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Abstract

The ever-increasing gap in performance between
CPU/memory technologies and the 1/0 subsystem (disks,
I/0 buses) in modern workstations has exacerbated
the 1/0O bottlenecks inherent in applications that ac-
cess large disk resident data sets. A common technique
to alleviate the I/O bottlenecks on clusters of work-
stations, is the use of parallel file systems. One such
parallel file system is the Parallel Virtual File Sys-
tem (PVFS), which is a freely available tool to achieve
high-performance 1/0 on Linux-based clusters.

In this paper, we describe the performance and scala-
bility of the UNIX I/O interface to PVFS. To illustrate the
performance, we present experimental results using Bon-
nie++, a commonly used file system benchmark to test file
system throughput; a synthetic parallel 1/0 application for
calculating aggregate read and write bandwidths; and a
synthetic benchmark which calculates the time taken to
unt ar the Linux kernel source tree to measure perfor-
mance of a large number of small file operations. We ob-
tained aggregate read and write bandwidths as high as 550
ME/S with a Myrinet-based network and 160MB/s with fast
Ethernet.

1. Introduction

In recent years, the disparity between 1/0O performance
and CPU performance has led to 1/O bottlenecks in many
applications that use large data sets. This gap is becom-
ing more problematic as we move to multi-processor and
cluster systems, where the compute power is multiplied
by the number of processing units available. An opportu-
nity for high-performance 1/O exists on these platforms by
harnessing the 1/0 subsystems on each node. The multiple
CPUs and their memories can provide processing and pri-
mary storage parallelism, while the multiple disks can pro-
vide secondary storage parallelism for both data access and
transfer. Parallel file systems exploit this feature to hide the
I/0 bottlenecks from the applications. While many com-
mercial parallel file systems have been developed for su-
percomputers and parallel machines, such as PFS for the
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Intel Paragon [1], and GPFS [13] for the IBM SP, and many
academic endeavors, such as Galley [11], and PIOUS [10],
many of these solutions are not available or not intended
for production use on Linux-based clusters.

PVFS [5] is a freely available parallel file system that
is intended both as a research tool in parallel 1/O, and as
a stable file system that can be used on production Linux
clusters. The initial goals of PVFS were to provide data
striping and file partitioning in a distributed environment
and to provide an interface that is reasonably close to the
standard UNIX 1/O interface. The first prototype imple-
mentation was developed with the main goal of achiev-
ing high-performance 1/0 and was intended to be run on
a 4-node Alpha cluster in 1994. In recent times, clus-
ters of a thousand machines and more have become more
common. Hence, the goals of PVFS have been redefined
to achieve not only high performance but also scalabil-
ity. In the past, PVFS has been optimized for bandwidth-
limited parallel applications [5] that access the file system
through the MPI-10 [8] and native library interface. PVFS
has also been optimized for parallel applications with non-
contiguous [6] access patterns. The UNIX I/O interface to
PVFS is a fairly recent addition, which was intended more
for convenience than for achieving high-performance 1/0.

In this paper, we describe the key performance and scal-
ability problems that hinder the use of standard UNIX
1/0 interfaces through PVFS for high-performance parallel
1/0, and we present techniques that we have implemented
to alleviate the following:

e File system overheads, such as the amount of buffer
copying and the number of context switches between
processes and client-side daemons.

e TCP/IP connection management overheads.
e Lack of aggregation in directory read operations.

We describe these problems and our proposed solutions in
greater detail in subsequent sections. To illustrate the per-
formance, we present experimental results obtained from
the Bonnie++ [7] file system benchmark, a synthetic paral-
lel 1/0O workload, and a synthetic workload which times the
unt ar of the Linux kernel source tree. The experimen-
tal results presented in this paper are from a 16-node In-
tel Pentium-I11 Linux-based cluster of workstations. Each
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Figure 1. Overall system architecture

node on this cluster consists of dual 1 GHz Intel Pentium-
I11 microprocessor equipped with 1 GB RAM and two 30-
GB IDE-Maxtor hard drives. Each node also has two net-
work interfaces, an Intel 82557 (Ethernet Pro100) fast Eth-
ernet interface, and a Myrinet [4] (M3M-PCI64B-2 with
2 MB of on-board RAM operating at 1.28 Ghps) inter-
face. All the nodes are connected through fast Ethernet and
Myrinet switches (three 8-port M2M-SW8 switches).

The rest of this paper is organized as follows. Section
2 outlines the design and implementation of PVFS, and
Section 3 describes the performance and scalability bot-
tlenecks and the enhancements proposed to alleviate them.
Experimental results on a variety of benchmarks are pre-
sented in Section 4. Section 5 summarizes the contribu-
tions of this paper and discusses directions for further im-
provements.

2. PVFS. System Architecture

The goals of PVFS as a parallel file system are to pro-
vide high-speed access to file data for parallel applica-
tions. The main features of PVFS are that it provides a
cluster-wide name space for clients to access their data
files, enables users to control striping parameters when cre-
ating files, delivers scalable performance under concurrent
reads/writes, and allows for legacy binaries to operate on
PVFS volumes without having to be recompiled. PVFS is
designed as a client-server system as shown in Figure 1 and
described in greater detail below.

2.1. PVFS: Servers

PVFS uses two server components, both of which run
as user-level daemons on one or more nodes of the cluster.
One of these is a meta-data server (called MGR) to which
requests for meta-data management (access rights, direc-
tories, file attributes and physical distribution of file data)
are sent. In addition, there are several instances of a data
server daemon (called 10D), one on each node of the clus-
ter whose disk is being used to store data as part of the
PVFS name space. There are well-defined protocol struc-
tures for exchanging information between the clients and
the servers. For instance, when a client wishes to open a
file, it communicates with the MGR daemon which pro-
vides it the necessary meta-data information (such as the
location of 10D servers for this file, or stripe information)
to do subsequent operations on the file. Subsequent reads
and writes to this file do not interact with the MGR daemon
and are handled directly by the 10D servers. This strategy
is key to achieving scalable performance under concurrent

reads and write requests from many clients and has been
adopted by more recent parallel file system efforts.

2.2. PVFS: Clients

PVFS supports many different client APIs, such as:

o Native libpvfs API,
e Standard UNIX/POSIX API [2], and
e MPI-IO API [8, 15].

Applications written with the native library interface must
be linked with libpvfs to read and write files on a PVFS
file system. The native API has functions analogous to the
POSIX API functions for contiguous reads and writes. In
addition, it includes support for non-contiguous reads and
writes with a single function call [6]. MPI-IO [8, 15] is an
API for parallel 1/O as part of the MPI-2 standard and con-
tains features specifically designed for 1/0 parallelism and
performance. The MPI-IO interface has been implemented
on top of PVFS by using the ROMIO [15] implementa-
tion of MPI-10. ROMIO is designed to be ported easily to
new file systems by using an abstract-device interface[14].
PVFS also supports the standard UNIX I/O functions, such
as open, cl ose, read, and wi t e, as well as legacy
UNIX utilities such as | s, cp, and r m PVFS also allows
read-only memory mapping of files through the mmap sys-
tem call interface. Interfacing to the UNIX I/O functions is
accomplished by loading a Linux kernel module that hooks
into the appropriate place in the Linux VFS layer without
having to recompile the kernel and/or reboot the machine.
Once mounted, the PVFS file system can be traversed and
accessed with existing binaries just as any other file system.
Many network file systems like NFS have weaker consis-
tency guarantees on file system data and meta-data, since
they are primarily targeted at workloads where it is not
common to have many processes accessing the same files
or directories from many nodes simultaneously. PVFS, on
the other hand, cannot afford to have such weaker file sys-
tem semantics guarantees because it is primarily targeted at
workloads that exhibit read-write data sharing. Therefore,
PVFS (at this stage) does not cache file data and meta-data
in the Linux page cache; in other words, all file system ac-
cesses have to incur a network transaction.

2.3. Design of the PVFSKernel Module

When the PVFS kernel module is loaded, it registers it-
self with the Linux VVFS layer. After the PVFS file system
is mounted, subsequent file system calls on the PVFS vol-
ume are dispatched by the VFS layer to the module. The
module uses a device file to communicate the request to a
user level daemon (pvfsd) which satisfies the requests by
talking to the MGR and/or the 10D servers. This design is
conceptually similar to the Coda design [12] and is shown
in Figure 2. We briefly go over a simplified algorithm for
the read, write control paths and the daemon here.

e Read

1. Enqueue a read request to the character device
queue.

2. Wake up the daemon (pvfsd) if necessary.
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Figure 2. System architecture

3. Wait until interrupted by a signal or when op-
eration is complete. Completion is indicated by
the daemon once the data is copied from its ad-
dress space to the kernel buffers.

4. If operation is complete, copy the data from
the kernel buffers to the user space virtual ad-
dresses; else return appropriate error code.

o Write

1. Enqueue a write request to the character device
queue. This step also involves copying the data
from the program’s user space virtual addresses
to the kernel’s temporary buffers.

2. Wake up the daemon (pvfsd) if necessary.

3. Wait until interrupted by a signal or until the
daemon writes back the virtual address to which
the data to be written needs to be copied.

4. Copy the data from the kernel buffers to the dae-
mon’s virtual address.

5. Enqueue another write request to the character
device queue. Wait until the operation is com-
plete or for a signal to terminate the operation.

6. Return appropriate error codes or operation suc-
cess

e User-Space Daemon

1. Block on the device queue waiting for a request
to appear.

2. Read the request from the character de-
vice queue. Ascertain the operation type.

3. If it is a write request that was enqueued in Step
1, allocate a virtual address region large enough
to accommodate the write, and enqueue an ac-
knowledgment into the device queue.

4. If it is a write request that was enqueued in Step
5 or any other operation (meta-data/read), stage
the appropriate operation, and enqueue the re-
sults of the operation as an acknowledgment into
the device queue, waking up the blocked pro-
cess.

On the one hand, a user space daemon-based approach
such as the above lends well to better code reuse, easier
debugging, and simplicity. On the other hand, we observed

that it does not perform well for many read/write-intensive
workloads because of context switching and buffer copy-
ing overheads as elaborated upon in Section 3.

3. Improving Performance

The chief performance bottlenecks that we address in
the subsequent sections are

e increased buffer copies and context switching over-
heads,

e resource/socket utilization overheads, and
o lack of aggregation in directory read operations.

3.1. Reducing Buffer Copy and Context Switch-
ing Overheads

As illustrated earlier, a typical read/write opera-
tion incurs at least two buffer copies before the data gets
into/from the applications address space (one copy in-
curred when transferring from/to the daemon’s address
space to/from temporary kernel buffers, one copy in-
curred when copying from/to kernel buffers to/from the
user program’s address space, not including the dae-
mon’s read/write from/to the kernel socket buffers when
communicating with the 10D and MGR servers). Ad-
ditionally, the write operation incurs an extra latency
because of the extra step involved in waiting for a suit-
ably large virtual address from the daemon’s address
space. Moreover, each of these operations involves at
least two context switches before the file data is writ-
ten out to the file system or read into the application’s ad-
dress space. For all these reasons, the above design turned
out to be inappropriate for a high-performance paral-
lel file system.

Beginning with Linux kernel version 2.4, two APIs,
kernel_thread (which was essentially a front end for the
clone system call) and daemonize are exported to kernel
modules to create kernel threads with no user space con-
text associated with them. This approach allows modules
to create active entities that execute completely inside the
kernel. Since they have no associated user space compo-
nent, context switching overheads are less. In addition,
since they run inside the kernel address space, they can
use the temporary kernel buffers directly to stage reads
or writes without any extra copying. Moreover, in recent
times there have been trends to incorporate many tradi-
tional user space services into the kernel, most notably
Web servers such as TUX [9], for the sake of perfor-
mance. Therefore, this mechanism can be used to avoid
buffer copying, system call, and context switching over-
heads. Another consequence of executing in kernel space
is the fact that we can remove the character device inter-
face altogether and have the daemon operate on the queues
directly. With the new mechanism, the read/write control
Ea}hs and the daemon’s pseudo-code are briefly described

elow:

e Read

1. Enqueue a read request to the queue.

2. Wake up the kernel space daemon (kpvfsd) if
necessary.



3. Wait until interrupted by a signal or when opera-
tion is complete. Completion of operation is in-
dicated by the daemon, when the data transfer to
the kernel buffers finishes.

4. If operation is complete, copy the data from
the kernel buffers to the user space virtual ad-
dresses; else return appropriate error code.

o Write

1. Enqueue a write request to the queue. This step
also involves copying the data from the pro-
gram’s user space virtual addresses to the ker-
nel’s temporary buffers.

2. Wake up the kernel space daemon (kpvfsd) if
necessary.

3. Wait until interrupted by a signal or when opera-
tion is complete. Completion of operation is in-
dicated by the daemon, when the data has been
successfully transferred to the 1/0 nodes.

4. Return appropriate error codes or operation suc-
Cess.

e Kernel-Space Daemon

1. Block on the queue waiting for a request to ap-
pear.

2. Read the request directly from queue. Ascertain
the operation type.

3. Stage the read/write operation directly to/from
the kernel buffers.

4. Enqueue the results of the operation as an ac-
knowledgment into the queue, waking up the
blocked process.

Note that in the above algorithm, we have removed the ad-
ditional step for writes that was needed in the user space
daemon case, and thus we expect to see higher benefits for
writes than for reads. This method is shown in Figure 3.
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3.2. Resource Utilization Management

As stated earlier, the client-side daemon uses TCP sock-
ets to connect and exchange information with the 10D
servers. The previous implementation managed connec-
tions to the 10D servers at the granularity of a file i.e., it

kept as many socket connections per file as there are num-
ber of 10D servers over which the file is striped. While
such an approach is simple, it suffers from serious scala-
bility and performance issues when there are many simul-
taneous open files and 10D servers. It is a scalability issue
for two reasons, namely, the limited number of open file
descriptors that is usually permitted for a process, and the
poor scalability of the sel ect system call with a large
number of file descriptors [3] on the servers. It is a per-
formance issue because of the overhead involved in set-
ting up and tearing down connections to the servers for ev-
ery new file that is accessed. The overhead is even greater
for clients that access the file system through the PVFS li-
brary, since the number of file descriptors is potentially in-
creased by a factor proportional to the number of processes
that are executing on the node.

The new implementation manages connections at a
node granularity; in other words, we keep as many con-
nections as there are 10D servers, and reuse the con-
nections for all files. This approach has not only im-
proved performance for workloads that manipulate a
large number of files, but has also improved the scalabil-
ity when there are many simultaneously open files and
IOD servers. In Section 4, we present experimental re-
sults from a synthetic benchmark that times the unt ar
of the Linux kernel source tree to illustrate the bene-
fits of the 10D connection management.

3.3. Aggregation of Directory Read Operations

A final improvement in performance that we discuss
in this paper, is the aggregation of directory read opera-
tions on a PVFS file system. As stated earlier, since PVFS
is primarily targeted at workloads where it is normal to
have many clients accessing the same files and directo-
ries concurrently, it does not cache directory entries on the
client machine’s directory entry cache. While such a design
greatly simplifies consistency semantics issues, it comes at
the cost of performance. Aggregation in directory read op-
erations is hindered by the fact that the number of entries
in a directory is not known without a network transaction
to the MGR server. Hence, gl i bc wrappers for the get -
dent s system call make estimates based on the size re-
ported by a st at on the directory, and repeatedly make
the system call until all the entries have been exhausted
or there is an error. Therefore, the previous implementa-
tion makes a network call for obtaining every directory en-
try that was extremely slow. Since the memory for copy-
ing the directory entry is allocated by gl i bc and the sizes
of directory entries as reported by the kernel is dependent
onwhatstruct dirent definition is being used by the
system, the VVFS layer passes an opaque (opaque to the file
system) pointer to the directory entry and an opaque call
back function (f i | I di r _t) to the underlying file system
which returns an error when space provided by gl i bc is
exhausted. Thus, the underlying file system must repeat-
edly call the opaque function until it returns an error. The
new implementation makes a request to the MGR server
to fetch a fixed number of directory entries at a time (cur-
rently 64) to amortize the network transfer costs, and re-
peatedly invokes the fi | | di r -t function until it returns
an error. In Section 4, we illustrate the performance bene-
fits of this approach by timing a recursive listing of a PVFS



file system directory containing the Linux kernel source
tree.

4. Experimental Results

All these experiments were conducted on a 16-node In-
tel Pentium-111 based cluster running Linux kernel 2.4.18
using both the fast Ethernet-based network and a Myrinet-
based network. The platform was configured to run the
MGR server on one of the nodes (on port 3000) and two in-
stances of the 10D servers on each of the nodes (one each
for the Myrinet and the Ethernet interfaces on ports 7000
and 7001). Only one 10D server was used per node for each
test run. In effect, we created two separate 16 10D server
PVFS file systems on the platform.

4.1. Aggregate Bandwidth Tests

Our first test program is a parallel MPI program that de-
termines the aggregate read/write bandwidths for vary-
ing block sizes, iteration count, and number of clients
(pvfs_test.c from the PVFS distribution). Each pro-
cess opens a new PVFS file that is common to all
processes, concurrently writes data blocks to disjoint re-
gions of the file, closes the file, reopens the file, reads the
same data blocks back from the file, and then closes the
file. The tasks of the parallel application synchronize be-
fore and after each 1/0 operation. Times for the read/write
operations on each node are recorded over five trial runs
and the maximum averaged time over all the tasks is
used to compute the bandwidth achieved. In the first ex-
periment, we varied the block sizes and ran the exper-
iment by using the POSIX 1/O interface using both the
user space and kernel space daemons for a fixed num-
ber of clients. The graphs in Figures 4 and 5 plot
the file system read and write bandwidth as a func-
tion of the block size for the POSIX interface when us-
ing Myrinet for 8 and 16 clients. Figures 6 and 7 plot the
same for fast Ethernet. While there is a clear benefit of us-
ing a kernel-space approach for both the networks, the ben-
efits are more apparent for a faster network like Myrinet.
In the case of Myrinet, we achieve around 20% improve-
ment in read bandwidth for 8 clients; the improvement falls
off slightly when using 16 clients. Writes with Myrinet
give nearly 40% improvement, which again drops with in-
creased number of clients. The performance improvements
for a smaller number of clients can be attributed to the re-
moval of an additional step from the write process. For a
larger number of clients, the difference gets smaller be-
cause the dominating bottlenecks are possibly due to
the servers. We achieved nearly 500 MB/sec read band-
width and 550 MB/sec write bandwidth using Myrinet.
The benefits when using a fast Ethernet-based net-
work are not significant, however, indicating that the
network transfer speeds are a bottleneck. The bene-
fits accrued as a result of reduced context switches
and copy overheads start to show up only at intermedi-
ate ranges of block sizes. In this case, we achieve anywhere
from 2 to 10% improvement in bandwidth, and larger im-
provements are observed for writes only (for the same rea-
son as above). We achieve nearly 150 MB/sec read
and 160 MB/sec write bandwidth using fast Ether-
net.
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4.2. Bonniet++

Our second benchmark is the Bonnie++ benchmark,
which performs a series of tests on the file system and re-
ports a number of metrics. The first six tests simulate file
system activity that has been observed to be a bottleneck
in 1/0-intensive applications. Bonnie++ performs a series
of tests on a file of a known size and reports the number of
kilobytes processed per second and the percentage of CPU
used for each of the test. The second set of six tests sim-
ulate operations such as cr eat e, st at, and unl i nk,
which are observed to be common bottlenecks on proxy
web cache servers, news servers and email servers. The
reader is referred to [7] for more information on Bonnie++.

4.2.1. Filel/O Tests The file 1/O tests that are reported
by Bonnie++ are of three kinds, namely, sequential writes,
sequential reads, and random seeks. The sequential writes
are done either per character (using put c) or per block
(using wr i t e) or are rewritten (using r ead, overwrite,
wr it e). The sequential reads are done either per char-
acter (using get c) or per block (using r ead). The ran-
dom seek test forks a certain number of processes, each
of which does a total of 8,000 | seek’s to random loca-
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tions in the file. After the seek, the block is read, dirtied,
and written back in 10% of the cases. In all these exper-
iments, Bonnie++ was configured to use a chunk size of
16 KB, and we varied the file size from 32 MB to 512
MB. Since PVFS does not cache file data on the client
machine, none of these tests —with the exception of the
put c test— should be affected significantly by any buffer-
ing/caching effects, since data is always transferred over
the network. Hence, performance remains unaffected not
only with file size, but also with memory size which is re-
quired as a parameter to Bonnie++ (unless it is set to such
an extremely low value that Bonnie++ will start thrash-
ing). Hence, we show representative results for selected file
sizes. Throughput metrics for the read/write tests in Bon-
nie++ are in KB/sec, while seek throughputs are measured
as the rate per second. These experiments were conducted
for both the kernel space and user space daemon imple-
mentation on both a Myrinet-based and fast Ethernet-based
network. We show the percentage performance improve-
ments obtained with fast Ethernet in Figure 8 and Myrinet
in Figure 9. We expected that the percentage improvement

with a kernel-space approach would be felt only when the
reads and writes were done using the blocked I/0O method
and not when using a per character-based method, since the
main savings of this approach are the reduction in copying
and context switching overheads, which are not too domi-
nant with a per character-based approach. We see from the
graphs, that while rewrites and blocked reads performed
exceptionally well with a kernel-space approach, where we
achieve nearly 90% improvement using fast Ethernet and
around 200% improvement using Myrinet, we do not see
a significant improvement in the performance of blocked
writes, an anomalous behavior that we cannot yet explain.
We also see a significant improvement in the random seek
test of nearly 60% in both the networks. (As expected, the
per character-based techniques do not achieve any signif-
icant benefits with this approach). The increase in perfor-
mance with this approach does come with a price. Figure
10 show the absolute percentage CPU utilization for the
same tests for the Myrinet experiment. We see that in al-
most all the cases, we incur a slightly higher CPU utiliza-
tion overhead, which we surmise is due to the fact that in
most cases the transfer is being performed over less time.
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4.2.2. FileCreation Tests We used two file creation tests
from Bonnie++: sequential test, where a random number
of alpha-numeric characters follow a seven-digit number
to construct the file name, and a random test where the
random characters precede the seven-digit number. The se-
quential tests cr eat e the files in increasing numeric or-
der, st at theminther eaddi r order,and unl i nk them
in the same order. The random tests cr eat e the files
in random order (appears random because of the alpha-
numeric characters in front of the seven-digit number in
the filename), st at them in random order, and unl i nk
all the files in random order. In these tests, it is also possi-
ble to specify the maximum size and the minimum size of
the files that are created, in which case the files are writ-
ten to at creation and read back after the st at. We re-
port this experiments run for the Myrinet network only,
since the results are not significantly different for the fast
Ethernet-based network. The output from this test is the op-
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Figure 10. Myrinet: CPU utilization for Bon-
nie++

eration rate measured per second and is parameterized by
the number of files, which we varied from 1024 to 4096.
Since these tests don’t really transfer large amounts of data,
the benefits of using a kernel space approach are not ex-
pected to be significant, and Figure 11 reinforces the be-
lief. Further, we see particularly low transaction rates for
create operations and small file operations; this will be fur-
ther investigated in the next section. There is no significant
change in the CPU utilization for this workload.

4.3. 10D Connection Management

While the scalability benefits of managing connections
to the 10D server at a node granularity is apparent, we
wanted to quantify the performance benefits of this ap-
proach. Table 1 lists the time taken with and without the
connection management for untarring the Linux 2.5.39 ker-
nel source tree on a PVFS volume for both the user space
and kernel space daemon-based approaches. From Table
1, we see that this strategy did improve performance but

pvisd pvisd Kpvisd Kpvisd

no-mgmt. mgmt. no-mgmt. mgmt.

Fast Ethernet 1067.5sec 1017.96sec 1045.55sec | 1008.50sec
Myrinet 959.4sec 903.4Tsec 933.64sec 885.90sec

Table 1. Linux kernel untar

not significantly (nearly 3% for fast Ethernet and 5% for
Myrinet). In order to investigate the reasons for the in-
significant performance improvements for this workload,
we instrumented the kernel module to count the number
of requests of each type and compute the average time
spent by the requesting process for its request to be ser-
viced. These statistics are made accessible to user-space
through the proc file system. Table 2 lists the time spent
(in pseconds) by a process, while waiting for its request
to be serviced by the daemon (Myrinet-based network) for
this workload. This general purpose file system workload is
characterized by meta-data intensive operations and small
file data transfers. As the table illustrates, the meta-data
operations, and in particular, the create operation domi-
nates over the rest. A create operation is directed to the sin-
gle MGR server, which then checks permissions, and fans
out requests to the appropriate 10D servers directing them
to open this file. Once it gets acknowledgments from all
the 10D servers, it sends back an acknowledgment to the
client, which includes amongst other things, the locations
of the 10D servers and physical distribution of file data.
Thus, the poor performance of meta-data operations can be
attributed to the following reasons; serialization imposed
by the single MGR server, communication overhead with
the 10D servers, and the lack of a client-side meta-data
cache. Moreover, PVFS was designed with a goal of pro-
viding high-performance parallel 1/O for large data trans-
fers, and it has not been well-tuned for small file opera-
tions (The 2.5.39 kernel source tree has an average file size
of around 10 KB) or for meta-data intensive operations.

4.4, Aggregation of Directory Read Operations

The performance improvements obtained by aggre-
gating directory read operations are shown in Table 3.



Upcal cournt pvisd | pvisd Kpvisd | Kpvisd
type no-single | single | no-single single
creaie 15695 41931 | 38605 4T4TT 38493
sefmefa 17764 3052 3025 2975 2970
write 30640 2745 2717 2674 2637
read 1140 2277 3180 2124 2185
mkdir 2070 1693 1681 1652 1666
getmefa | 152607 978 912 944 878
Tookup 35531 374 367 335 330

fot

Table 2. Myrinet: Average time spent waiting
in queue (In psec)

pvisd- Kpvisd- pvisa- KpvTso-
unpatched | unpatched | patched patched

Fast Ethernet | 881.32sec 879.78sec 177.18sec 173.22sec

Myrinet 878.69sec 877.19sec 158.77sec 153.81sec

Table 3. Recursive directory listing

It lists the time taken to recursively list a PVFS di-
rectory, which contains the Linux 2.5.39 kernel source
code for both a fast Ethernet-based network and a
Myrinet-based network. The Linux kernel source tree
has around 15,000 files spread over 2,070 directo-
ries. The command we used to time this experiment
was, tinme Is -aR /mt/pvfs/linux-2.5.39/
> /dev/null. As expected, directory aggrega-
tion increases performance by almost a factor of 5.
The kernel space approach, however, does not signifi-
cantly improve the performance (as compared to a user
space approach) in both the networks, since the vol-
ume of data transferred is not very large. We note here
that, this is still much slower than for a network file sys-
tem with client-side caching of directory entries. For
instance, the time taken to recursively list the same ker-
nel source tree on NFS on the same platform is nearly
10 seconds. Hence, a lot of performance tuning still re-
mains to be done.

5. Concluding Remarksand Future Work

PVFS is an actively supported, high-performance, ro-
bust, and usable parallel file system for Linux-based com-
modity clusters. It supports a number of different APlIs,
most notably the UNIX/POSIX I/O APl and the MPI-
I0 API, which allow legacy binaries as well as high-
performance scientific applications to access PVFS file
systems. In this paper, we have addressed several perfor-
mance and scalability problems of the PVFS kernel module
that allows applications to access PVFS file system with
the standard UNIX 1/O interfaces. Applications which read
and write large amounts of data will be benefited due to the
reduction of buffer-copies and context switches. Managing
socket connections to the 10D servers benefits applications
which manipulate a large number of files and aggregation
of directory operations benefits applications which access
and manipulate directory structures.

Considerable room for improvement and tuning re-
mains. While PVFS has been optimized for applica-
tions that demand high file system bandwidths, it is still
largely untuned for small file operations and meta-data in-
tensive operations, which are important for many gen-

eral purpose applications like mail and news servers. Work
is already underway on PVFS2 that eliminates the de-
pendence on a single meta-data server to improve per-
formance of small file operations and meta-data inten-
sive workloads. Performance could be increased further by
having a pool of client-side kernel threads (possibly lim-
ited by the number of CPUs, and having each thread bound
to a CPU) that services requests from per CPU request
queues or by employing an event driven non-blocking ap-
proach to servicing requests out of order from the request
queue.
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