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Abstract—Accelerator awareness has become a pressing issue
in data movement models, such as MPI, because of the rapid
deployment of systems that utilize accelerators. In our previous
work, we developed techniques to enhance MPI with accelerator
awareness, thus allowing applications to easily and efficiently
communicate data between accelerator memories. In this paper,
we extend this work with techniques to perform efficient data
movement between accelerators within the same node using a
DMA-assisted, peer-to-peer intranode communication technique
that was recently introduced for NVIDIA GPUs. We present a
detailed design of our new approach to intranode communication
and evaluate its improvement to communication and application
performance using micro-kernel benchmarks and a 2D stencil
application kernel.

I. INTRODUCTION

In recent years, graphics processing units (GPUs) have
emerged as excellent low-cost, power-efficient accelerators for
general-purpose, highly parallel computations. Across a broad
range of computational science, engineering, and analytics
domains, GPUs have shown significant advantages over tradi-
tional CPUs. These results have, in turn, led to an increasing
number of supercomputer systems being designed with GPUs.
In the November 2011 Top500 list [1], for example, three of
the top five supercomputers in the world utilized GPUs. Sys-
tems that can accommodate two or even four GPUs per node
are fairly common today, and the price versus performance
benefit of GPUs indicates that such trends will become even
more common over the next several years.

The processing units on current GPUs can operate only
on data that is located in the on-board GPU memory. While
the GPU programming libraries provide mechanisms for
transferring data between host memory and GPU memory,
challenges remain in efficiently scheduling and synchronizing
these transfers. Managing data transfers has been previously
studied [2]–[4] with respect to message-passing libraries,
specifically those implementing the Message Passing Interface
(MPI) standard [5]. These studies concentrated on optimizing
transfers between GPU memory and host memory, when the
source or the destination of the data is on a GPU device.
One of the shortcomings of these previous approaches is that
they did not take advantage of systems where multiple GPUs
were installed on the same compute node and data had to be

moved between them. In our previous work [6], we designed a
shared-memory approach that utilizes a common host memory
buffer that is visible to both the source and destination process,
reducing the number of memory copy operations required and
thus improving overall performance. However, this approach
still requires intervention from the host processor and memory
to “stage” data before it can be moved between the two GPU
devices.

Recently, a GPU IPC feature was introduced on new GPU
hardware from NVIDIA that allows GPU direct memory
access (DMA) engines to directly move data from one GPU to
another on the same node. In this paper, we present the design
of an efficient intranode cross-GPU/CPU peer-to-peer commu-
nication scheme for MPI communication. We explore the use
of the GPU’s on-board DMA engines and take advantage of
new, cross-GPU, and peer-to-peer data accessibility, provided
by GPU IPC. By utilizing the latest architectural features, our
scheme can bypass the extra data paths through host memory
used in current intranode GPU communication mechanisms
for MPI, instead performing a direct transfer between source
and destinations buffers. Furthermore, this work addresses the
following challenges in intranode GPU communication.

• We introduce the use of GPU DMA engines, GPUDirect
[7] and CUDA IPC [8] in the design of a DMA-assisted,
peer-to-peer, direct intranode MPI communication sub-
system. We show that this design can be extended to
optimize communication between CPU and GPU devices.

• We explore the design space of intranode communication
with GPU devices, including protocol design and use of
DMA engines.

• We implement our design by adapting MPICH2, a widely
used MPI implementation. We evaluate the performance
on two typical GPU-accelerated systems. Our results
show that the DMA-assisted peer-to-peer communication
is beneficial, especially when participating GPU devices
are close in a system. Applying our solution to the 2D
stencil benchmark from SHOC [9], we demonstrate an
average 4.7% and 2.3% performance improvement for
single- and double-precision runs, respectively.

The rest of this paper is organized as follows. Section II
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Fig. 1. GPU-accelerated computing system architecture.

presents background information on GPU computing, MPI,
and MPICH2’s intranode communication architecture. Sec-
tion III introduces the design of our system, its integration
in MPICH2, protocol designs, and a memory handle caching
optimization. Section IV presents an experimental evaluation,
and Section V discusses related work. We summarize our
findings in Section VI.

II. BACKGROUND

GPUs originally were designed for graphics rendering work-
loads but today are widely used as accelerators for general-
purpose parallel computing. GPUs have specialized hardware
optimized for parallel SIMD computations and are equipped
with specialized, high-throughput device memory. Figure 1
shows an example heterogeneous system architecture, based
on Keeneland cluster nodes [10] described in Section IV. In
this figure, multiple GPU devices are each connected via a
PCI-Express (PCIe) interconnect to a chipset (I/O hub), which
connects these devices to other I/O hubs and CPUs. Different
technologies can be used for connecting chipsets, CPUs, and
memory, for example, the Intel Quick Path Interconnect (QPI)
or AMD HyperTransport (HT) interconnects.

Several applications take advantage of such GPUs by off-
loading computation intensive portions of their execution to
the GPU. These offloaded computation tasks are called kernels.
When an application offloads a computation task to the GPU,
the data to be used in such computation must be moved from
the CPU host memory to the GPU device memory. Similarly,
after the kernel execution, the resulting data must be moved
back to the host memory. Data movement to and from the GPU
is achieved by programming the GPU DMA engine. To do so,
the CPU thread (also called the controlling thread) must first
allocate a GPU context, which will be used by the controlling
thread to interact with the GPU.

A. CUDA and NVIDIA GPUs

The Compute Unified Device Architecture (CUDA) is a
popular, general-purpose GPU parallel programming model
and is designed primarily for NVIDIA GPUs [11]. CUDA
recently added support for several capabilities that can be
utilized to enhance the efficiency of GPU data movement,
including GPUDirect and CUDA IPC.

GPUDirect [7] enables direct, peer-to-peer GPU data trans-
mission through GPU DMA engines, without any host proces-
sor intervention. In the past, when data needed to be moved
between the device memories of two GPUs, it had to be
“staged” in the host memory. With GPUDirect, the data can
be transferred from one device directly to another. However,
this feature is currently restricted to peer-accessible devices—
those that are attached to the same chipset or different chipsets
that are connected via AMD HT. GPUDirect does not currently
support Intel QPI-connected cross-chipset GPU devices.

Another technology available only in CUDA, CUDA
IPC [8], allows different processes to access the same buffer
located in GPU device memory. With this technology, a
process can share with another process a memory handle that
references a device memory buffer. This feature is useful for
parallel applications with multiple processes running on the
same node, such as MPI applications.

B. MPI and MPICH2 Intranode Communication

MPI [5] is the industry standard for parallel programming
on virtually all parallel computing architectures. Most popu-
lar MPI implementations provide highly optimized internode
communication as well as intranode communication between
cores and processors on the same node. MPICH2 [12], de-
veloped at Argonne National Laboratory, is a widely used,
open-source MPI implementation. Its intranode communica-
tion is handled by the Nemesis [13] communication subsystem.
MPICH2 has two data transmission modes: eager mode,
optimized toward latency for shorter messages, and rendezvous
mode, optimized toward bandwidth for large messages. The
rendezvous mode is implemented through the large message
transfer (LMT) protocol in Nemesis. Currently, this protocol
has supported several transport methods that use shared-
memory buffers and kernel-assisted single copy through host-
side DMA. The shared-memory buffer implementation allo-
cates buffers shared between the sender and receiver processes
for them to store/remove message data. The sender and
receiver processes work in parallel to pipeline the memory
copies.

In our previous work, we designed an approach to allow
intranode communication from GPU buffers [6]. This elimi-
nated the need for the application to explicitly copy data from
the source GPU memory to the host memory before an MPI
send operation. It also eliminated explicit data copying from
the host memory to the destination GPU memory after an MPI
receive operation. The shared-memory LMT implementation
was modified to use GPU data movement commands to
directly transfer PCIe transaction data into and out of an
LMT buffer. However, this method still requires copying GPU-
resident data to shared buffers in host memory, requiring two
DMA transfers and intervention from the host processor for
the data transfer to occur.

III. DESIGN

Each process within a node has its own virtual address
space in CPU and GPU memories. A virtual address from



one process cannot be dereferenced in the address space of
another, without OS support for sharing memory mappings.
While peer-to-peer GPU memory copies (via GPUDirect) are
possible with CUDA, they are restricted to a single process.
In previous work, we addressed the intranode communicaion
problem by extending MPICH2’s Nemesis communication
system and performing MPI communication between GPUs
via host-side shared memory (shm).

As described in Section II-A, recent releases of CUDA (v4.1
or later) have exposed a new family of IPC functions, namely
CUDA IPC [8], which provide the capability of exporting a
memory handle to a GPU memory allocation from one process
directly into the address space of another process within the
same node. Using CUDA UPC, the MPI process driving the
communication can issue an asynchronous DMA request, by
calling cudaMemcpyAsync, to move data between participating
GPUs directly. This feature, together with GPUDirect, can be
used to perform direct, peer-to-peer data transfer. It also allows
us to completely avoid pipelining through host-side shared
memory buffers. We note, however, that GPUDirect is limited
only to peer GPU devices connected to the same I/O hub or
different I/O hubs connected via AMD HT and such “peer
accessibility” must be queried from the GPU device. In our
design, we use this approach for peer GPU devices and fall
back to the original shared-memory-based approach for other
GPU devices.

Since no static binding exists between an MPI rank and
a GPU device, the process can choose any available GPU
at runtime. Therefore a process cannot know whether peer
accessibility is available to the pair by using its own infor-
mation. To solve this problem, we use the handshake phase
of the Nemesis LMT protocol (discussed in Section III-A) to
exchange the peer accessibility information of devices before
performing the communication. Note that the usage of LMT
limits the applicability of DMA-assisted communication only
to MPICH2 rendezvous mode, which is used primarily for
large messages.

A. LMT Peer-GPU Protocol for Intranode Communication

In Nemesis, three LMT protocol models—PUT, GET, and
COOPERATE—are provided for supporting intranode com-
munication. PUT and GET protocols are used to implement
kernel-assisted, single-copy protocols, and the COOPERATE
protocol is used for the shared-memory-based intranode com-
munication. The three protocol models are different in the
process that initiates the payload transfer. In this paper, we
design an additional LMT peer-GPU protocol, which can
adaptively change into a PUT, GET or COOPERATE mode,
depending on peer accessibility.

We show the control flow of the LMT Peer-GPU protocol
in Figure 2. When the sender starts to participate in the
handshake, it retrieves the interprocess memory handle for
the sender’s data buffer and then sends this memory handle
along with the device number, packaged in a cookie, with
the request to send (RTS) message to the receiver. When the
RTS message arrives at the receiver process, it inspects the
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Fig. 2. LMT protocol for GPU peer-to-peer communication.

cookie and checks the peer accessibility of the two devices.
If GPU peer accessibility is available, it performs peer-to-peer
GPU communication using one of the three LMT protocols.
Otherwise, it reverts to the shm approach. In another cookie
created for the clear-to-send (CTS) message, the receiver
embeds this decision, in order to inform the sender of the
chosen protocol.

If the source and destination GPUs are peer accessible, the
receiver can choose one of the three models: PUT, GET, or
COOPERATE. This choice is arbitrary when GPU peers are
accessible in both directions, but not in special cases (as further
explained in Section III-B).

a) LMT Peer-GPU GET: If the receiver decides to get
the data after receiving the RTS, it opens the sender’s memory
handle, maps it into its address space, and starts peer-GPU
data movement. A progress element is inserted into MPICH2’s
progress engine queue by the receiver, and the DMA status is
polled for completion. A DONE message is then sent to notify
the sender of completion.

b) LMT Peer-GPU PUT: If the receiver decides to let
the sender push the data, it retrieves the interprocess memory
handle of the receive buffer, packages it with the device
number as well as the decision in the CTS packet’s cookie, and
sends it back to the sender. The sender opens the receiver’s
memory handle, maps it into its address space, and executes
peer-GPU data transfer. A progress element is inserted by the
sender. The progress engine is again polled for completion, and
a DONE message is sent to notify the receiver of completion.

c) LMT Peer-GPU COOPERATE: If the receiver decides
both sides can help the data transfer, after both interprocess
memory handles are exchanged in RTS and CTS messages,
the payload is divided into two halves: the sender puts one
half in the receive buffer, and the receiver gets the other half



from the sender’s buffer. Progress elements are created on both
sides. When receiver is done, a COOKIE message is sent to the
sender to notify the partial completion of the data transfer; the
sender then sends a DONE message to denote full completion.

The receiver’s decision may seem arbitrary in the mutually
accessible case; however, protocol selection decides which
GPU, and hence the DMA engine, will be used for data
movement—that is, the driving process will use the DMA
engine on its GPU. Furthermore, DMA requests issued to the
same engine will be serialized. Thus, the choice of protocol
can be critical in managing DMA contention, depending on
the communication pattern.

B. Intranode MPI Communication between Host and Device

In addition to GPU-to-GPU communication, we address
intranode MPI communication between the host memory and
the device memory. Currently, only GPU device memory can
be exported to another process in CUDA IPC. Main memory
buffers cannot be exported without the support of operating
system kernel modules. Hence, the process with communi-
cation buffers in main memory (the host-side process) must
be the one to initiate the payload transfer. Upon receiving
the interprocess memory handle to the device memory buffer
exported in the other process, the host-side process opens it,
maps the memory to its address space, and then initiates the
data transfer to or from the device.

The host-side process needs a valid GPU context to request
the GPU DMA engine for data communication between the
host and the device. However, this may not always be possible.
Depending on the availability of an active GPU context, two
situations might arise for host-device MPI communication, as
described below.

a) Attach: If no active GPU context is available, the
host-side process can attach to any available GPU device, by
creating a new context on that GPU. A good choice here is
to attach to the same device that contains the communicating
device buffer. The context is then cached and can be reused
for future data transfers.

b) Relay: If an active GPU context is already available,
the DMA engine of the corresponding GPU can act as a relay
to perform the data transfers with the device-side process.
Although we can temporarily change the active GPU con-
text to use another GPU device—possibly the one with the
communicating device buffer—and change it back after the
communication is done, this approach is not feasible. Since the
active device context is a global setting in CUDA, changing it
will redirect all GPU commands issued simultaneously to this
communication onto the temporary active device, potentially
polluting the user’s program.

C. Efficient Management of Memory Handles

In all the LMT peer-GPU communication protocols, we first
get the interprocess memory handle of a memory region in one
process, then open it and map it into the address space of the
other process. While getting the memory handle (cudaIpcGet-
MemHandle) is a lightweight operation [11], we find that

opening the handle (cudaIpcOpenMemHandle) is expensive,
probably because of interactions involving the importing and
exporting of device buffer addresses in the driver run on the
host side.

In a preliminary design, we open a memory handle after
the RTS/CTS message exchange at the beginning of the
communication and close it after the data transfer is done.
Repeated opening and closing of the interprocess memory
handle cause significant performance overhead.

Observing that many GPU programs have a relatively
fixed memory creation pattern—for example, creating a large
memory region before computation, reusing it for computation
and data communication, and releasing it only after a period
long enough—we choose to cache memory handles. Therefore,
when a communication is done, we leave the memory handle
open. During the next communication operation, when a mem-
ory handle arrives in an RTS/CTS packet’s cookie, we check
first to see whether the memory handle has been cached lo-
cally. If this is the case, our memory handle caching eliminates
the reopening/closing of memory handles. We observe that the
latency is more than halved after applying this optimization.

This design leads to a problem in closing a memory handle,
however. In particular, the MPI runtime does not know when
an open memory handle should be closed and closing a
memory handle should happen before the memory region
is freed [11]. To solve this problem, we add a two-phase
GPU memory free mechanism, by providing two functions
(gpuMemFree and gpuMemFree commit). When a GPU mem-
ory free is called on a memory region, it is only recorded, with
its memory handles marked in case it is ever exported, but not
released immediately. When a GPU memory free commit is
called, the marked memory handles are exchanged with other
processes on that node. If found, a process closes the memory
handle. After all processes finish closing memory handles,
GPU memory regions are released.

IV. EVALUATION

Our evaluation was conducted on two systems that are
representative of current multi-GPU heterogeneous clusters.
These systems differ significantly in cross-socket interconnect,
NUMA configuration, and GPU connection topology, as sum-
marized in Table I. The Keeneland [10] cluster is powered with
NVIDIA Tesla M2070 GPUs. Each compute node is contains
two Intel Xeon X5660 hex-core CPUs, 24 GB memory, and
3 GPU devices connected through 2 I/O hubs; nodes are
connected via single-rail, QDR InfiniBand. The Magellan
cluster is powered with NVIDIA Tesla M2070 GPUs. Nodes
are configured with four AMD Opteron 6128 quad-core CPUs,
64 GB memory, and 2 GPU devices connected to 2 I/O hubs;
the system interconnect is QDR InfiniBand. Both systems run
the CentOS Linux operating system and utilize CUDA v4.1.

Communication performance measurements were gathered
using the latency and bandwidth benchmarks from the OSU
benchmark suite [14]. In addition, the impact of this work
on application-level performance was measured using the
Stencil2D kernel from the SHOC benchmark suite [9].



TABLE I
KEENELAND AND MAGELLAN SYSTEM ARCHITECTURES, INCLUDING GPU TOPOLOGIES.

Cluster NUMA nodes Interconnect GPUs GPU Topology Peer Access Distance Between Peers
Keeneland 2 Intel QPI 3 GPU 0: Node 0; GPU 1,2: Node 1 Only GPU 1 and 2 2 PCIe hops
Magellan 4 AMD HT 2 GPU 0: Node 0; GPU 1: Node 3 Yes 2 PCIe hops + 1 HT hop

A. DMA-Assisted, Intranode GPU-GPU Communication

We first evaluate the performance of our GPU DMA-
assisted peer-to-peer intranode communication. In this test,
we compare its performance with that of our previous design
(shm), the shared-memory-based data transfer approach. The
latency and bandwidth test both involve two processes, using
both source and destination buffers in GPU memory. On
Keeneland, we use GPUs 1 and 2, connected on the same I/O
hub (near case). On Magellan, GPUs 0 and 1 are connected to
two different I/O hubs (far case). All our experiments in this
section evaluate large message transfers (larger than 64 KB)
in our current setting. We also always pin the CPU controlling
process to the socket closest to the controlled GPU. Figures 3
and 4 compare the performance of these two cases.

From this data, we see that the DMA-assisted communica-
tion provides lower latency and higher bandwidth than does
shm when GPUs are connected to the same I/O hub, primarily
because DMA-assisted LMT avoids data staging through host-
side shared-memory buffers and reduces the contention on the
shared I/O hub. When two GPUs are attached to different
I/O hubs, however, as in the far case shown in Figure 4,
we find the opposite result. The reason is that two GPUs
are now connected by a longer data path consisting of three
subchannels: a PCIe bus, an HT interconnect link, and another
PCIe bus. Although DMA-assisted data movement avoids data
staging in host-side shared memory, GPU DMA-driven trans-
actions travel serially over the data path; at any time, only one
transaction is going over the three subchannels. In contrast,
the shm protocol uses both the sender and the receiver to
write and read data into staging buffers, respectively, which
partitions the data path into two relays and drives both PCIe
links concurrently.

By comparing different LMT modes, we see that COOP-
ERATE mode is never the best. This is a surprising result
because, for the cooperative mode, we split the data into
two halves, and both GPU DMA engines drive half of the
data transfer concurrently. However, results indicate that, in
practice, this method is consistently slower than one of the
one-sided modes. This slower performance may be caused
by the interference between two GPU devices; when a peer
direct access happens, the DMA engine will talk to a remote
agent on the GPU device for data location translation and
memory module commands issuing. Therefore, when two
DMA engines are working simultaneously, this can lead to
contention in accessing these hardware resources.

We evaluate GPU-GPU communication performance when
two processes are sharing one GPU device, a common case
in practice because clusters typically have more CPU cores
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Fig. 3. Intranode GPU-GPU communication latency and bandwidth com-
parisons for the near case on Keenland. DMA-assisted communication using
each LMT mode is compared with the baseline shm protocol.

than GPU devices. Results are presented in Figure 5 for the
Keeneland systeml similar results were observed on Magellan.
From these results, we see that DMA-assisted data transfer is
able to leverage fast data movement within the GPU device,
resulting in an order of magnitude improvement in bandwidth
and latency over shm.

B. DMA-Assisted, Intranode GPU-Host Communication

The DMA-assisted communication protocol can also be
used for intranode communication where one buffer is located
in host memory and the other is in GPU memory. Figure 6
shows results for this case on Keeneland, where two processes
are both pinned to NUMA node 1, where GPUs 1 and 2 are
connected. We evaluate two cases, which are distinguished
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Fig. 4. Intranode GPU-GPU communication latency and bandwidth compar-
isons for the far case on Magellan. DMA-assisted communication using each
LMT mode is compared with the baseline shm protocol.

by whether the process using the host buffer is using other
devices connected to the same I/O hub. Using this setup, we
show results for attached and relayed transfers, as explained
in Section III-B.

Our results indicate that DMA-assisted LMT does not
perform as well as shm on Keenland, and we observed similar
results on Magellan for GPU-Host communication where pro-
cesses are pinned to further NUMA nodes. When comparing
attached transfer performance with shm, we observe that
although both data paths go from the GPU device to the
host CPU, in shm, data can be copied to the shared memory
buffer without considering peer accessibility. In contrast, the
attached case must start a new context there to access the
exported memory. As a result, the overhead of establishing
peer accessibility overcomes the benefit of eliminating main
memory copies—especially when the overhead of creating a
new context is large. Though this overhead is amortized by
later reuse, it significantly impacts performance. We expect
that with the improvement of GPUs and the GPU driver, this
overhead will decrease on future devices.

The relayed case emulates the scenario where the CPU
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Fig. 5. Intranode GPU-GPU communication latency and bandwidth compar-
isons for the sharing case on Keenland. DMA-assisted communication using
each LMT mode is compared with the baseline shm protocol.

process is using another GPU device for some computation
while it performs Host-GPU communication. In this situation,
the CPU process must use the DMA engine on the currently
active device. This case shows that using a remote DMA
engine to relay the data between a host buffer and device
memory results in poor performance. Thus, in both Host-GPU
transfer cases, we should fall back to shm to provide the best
performance.

C. Application Evaluation: Stencil2D

The Stencil2D kernel from SHOC benchmark suite [9]
measures the performance of a nine-point, two-dimensional
stencil computation. It performs an iterative stencil computa-
tion on the GPU and requires a data exchange every haloWidth
iterations. In this type of computation, processes are arranged
in an N -dimensional Cartesian grid, and each process is
assigned a corresponding section of an N -dimensional array.
Periodically, a process must obtain the values that its neighbors
have calculated for the array elements that border its patch, or
its halo. Thus, this communication idiom, which is common
across a broad range of iterative solvers, is referred to as a
halo exchange.
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Fig. 6. Intranode Host-GPU communication latency and bandwidth compar-
isons on Keenland. DMA-assisted communication using relayed and attached
transports is compared with the baseline shm protocol. When relayed transport
is used, two GPUs connected to the same chipset are used.

Figure 7 shows the relative performance improvement of
DMA-assisted communication over the original shared mem-
ory (shm) approach. Results were gathered on the Keenland
system for both single- and double-precision versions of the
calculation. Overall, DMA-assisted communication provided
an average speedup of 4.7% for single precision and 2.3% for
double precision. Since double-precision performance is much
lower than single-precision performance on GPUs, commu-
nication accounts for a smaller portion of the total runtime,
resulting in a smaller overall benefit for double-precision.

In this workload MPI ranks are assigned to GPU devices
in a round-robin manner. This explains the high improvement
factor seen in the case of four processes. In this case, ranks
0 and 3 are assigned to the GPU 0, and ranks 1 and 2
are assigned to GPU 1. The halo exchange happens first
vertically and then horizontally; in each step, DMA-assisted
peer communication occurs between one pair of processes,
and the original shm protocol is used between the other pair.
As a result, communication overlaps in a mutually beneficial
pattern. This overlap also occurs in the six process case;
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Fig. 7. Stencil2D performance improvement on Keeneland for 2, 4, and 6
processes. Improvement of DMA-assisted peer-to-peer communication over
shared-memory buffer-based communication is shown.

however, additional MPI ranks sharing a GPU leads to a
higher level of contention and results in a lower degree of
performance improvement. The case of two processes results
in a surprising decrease in performance. This may be due to
PCIe bus contention, since both parties are trying to send and
receive equal size messages; we plan to continue study this
case.

When we analyze performance improvement relative to
problem size for 2,048, 4,096, and 8,192 groups of matrix
sizes (the matrix dimensions within each group are changed
as needed to vary halo width), average speedups are 8.5%,
3.9%, and 1.6% for single precision and 4.3%, 2.2%, and
0.3% for double precision, respectively. We observe that the
amount of computation increases quadratically with problem
size, thus effectively reducing the fraction of time spent on
communication and, as a result, the potential for performance
improvement.

We increase the halo widths within each matrix dimension
group in order to explore the change in performance as the
total communication volume is the same but communication
occurs less frequently. This reduces the total communication



time—for example, for the problem size of 2,048, the commu-
nication portion of total execution time decreases from 34% to
14% for single precision and 22% to 9% for double precision
in the DMA-assisted case—and therefore reduces the benefit
of improved data movement.

V. RELATED WORK

Several research efforts have investigated modifications to
MPI to better facilitate hybrid MPI+GPU programming. Cur-
rently, only processes running on the CPU can perform MPI
calls. Stuart et al. [15] have suggested several mechanisms
for extending the MPI standard to provide native support
for accelerators. One significant proposal would allow GPU
threads to obtain MPI ranks and participate directly in MPI
communication [16]. However, due to lacking network I/O
functionality on GPUs, CPU helper threads are needed, which
presents challenges to performance modeling and may intro-
duce new overheads.

Another major area of research, utilizes the current model
for MPI participation in GPU-accelerated systems and extends
it with transparent solutions for interacting with accelerator
data [2]–[4], [6]. An advantage of this approach is that it allows
existing MPI programs to more easily benefit from GPUs
by reducing the amount of programmer effort that must be
expended to manage distinct host and device memories. This
work falls into the above category and differs from prior work
in this space by developing techniques to use new accelerator
features to accelerate intranode communication.

While MPI has traditionally been known as a system
for internode communication, intranode communication has
become equally important because of increasing core counts
[17]–[21]. This work compliments existing intranode commu-
nication efforts by studying the impact of GPUs on intranode
communication systems.

VI. CONCLUDING REMARKS

In this work, we explored the design of an intranode com-
munication subsystem for a GPU-aware MPI implementation
that allows the programmer to supply device buffers directly to
MPI calls. Mechanisms for direct, DMA-assisted peer-to-peer
data transfers involving host and GPU as well as GPU and
GPU buffers were developed. Through communication bench-
marking, we evaluated the performance of several alternative
approaches and constructed a full system that utilizes the best
protocols and parameters in each context. Our communication
benchmarking revealed that DMA-assisted peer-to-peer data
transfer yields greater benefits when applied to GPU devices
that are nearby; in some situations, DMA-assisted transfers
can hurt performance, and our implementation falls back to
an efficient shared memory transport.

We evaluated the performance impact of our modified
MPI implementation on a halo exchange application ker-
nel. When compared with the baseline shared-memory data
transfer method, an average speedup of 4.7% and 2.3% was
observed for the stencil kernel for single- and double-precision
computations, respectively.
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