducted the experiment with 128 processors, all writing into a 256 MB
file assuming the conforming distribution. In this experiment we observed a bandwidth of 94
MB/sec. We then inserted a very simple delay mechanism before the write, forcing some of
the processors to delay their writes for a short period of time. This very simple modification
increased the bandwidth to 140 MB/sec, suggesting that when a large number of processors
are writing into the same file on the same hypernode, that some staggering of the writes can
significantly improve performance. We did not attempt to study the optimal delay to insert
between writes as that activity is beyond the scope of this study.
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4.1.2 SGI Origin2000

The SGI Origin2000 used in these experiments had a very powerful /O system with 10
fiber channel connections connected to a total of 100 9-Gigabyte disks. Additionally, the
file system (XFS) on this platform has a software optimization that allows an application to
write directly from user space to disk (assuming the data to be written falls within a given
set of constraints), thus avoiding the write from user space to kernel space. This software
optimization, which uses the 0_DIRECT flag in the open call, made a tremendous difference
in performance, more than doubling the bandwidth for all of the collective implementation
options studied. This optimization is particularly effective for concurrent writes to a common
file (as done in these experiments) on a well-configured I/O system. The results shown in
Figure 2 and Figure 3 all used this optimization.

There are two striking results that can be seen from Figure 2. First, the maximum band-
width obtained (435 MB/sec with 64 processors) is significantly higher than that achieved
by any of the other architectures. This was a direct result of the powerful hardware config-
uration and the software optimization. Secondly, the difference between the non collective
approach (17 MB/sec with 64 processors) and Stepl (353 MB/sec with 64 processors) was
the largest across all architectures studied. This result is a powerful demonstration of the
fact that a high performance 1/O subsystem, even when it incorporates software optimiza-
tions such as a direct write to disk, cannot be effectively utilized unless some sort of global
I/0 strategy is employed.

Given the very powerful I/O system (both hardware and software), we were interested
in whether the data redistribution costs, or the actual write to disk, would dominate the
costs of the collective I/O operation. To answer this question, we inserted simple timers
into the code and monitored the amount of time spent in each of the two phases. Our
measurements showed that it was the data permutation costs, rather than the write to disk,
that was the dominant cost (because of the fast /0O system on this machine). In fact, with
16 processors the time spent in the data permutation phase represented 90% of the total
cost of the collective operation (using Step5). With 32 processors, the data permutation
phase represented 75% of the total cost, and with 64 processors, the data permutation
phase took approximately 55% of the total cost (again using Step5). This is particularly
noteworthy because, for all other architectures using 64 processors and Steph, the write to
disk represented at least 90% of the cost of the collective 1/O operation. However, when the
number of processors on the Origin was held constant at 64 and the file size was increased
to 1 Gigabyte, the percentage of time spent in the write to disk did begin to increase. In
the limit, the data redistribution phase accounted for around 35% of the total cost of the
collective I/0O operation. The fact that the relative time spent in the write increased to 65%
is reflected in Figure 3 where, as can be seen, the performance of Stepl, Step2 and Steph
begin to converge as the file size approaches 1 Gigabyte.

4.1.3 Intel Paragon

The Intel Paragon used in these experiments also had a very powerful I/0O subsystem con-
sisting of 64 1/O processors. However, the power of this hardware support is not evident in
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Figure 2. In particular, the maximum bandwidth observed was 170 MB/secs with 64 proces-
sors using StepH, and there was a decrease in performance when the number of processors was
increased from 64 to 128. Given the powerful I/O subsystem, it is somewhat surprising that
bandwidth actually decreased as the number of processors was increased to 128. The reason
for this decrease in performance was a combination of two factors: increased contention for
the 1/O processors and a file size too small to use the I/O subsystem efficiently. This expla-
nation was validated by the results shown in Figure 3, where we observe a bandwidth of 420
MB/sec using 256 processors and a 1 Gigabyte file.

It is interesting to note that the bandwidth was still increasing when the file size was
increased from 256 MB to 1 Gigabyte, suggesting that even higher bandwidths are possible
with an increased file size. The Intel Paragon was the only architecture studied where
performance was still increasing at the limits of these experiments.

5 Executing Collective I/O in the Background

In the previous section, we showed that a non-collective 1/0 algorithm cannot make efficient
use of even a very powerful 1/O subsystem. Further, we showed that a naive implementation
of two-phase 1/O does not, in general, provide high performance, but that an optimized
algorithm can offer excellent performance. However, it can be argued that basic collective
I/O techniques are maturing, and that we must look to other approaches to make a further
significant impact on the performance of applications with large 1/O requirements. One
promising approach is to use threads to execute the collective I/O operation in the back-
ground while the main thread continues with other computation in the foreground. This
approach does not reduce the cost of 1/O per se, but can reduce the impact of /0 on the
performance of the application.

As noted above, MPI-2 [21] defines just such operations, termed split-collective oper-
ations, where the collective /O routine may be executed in the background while other
computation/communication continues in the foreground. Given the importance of MPI as
a standard for message passing applications, and given its definition of a set of portable col-
lective 1/O operations, it is worthwhile to frame our discussion in terms of implementation
techniques for split-collective 1/O operations.

5.1 Split-Collective I/O Operations

A split-collective operation has a begin function, which initiates the collective 1/0, and
an end function, which blocks the calling thread until the collective operation is completed.
Between calls to the begin and end functions, the implementation may allow the main thread
to continue with its computation while the collective /O operation is carried out in the
background, overlapping the two operations. We say may because an implementation is
allowed to perform the entire collective 1/O in the begin function (in the main thread),
thus executing the collective I/O and the computation sequentially. Currently, no published
implementation of MPI parallel I/O overlaps computation in the main thread with collective

I/O in the background.
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There are essentially three implementation options for split-collective /O operations: to
perform all of the collective I/O in the background, to perform part of the collective 1/O
in the background and part in the foreground, and to perform none of the collective 1/O
in the background. In the first case, the begin function would spawn a thread to perform
the collective I/O and then immediately release the main thread allowing it to continue its
computation. The background thread would simply exit when it completed the collective
I/0, and the end function would ensure that the main thread blocks until the background
thread did exit. In the second option, part, but not all, of the collective 1/O would be
performed in the background. Consider a collective write request. When the main thread
executes the begin function, the implementation may choose to execute all of the collective
I/O routine except the actual write to disk in the begin function, then spawn a thread to
perform the write to disk and immediately release the main thread. In this case the end
function would again block the main thread until the I/O thread exited. This sequence would
be reversed in the case of a collective read operation. In the final implementation option, the
entire collective I/O operation would be performed in the begin function and there would be
no attempt to overlap computation with collective 1/O. In the following sections we explore
each of these alternatives.

6 Experiments with Thread-Based Collective 1/0O

6.1 Non-collective I/O and Threads

The first set of experiments was designed to provide an estimate of the maximum speedup
obtainable by overlapping computation with 1/O operations. The application program sim-
ply repeated the execution of a compute phase followed by an 1/O phase. The compute phase
consisted of performing some number of floating point multiplications, and the 1/O phase
consisted of each processor writing a four Megabyte section of an array to disk assuming
the conforming distribution. That is to say, each processor wrote its section of the array
to different locations on the disk, but the processors did not engage in a collective phase
to map out the optimal I/0 strategy, nor did they collect and redistribute data among the
processors. The time taken to complete the compute phase was controlled by varying the
number of floating point operations. We used 8, 16, 32 and 64 processors, and calibrated the
compute phase to take approximately as long as the average 1/O phase with 64 processors.
Since each processor writes four Megabytes to the file, the total number of bytes written was
32 Megabytes with 8 processors, 64 Megabytes with 16 processors, 128 Megabytes with 32
processors and 256 Megabytes with 64 processors. It is important to note that we calibrated
the length of the compute phase independently for each architecture. That is to say, the
length of the compute phase for a given architecture was dependent only on the time required
for that particular architecture to write 256 Megabytes to disk.

The metric of interest was the time required to complete both the computation phase
and the 1/0 phase. In the first approach, the application performed the compute phase and
the I/O phase sequentially (i.e. there was no overlap of computation and 1/0). In the second
approach, the application spawned a thread to perform the 1/O in the background and then
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immediately entered into its compute phase. Once the compute phase was completed, the
main thread blocked (if necessary) until the I/O phase was completed.

The results are shown in Figure 4. We note that in this flgure there is not (necessarily)
any correlation in the time scales of the four architectures studied as the time required to
write a 256 Megabyte file to disk and the corresponding amount of computation performed by
each machine are architecture dependent. However, what can be compared is the percentage
by which performance was improved due to executing the write to disk in the background.

As can be seen, using a background thread to perform the write did have a significant im-
pact on performance as the number of processors and the size of the file were simultaneously
increased. With 64 processors, the SP2 showed an improvement in performance of 46%, the
Paragon showed an improvement of 35%, and the SGI Origin produced an improvement of
38%. The Exemplar showed a 26% improvement in performance with 32 processors, but only
a 9% improvement with 64 processors. This decrease reflects some inefficiency in the thread
library which exerts itself when there are a large number of threads (in this case 128), and
all of the threads are attempting to write into the same region of memory (the file system
cache). As can be seen, the Exemplar is the only architecture for which such a decrease in
performance was observed.

6.2 Collective I/O and Threads

In the previous section, it was shown that spawning a background thread to overlap 1/0O
with computation can result in significant performance gains, at least when the 1/0 thread
does nothing but perform a single, large write to disk. In this section, we seek to determine
if similar benefits can be obtained when the whole collective I/O operation is executed in
the background.

In these experiments, the processors executed the whole collective /O operation in the
background, including the use of inter-processor communication to collectively determine
the optimal 1/0 strategy and the redistribution the data. These experiments modeled an
SPMD computation, where each processor operated on a different region of a 64-Megabyte
array. The array was distributed among the local memories of the processors in a block-
block distribution as shown in Figure 1. We held the size of the array constant and measured
the time required to complete both the computation and collective I/O for 8, 16, 32 and
64 processors. The collective /O operation was a collective write. We note that, due to
memory constraints, we employed 16, 32, 64 and 128 processors on the Intel Paragon. The
best implementation of collective I/O (Step5) was used in all experiments.

The most natural implementation option is to simply spawn a thread to perform the
whole collective I/O operation in the background, while the main thread continues with other
computation in the foreground. In terms of implementation techniques for split-collective
operations, this corresponds to spawning an 1/O thread in the begin function and then im-
mediately returning control to the main thread allowing it to continue with its computation.
The main thread would then be blocked in the end function until the collective I/O operation
is completed. We compared this approach to performing the collective I/O and computation
in sequence.
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tation is overlapped with a large write to disk (assuming the conforming distribution).
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In Figure 5 we compare these two approaches. In this figure, we measure the time
required to complete one iteration of a compute phase followed by (or overlapped with) a
collective I/O phase (labeled Seconds per Iteration). As can be seen, the results are quite
disappointing. The use of a background thread to overlap computation with collective 1/O
resulted in little, if any, improvement in performance for any architecture other than the
IBM SP2. On the HP Exemplar (with more than 8 processors), and the SGI Origin2000,
this approach actually decreased performance, and this decrease became more significant as
the number of processors was increased. On the Intel Paragon, the performance of both
approaches was about the same. This clearly demonstrates that merely spawning a thread
to perform the collective /O operation in the background is not, in general, sufficient to
achieve high performance.

To understand these results, it is important to note that only parts of the collective
I/0 algorithm can actually be overlapped with computation. In particular, the computation
required to determine the optimal 1/0 strategy, the copying to and from the various message
buffers, the setting up and initiation of communications, and the initiation of the disk write
cannot be overlapped with computation. The time spent waiting for messages to arrive and
waiting for a write to disk to complete can be overlapped with computation. Thus there is a
trade-off. When the actions taken by the I/O thread cannot be overlapped with computation
in the main thread, the two threads are competing for control of the CPU. This requires the
multiplexing of the two threads on and off the CPU, incurring the additional costs of thread
switching and thread scheduling. In this set of experiments, the performance gains obtained
by overlapping (parts) of the collective I/O with computation were offset, or more than
offset, by the overhead of thread scheduling and thread switching.

These results are perhaps non-intuitive, and can best be explained by differentiating
between user-level threads, where the threads are executing in user space, and kernel-level
threads, where the threads are managed by the kernel. With user-level threads, there is very
little context and the cost of performing a thread switch is quite low. The trade-off however
is that when a user-level thread blocks, such as when it performs a write to disk, the whole
process is blocked, not just the calling thread. This of course precludes the process from
overlapping computation with IO or communication. In the case of kernel-level threads, only
the calling thread itself is blocked, allowing the process to overlap computation with 1/0
or communication. The trade-off however is that the kernel must maintain, schedule, and
multiplex these threads. While the cost of managing kernel-level threads is less than that of
managing heavy-weight processes, it can still be significant, and can have a negative impact
on performance. Kernel-level threads were used in all of these experiments, and thus the
relatively high cost of thread switching was incurred.

To test our hypothesis we modified the implementation of the collective 1/O routine
to (virtually) eliminate the cost of thread-switching altogether. We accomplished this by
implementing the 1/0 thread such that it performed part, but not all, of the collective 1/O
algorithm. In particular, all of the copying and interprocessor communication required by
the collective 1/O algorithm were performed by the main thread, and the 1/O thread was
spawned to perform only the actual write to disk. With this approach, virtually all of the
competition for the CPU between the two threads is eliminated since the 1/O thread does
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Figure 5: This figure shows the time required to complete one iteration of a compute phase
and one iteration of a collective /O phase. In the first case, the computation and collective
I/O are executed sequentially. In the second case, a thread is spawned to execute the
collective 1/0O in the background while the computation phase continues in the foreground
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nothing but make the 1/0O call and wait for its completion.

Now consider how this approach corresponds to the implementation of MPI split-collective
operations. In this case the initial part of the two-phase 1/0 routine is executed in the begin
function. This includes all of the activity required to redistribute the data in such a way that
each processor can perform its write to disk assuming the conforming distribution. Once
this part of the collective I/O routine is complete, the begin function spawns a thread to
perform the actual write to disk and then immediately returns to the main thread allowing
it to enter into its computation. Execution of the end function blocks the main thread until
the write to disk is complete. (Again note the order of these events would be reversed in the
case of a collective read operation.)

In Figure 6, the performance of the three implementation options is shown. Consider
the results of each architecture when 64 processors are used. As can be seen, executing
only the actual write to disk in the background can provide significant performance benefits.
On the Intel Paragon, this strategy provided up to a 26% improvement in performance
over both of the other techniques. On the SGI Origin2000, spawning a thread to perform
only the disk write resulted in a 25% improvement over the sequential approach, and a
43% improvement when compared to executing the whole collective 1/O operation in the
background. On the HP Exemplar, spawning a thread to perform only the write to disk
improved performance by 12% over the sequential approach, and by 61% when compared to
performing the whole collective 1/O routine in the background. On the IBM SP2; both of
the thread-based strategies performed at approximately the same level and provided up to
a 45% improvement over executing the two phases in sequence.

Before leaving this section it is important to note that performing one large 1/O request
in the background assumes there is enough memory to buffer all of the data that will be
written to disk. If the buffer provided by the application is not large enough to hold all of
the data, then the implementation is forced to perform the write to disk iteratively. This
would certainly have a negative impact on performance, and in such cases the best technique
may be to perform the whole collective I/O operation in the foreground.

6.2.1 SGI Origin2000 Using the 0 DIRECT Option

The results shown in Figure 6 for the SGI Origin2000 were obtained without using the
0_DIRECT option. That is, the file system on the Origin did not copy data directly from the
application buffer to disk, but rather to the kernel buffer cache first and then to disk. We
were interested in knowing whether the 0_DIRECT option that writes directly from application
buffer to disk would significantly modify the results shown in Figure 6. The outcome of this
set of experiments is shown in Figure 7.

Again we observe that executing the whole collective /0O operation in the background
exhibits the worst performance of the three implementation options. What is interesting
however is that executing only part of the collective 1/O operation in the background did
not provide any improvement over the sequential approach. This result has to do with the
very powerful 1/O subsystem and the ability of the file system to bypass the kernel buffer
cache. In particular, the write to disk was so fast that the time required to complete the
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Figure 6: This figure shows the performance of the three implementation options for split-
collective I/O operations. In the first approach, the whole collective 1/O operation is per-
formed in the main thread. In the second approach, a thread is spawned to execute the whole
collective I/0O operation in the background. In the third approach, all of the computation
and communication associated with data redistribution is performed in the foreground, and
a thread is spawned to perform only the actual write to disk
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Figure 7: This figure shows the relative performance of thread-based collective /O when
the application can write directly to disk.

write was [ess than the time required to perform the interprocessor communication and data
redistribution (45% for the write, 55% for the data permutation). Since the proportion of
time spent in the disk operation was relatively small, and since this was the only time a
thread was active, it makes sense that there would be little improvement in performance.

7 Implications for Real-World Applications

A fair question to ask is whether the results obtained in this research are directly applica-
ble to real-world applications. This question can perhaps best be answered by considering
the basic structure and execution of the experimental applications. First, the experimen-
tal applications employed large (two dimensional) arrays distributed across the processors
using a block-block data distribution pattern. Such data structures and data distribution
patterns are quite common in parallel scientific applications. (It is also worth noting that
we experimented with several other data distribution patterns and obtained similar results.)
Secondly, the basic structure of the experimental applications, where each processor performs
some computation on its segment of the distributed array and then writes a set of results to
disk, is also common in parallel scientific applications. This model of application behavior
is also quite relevant to large applications that periodically check-point their results to disk,
where the write to disk can be overlapped with computation in the main thread.

Perhaps a better question to ask is what characteristics must a parallel scientific applica-
tion possess to obtain results similar to those reported here. Our experience and experimen-
tation suggests there are three such critical requirements. First, the 1/O and computational
requirements must be reasonably balanced. If the computational requirements are signifi-
cantly greater than the cost of performing the collective write to disk, then the techniques
presented here will have little impact on overall performance. Secondly, the application must
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be structured such that the collective I/O operation can be overlapped with computation in
the main thread. Finally, the communication library itself must be thread safe.

8 Related Work

The research most closely related to this project is the development of the MTIO library [20],
which is a multi-threaded parallel I/O library. MTIO supports the overlap of computation
with collective I/O by spawning an I/O thread to complete the whole collective routine in
the background. The MTIO library is implemented on the IBM SP2. The authors report up
to an 80% overlap of computation and 1/0O, which is similar to the results we obtained for the
SP2. As noted above, however, we found that the SP2 is the only architecture for which this
approach performed well; on other architectures we obtained better performance by doing
only the actual write to disk in the background and the rest of the collective operation in
the main thread.

The performance of two-phase 1/O on the Intel Paragon has been studied extensively
by both Dickens and Thakur [12] and by Bordawekar [4]. However, neither of these studies
looks at thread-based collective I/O. Also, Bordawekar [6] provides an excellent discussion
of the I/O characteristics of the HP Exemplar.

Two-phase 1/0 is not the only approach that can significantly improve performance
of I/O intensive applications. Acharya et al. [1] investigated code restructuring and other
optimizations to improve the performance of I/O bound computations and reported excellent
performance without the use of collective 1/O. However, the approach outlined in their
study requires significant modifications to the application code and knowledge of future 1/O
requests. Also, the Vesta file system has been shown to enhance performance by using
prefetching and caching without two-phase 1/O [13].

There are other projects using collective 1/0. For example, Passion has been extended
to handle out-of-core arrays [26]. Also, a variation of disk-directed 1/0 is used in the Panda
runtime library [23]. Excellent overviews of the field of parallel 1/O can be found in [11, 14].

9 Discussion and Conclusions

Obtaining high performance collective 1/O is critical to large, I/O intensive scientific com-
putations. The research presented here demonstrates that it is possible to obtain such high
performance using two-phase 1/0 and thread-based collective operations, but it is not au-
tomatic. To demonstrate the importance to performance of the implementation technique,
we developed a series of optimizations to the basic two-phase I/0 algorithm and studied the
impact on performance of each such optimization. One powerful example of this impact was
observed on the Intel Paragon, where the initial collective I/O implementation resulted in a
bandwidth of 70 MB/sec, and the fully optimized implementation resulted in a bandwidth of
440 MB/sec. In fact, all of the architectures studied showed a significant increase in perfor-
mance between the non-collective 1/O approach and the naive implementation of collective

23



I/O (Stepl), and between the Stepl implementation and the fully tuned implementation
(Step5h) of collective 1/0.

Also, this research clearly demonstrates that it is possible to reduce the impact of collec-
tive 1/O operations by executing such operations in the background while the main thread
continues with other computation in the foreground. We showed that the most natural
implementation technique, to simply spawn a thread to perform the whole collective 1/0O
operation in the background, is in general, not sufficient to obtain high performance. In fact,
for some of the architectures studied here, this simple approach more often reduced rather
than enhanced performance. The reason is simple: If a thread can block without blocking the
whole process, then the threads are being managed at the kernel level. This makes thread
switching expensive, and, when there is a lot of competition between the main thread and
the I/O thread, can negate the benefits of overlapping computation and 1/O. We did show
however that when this competition is minimized, such as when the 1/O thread performs
only the actual write to disk, that (in general) excellent performance gains can be obtained.

It is important to note however that this whole investigation of thread-based collective
[/0O is built upon the premise that there is sufficient computation in the main program to
effectively overlap computation with collective 1/O. Whether this is in general true remains
to be seen.

There are currently three main obstacles to the investigation of thread-based collective
I/0O. Foremost is the lack of thread-safe implementations of MPI. Secondly, there is no way
to directly observe the behavior of the threads and how they interact with the rest of the
system. Rather, using threads is like using a black box which, from time to time, exhibits
completely non-intuitive behavior. Finally, although the threads package on each machine
studied is based on the POSIX standard, there are still enough differences between the
libraries to make porting of code between the architectures somewhat tedious.

Current research is focusing on implementing the complete MPI-2 parallel 1/0 library,
and performing this same study on important application codes.
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