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A bstract— High-end computing (HEC) applications in 
critical areas of science and technology tend to be more 
and more data intensive. I/O has become a vital 
performance bottleneck of modern HEC practice.  
Conventional HEC execution paradigms, however, are 
computing-centric for computation intensive applications. 
They are designed to util ize memory and CPU 
performance and have inherent l imitations in addressing 
the critical I/O bottleneck issues of HEC. In this study, 
we propose a decoupled execution paradigm (DEP) to 
address the challenging I/O bottleneck issues.  DEP is the 
first paradigm enabling users to identify and handle data-
intensive operations separately. It can significantly 
reduce costly data movement and is better than the 
existing execution paradigms for data-intensive 
applications. The initial experimental tests have 
confirmed its promising potential.  Its data-centric 
architecture could have an impact in future HEC systems, 
programming models,  and algorithms design and 
development.  

K ey w ords- decoupled execution paradigm, high-end 
computing, data-intensiv e computing, storage 

I.  INTRODUCTION 
Many high-end computing (HEC) applications in critical 

areas of science and technology are becoming more and more 
data intensive [CLGN09, DBMA11]. For instance, twelve out 
of twenty-six INCITE applications run at Argonne National 
Laboratory generate and store terabytes of data on-line 
[RLUW09].  These applications contain a large number of I/O 
accesses, where large amounts of data are written to and 
retrieved from storage. In addition to newly emerged data-
intensive applications, such as information retrieval and 
transaction collection, conventional high-end computing 
applications have also become increasingly data intensive due 
to the ever increasing of computing power, and new needs such 
as animation and data mining. Input/output has become the key 
performance factor in modern computing. 

The rapid advance of semiconductor process technology 
and the evolution of microarchitectures, such as 
multicore/manycore architectures, have drastically increased 
the computing power of microprocessors. However, compared 
to the computational performance improvement, data-access 

performance (latency and bandwidth) improvement has been 
at a snail’s pace. The disk drive speed has only increased by 
roughly 7% each year over the past two decades, which is 
significantly lagging behind the nearly 50% per year 
improvement of processor speed [CLGN09, DBMA11]. This 
disparity of performance improvement is expected to continue 
in the near future. Figure 1 compares the disk drive bandwidth 
improvement (left vertical axis) and the computational 
capability improvement of well-known supercomputers (right 
vertical axis) for the past several decades [RLUW09]. The 
computational performance improvement rate is magnitudes 
higher than the bandwidth improvement rate of disk drives, 
which causes a so-called “I/O-wall” problem. 

Data access has become the bottleneck of computing. 
However, existing HEC execution models, and their associated 
runtime systems, are computing-centric [GrLT99, GA, UPC]. 
They are not ready to support efficient input/output. For 
instance, MPI, the dominant parallel programming model of 
HEC, focuses on exchanging in-memory data for parallel 
computations. HEC architecture and system research often 
consider I/O devices as peripheral and leave them to someone 
else. HEC performance is commonly measured in terms of 
peak performance of small computation kernels that can fit into 
memory and cache well. The data-driven IT industry has 
developed a new paradigm, MapReduce, for their needs 

Figure 1. FLOPS of HEC Systems v.s. Disk Drive Bandwidth [RLUW09] 



[DeGh04]. There is a great need for the HEC community to 
rethink the execution models for the coming data-intensive 
HEC era. 

In this study, we propose an innovative decoupled 
execution paradigm (DEP) and the notion of the separation of 
computing nodes and data (processing) nodes. The novelty of 
the new DEP execution paradigm is that the data nodes, 
collectively, take care of the data-intensive operations of the 
application. The computing nodes, collectively, take care of the 
computation-intensive operations. The application is executed 
in a decoupled but fundamentally more efficient manner for 
data-intensive HEC with the collective support from data 
processing nodes and computing nodes. The data processing 
nodes proposed in the DEP design are extension of the prior 
work of server-push architecture [SuBC07a, SuBC07b] that 
employs dedicated data-access servers to proactively push data 
to compute nodes instead of a traditional pull-based 
architecture. The DEP execution paradigm is an evolutionary, 
if not revolutionary, execution model where I/O intensive 
operation is as important as computation. The current results 
have shown the DEP approach is promising and has a potential. 

The rest of the paper is organized as follows. Section II 
reviews important existing studies in related areas. Section III 
presents the design and notion of the proposed decoupled 
execution paradigm. Section IV discusses implementation 
issues and introduces the initial prototyping implementation. 
Section V presents the experimental evaluation results. Section 
VI concludes this study and discusses the future work. 

II. RELATED WORK 
Extensive studies have focused on improving the 

performance of data-intensive HEC systems at various levels. 
This section discusses existing studies along three lines: 
architecture improvements, programming model 
improvements, and runtime system improvements. To the best 
of our knowledge, there is no study that rethinks the execution 
paradigm to address fundamental I/O issues.  

A. Architecture Improvements for Data-Intensive High-End 
Computing 
At the hardware level, the emerging nonvolatile storage-

class memory devices such as flash-memory based solid-state 
drives and phase-change memory can provide more promising 
performance than hard disk drives, especially for random 
accesses [ChKZ11, DoXi11]. However, they cannot reduce the 
data movement across the network, and they help to mitigate 
the performance gap between CPU and I/O but will not be able 
to solve the I/O bottleneck problem alone. 

Active storage [RiGF98, SLCR10, XMFL11], active disks 
[RiGi97, ChMa02], and smart disks [ChLC03] have gained 
increasing attention recently. Active storage leverages the 
computing capability of storage nodes and performs certain 
computation to reduce the bandwidth requirement between 
storage and compute nodes. Active disks and smart disks 
integrate a processing unit within disk storage devices and 
offload computations to embedded processing unit. However, 
these architecture improvements are designed to explore either 
the idle computing power of storage nodes or an embedded 

processor, and have limited computation-offloading capability. 
It is easy to see that DEP provides a much more powerful 
platform for the same purpose. I/O forwarding (both hardware 
and software solutions) [ACIK09, IRYB08] and data shipping 
[ScHa02] provide approaches to offloading I/O requests to 
dedicated nodes, aggregating the requests, and carrying out 
them on behalf of compute nodes. The data nodes proposed in 
the DEP design can carry all these functions and do more.  

B. Programming Model Improvements for Data-Intensive 
High-End Computing 
Current parallel programming models are designed for 

computation-intensive applications. These programming 
models include Message Passing Interface (MPI) [GrLT99], 
Global Arrays [NiHL94], Unified Parallel C [ElSm06], Chapel, 
X10, Co-array Fortran, and data parallel programming models 
such as High Performance Fortran (HPF). These programming 
models primarily focus on the memory abstractions and 
communication mechanism among processes. I/O is treated as 
a peripheral activity and often a separate phase in these 
programming models and execution paradigms, which is often 
achieved through a subset of interfaces such as MPI-IO 
[TRLG04]. 

Advanced I/O libraries, such as Hierarchical Data Format 
(HDF), Parallel netCDF (PnetCDF), and Adaptable IO System 
(ADIOS), provide high-level abstractions, map the abstractions 
onto I/O in one way or another, and complement parallel 
programming models in managing I/O activities. The recent 
MapReduce programming model [DeGh04, SMWB10] is an 
instant hit and has been proven effective for many data-
intensive applications. The MapReduce model, however, is 
typically layered on top of distributed file systems and is not 
designed for high performance computing semantics. It 
requires specific Map and Reduce abstractions as well 
[DeGh04, SMWB10]. DEP is designed for general parallel 
applications, with an increased programming capability.  

C. Runtime System Improvements for Data-Intensive High-
End Computing 
There has been significant amount of research effort in 

optimizing I/O performance using runtime libraries, such as 
collective I/O [ThGL99, LiCh08, CSTR11], two-phase I/O, 
extended two-phase I/O, data sieving, server-direct I/O, disk-
directed I/O, lightweight I/O [OWRM06], partitioned 
collective I/O [YuVe08], layout-aware collective I/O 
[CSTR11], ADIOS library [LKSP08], and resonant I/O 
[ZhJD09]. These strategies collect and aggregate small requests 
into larger ones at the I/O client/middleware/server level.  

Many caching, buffering, staging, and prefetching 
optimization strategies exist at runtime as well, such as 
collective caching [LCCC07], collective buffering [NiLo97], 
active buffering [MWLY02], discretionary caching [VSKT06], 
SpecHint prefetching [ChGi99], transparent informed 
prefetching (TIP) [PGGS95], adaptive prefetching based on 
time series modeling [TrRe04], multiple-level caching and 
prefetching for Blue Gene systems [BICL09], and our prior 
work in pre-execution based prefetching [CBST08, CBST08a] 
and a signature based prefetching with post-execution analysis 



[BCST08]. Abbasi et. al. recently proposed a DataStager 
framework with data staging services that move output data to 
dedicated staging or I/O nodes prior to storage, which has been 
proven effective in reducing the I/O overheads and 
interferences on compute nodes [AWEK10]. Zheng et. al. 
proposed a preparatory data analytics (PreDatA) approach to 
preparing and characterizing scientific data when generated 
(e.g. data reorganization and metadata annotation) to speedup 
subsequent data access [ZADL10]. These approaches have 
shown considerable performance improvement with dedicated 
output staging services and preparatory analysis. Our proposed 
DEP approach, built upon server-push architecture [SuBC07a, 
SuBC07b], leverages dedicated nodes as well, but is different. 
The dedicated data processing nodes work for both reads and 
writes, and can provide buffering or staging, but more 
importantly on reduction. The notion of data processing nodes 
in DEP is a rethinking of HEC systems architecture to provide 
balanced computational and I/O capability. The DEP considers 
to address the I/O bottleneck issues fundamentally from the 
execution paradigm including systems architecture and 
programming model, not only from runtime optimizations.  

Parallel file systems (PFS), such as Lustre, GPFS [ScHa02], 
PanFS, PVFS, and PPFS2, enable concurrent I/O accesses from 
multiple clients to files. Numerous optimizations exist to 
improve the file system performance, such as data staging 
services [AWEK10], latent asynchrony I/O [WPBW09], and a 
log-structured interposition layer [BGGM09]. A 
comprehensive comparison between PVFS and distributed file 
system HDFS was presented in [TSPL11]. 

III. DECOUPLED EXECUTION PARADIGM 

A. A Motivating Example 
In scientific applications, data is commonly represented by 

a multi-dimensional array-based data model. For instance, the 
widely used Community Earth System Model (CESM) 
software package consists of four separate modules 
simultaneously simulating the earth’s atmosphere, ocean, land 
surface and sea-ice, and each module uses the multi-
dimensional arrays data model [CESM]. Figure 2 shows a 3-
dimensional temperature data with longitude, latitude, and time 
dimensions. It is often needed to compute the moving average, 
median, lowest and highest temperature with specified 
conditions such as areas and periods of time. Such computed 
results will be further correlated with the computed results 

from other parameters, such as the humidity and wind speed, to 
predict weather conditions. 

The current way of conducting such processing is to read 
the required data (e.g., a sub-array with the bold border, as 
shown in Figure 2) from storage servers to compute nodes, 
perform computations on desired data with specified conditions, 
such as those data shown in shaded area, and then write the 
output back to storage. For CESM, an experimental test shows 
that the data access and movement time for the calculation of 
the moving average, median, lowest and highest degrees can 
occupy 88.2%, 95.4%, 96.6%, and 96.6% of the total execution 
time on a cluster, where 128GB of data are retrieved to 272 
nodes for processing (Figure 3). 

CESM clearly has data retrieval and processing phases and 
computing and simulation phases, as many applications do. 
The basic idea of DEP is to handle these two phases differently 
on different nodes. DEP decouples the execution operations 
into computation-intensive operations and data-intensive 
operations. Computation-intensive operations are executed on 
massive compute nodes. Data-intensive operations are executed 
on dedicated data processing nodes. 

B. Decoupled Execution Paradigm Design 
The decoupled execution paradigm (DEP) consists of three 

components: system architecture, programming model and 
runtime system. The architecture view of DEP is shown in 
Figure 4.  

1) System architecture. DEP decouples the nodes into data-
processing (data) nodes and compute nodes. Data-processing 
nodes are further decoupled into compute-side data nodes and 
storage-side data notes. Compute-side data nodes are compute 
nodes that are dedicated for data processing. Storage-side data 
nodes are specially designed nodes that are connected to file 
servers with fast network. Compute-side data nodes reduce the 
size of computing generated data before sending it to storage 
nodes. Storage-side data nodes reduce the size of data retrieved 
from storage before sending it to compute-side data nodes. 

Figure 2. Processing 3-dimensional Temperature Data 

Figure 3. Comparison of Computation Time and Data-access Time  



Writes will go through compute-side data nodes, whereas reads 
will go through the storage-side data nodes. Data nodes can 
provide simple data forwarding without any data size reduction, 
but the idea behind data nodes is to let the data nodes conduct 
the decoupled data-intensive operations and optimizations to 
reduce the data size and movement.  

2) Programming model. What operations should be passed 
to the data nodes are determined by users and supported by the 
decoupled execution programming model (DEPM). The DEPM 
component is an MPI extension, allowing users to specify 
operations conducted on data nodes, instead of on compute 
nodes as the normal MPI library does. The purpose of the MPI 
extension and the DEPM component are similar to the netCDF 
Operators [ZeWa07] in some sense, allowing data-intensive 
operations to be decoupled and processed on data nodes, and 
the results being sent back to compute nodes for further 
processing. For instance, an ncwa operator in netCDF 
computes the weighted average on specified data and returns 
the result for further computations, reducing the unnecessary 
data movement. Different from netCDF Operators, however, 
the DEPM is extended and much more powerful. It allows 
operations to be decoupled not only operators, which 
essentially allows general piece of code to be executed on data 
nodes, beyond operators. In addition, the DEPM allows 
optimizations across operations, which is impossible in the 
netCDF Opertaors.  

3) Runtime system. At runtime, the DEP relies on two 
libraries, message passing library and data processing library, 
to support computation-intensive operations and data-intensive 
operations respectively. The message passing library focuses 
on the memory abstraction of massively parallel processes and 
provides the runtime support for computation-intensive 
operations to be run on massive compute nodes. We leverage 
the existing MPI library for this purpose. The data processing 
library focuses on the I/O abstraction and provides runtime 
support for data-intensive operations to be run on data nodes. 

These two libraries are tightly coupled, and the message 
passing library manages the interaction between these two 
libraries as well. The runtime system can optimize user-defined 
data-intensive operations and other I/O optimization operations 
on data nodes as well.  

The proposed decoupled execution paradigm changes the 
current execution paradigm by balancing the computation and 
data-access capabilities. This new paradigm separates 
computation-intensive operations and data-intensive operations 
and handles them concurrently and in a coordinated manner, 
but on different hardware and software environments for best 
performance.  

C. Comparison of Execution Paradigms 
The proposed DEP, in other words, reshapes the current 

execution paradigm of “retrieve - compute - store” cycles into 
“retrieve - reduce - compute -reduce - store” cycles as shown in 
Figure 5, where the “reduce” phases are designed to conduct 
data-intensive operations and reduce data size before moving 
data across the network. These retrieval, reduce, compute, and 
store phases can be pipelined to overlap the I/O, 
communication, and computation times. From one point of 
view, DEP is an enhanced version of MapReduce, where the 
“reduce” is not conducted by one node with its local storage, 
but a set of (data) nodes and the global storage, so that parallel 
computing features can be maintained. From another point of 
view, the data nodes are the data-access accelerators, to speed 
up the storage data-access delay and reduce data size before 
sending data across the network.  

IV. IMPEMENTATION OF DECOUPLED EXECUTION 
PARADIGM 

A. Systems Architectures 
Data nodes perform the data-intensive operations and data-

access optimizations with runtime library support. They sit 
close to the data source physically. The two kinds of data 
nodes, compute-side nodes and storage-side nodes, are 
different. The storage-side data nodes are predefined and static. 
The compute nodes and the compute-side data nodes can be 
either predefined or dynamically assigned. The predefined 
strategy configures the compute nodes and compute-side data 
nodes statically and in advance. For instance, a subset of nodes 
in a rack can be predefined as compute-side data nodes, and the 

Figure 5. Comparison of Execution Paradigms 

Figure 4. Decoupled Execution Paradigm (DEP) for Data-
Intensive HEC 



rest act as normal compute nodes. The selection of the data 
node should consider the physical location and network 
topology. For instance, if we assume to have 16 nodes on one 
card, 4 cards in one plane, and two planes in one rack, we can 
have one data node in each card, and 4 data nodes in one plane 
and 8 in one rack. The compute-side data nodes can 
dynamically join the compute nodes group and act as compute 
nodes as well to make the best use of resources. The dynamic 
configuration of nodes is instructed by users.  

B. Programming Model 
An ideal implementation for the decoupled execution 

paradigm would be automatically identifying those data-
intensive operations and shipping them to data-processing 
nodes, while keeping computation-intensive operations on the 
compute nodes. This solution is challenging as it requires a 
precise understanding of the code and an automatic separation 
process. Instead, a more practical solution is to rely on 
programmers’ hints and knowledge. We currently take an MPI 
extension approach and rely on programmer’s knowledge to 
instruct the operations that are decoupled and to be executed on 
data nodes. The processed results are transferred via MPI 
communications as well. This approach is a manual approach, 
but we plan to build a semi-automatic decoupling tool to assist 
the application decomposition. This is a two-step process. The 
first step enables programmers to leverage the existing SIGIO 
tool [SIGIO] to identify these statements that cause intensive 
data accesses with profiling runs and trace-based analysis. The 
second step enables programmers to identify data-intensive 
operations and the essential computation related with these 
data-intensive operations that can be shipped to data nodes for 
processing. The implementation of this semi-automatic 
decoupling tool is expected to ease the needs from 
programmers’ knowledge. 

C. Runtime System 
The current implementation of the runtime system is at an 

early stage. The implementation carries out the decoupled code 
specified by programmers on the data nodes and transmit the 
results between compute nodes and data nodes. The 
prototyping system is simple but focuses on verifying the idea 
and potential. An ideal implementation can leverage existing 
data-intensive processing library, such as a MapReduce library, 
but customize it for the DEP. The rationale is that these data-
intensive processing library naturally fits the requirement of the 
runtime system on the data nodes (processing data intensively) 
in the DEP. In addition, we plan to incorporate and develop the 
filtering, caching, and prefetching components for the runtime 
system on data nodes. These components can build a staging 
area on data nodes, further reduces data transfer over network, 
and also removes redundant data movement. 

V. EXPERIMENTAL RESULTS 

A. Experimental Platform 
We have performed initial experimental tests on a 640-node 

Linux cluster, Hrothgar cluster [HPCC]. We dedicated a 
portion of nodes as data processing nodes to evaluate the DEP 
potential. The experimental tests varied the configuration and 
ratio of compute nodes and data nodes for evaluating different 
scenarios. Each node of the Hrothgar cluster is equipped with 

Intel(R) Xeon(R) 2.8GHz CPUs (12 cores per node) and 24GB 
memory. The cluster has a 600TB global parallel file system.  

We performed the tests with two application cases. One is 
the kernel calculation of the CESM that computes the moving 
average of selected area of specified data as discussed in 
Section III. Another application is a geographic information 
system that predicts the rainfall accumulation for an area by 
processing the geospatial data from the GIS and the data 
collected from rain sensors [TWAC01, PostGIS]. This 
application calculates the water flow directions and analyzes 
the impact by processing the terrain and rain sensors data, as 
shown in Figure 6. It has two primary operations, flow routing 
and flow accumulation operations. The flow routing is first 

used to calculate the flow direction at every point of the terrain 
in order to model global flow of water. The terrain data is 
obtained in raster (grid) form: the coordinates of the data 
correspond to a uniform lattice, and elevations are given for 
each cell in the grid. It defines the neighbors of a grid cell s are 
the eight cells around s; and a neighbor who owns strictly 
lower elevation than s is called downslope neighbor; as well as 
the gradient of s towards one of its neighbors can be estimated 
as the ratio of the height difference of the cells and the 
horizontal distance between them. The steepest downslope 
neighbor of s is the downslope neighbor with the largest 
gradient. The flow direction of a cell is the directions in which 
water would flow if poured into that cell. With these directions 
information, flow accumulation algorithm computes to quantify 
the flow through each point by summing all the flow that 
passed through. The rainfall accumulation can thus be analyzed 
and predicted. 

B. Results of the CESM Kernel Code 
The first set of experiments that we have conducted is to 

evaluate the execution time results of the CESM kernel code 
with 12GB, 24GB, 48GB, and 96GB of data sets respectively 
on total 48 nodes. Figure 7 reports the results with 12 and 24 
storage-side data nodes respectively, comparing the 
conventional execution model and the DEP model. The DEP 
model clearly outperforms the former. It can also be observed, 
with the growing data sizes, the performance gain of the DEP 
further increases. Figure 8 reports the results with the same 
data sets on 96 total nodes, with 24 and 48 storage-side data 
nodes respectively, and compares the DEP against the 
conventional execution model. The performance trend we can 

Figure 6. Flow Directions in a Grid of Terrains. Numbers represent the 
gradient of each terrain. Arrows represent the direction of water flow. 



observe is similar to that in previous tests. The DEP improves 
the apparition run time by more than three folds. On average, it 
achieved speedup of 229%. 

 
Figure 7. Execution Time of CESM Kernel Code with Different Data Sets on 
48 Nodes, with 12 and 24 storage-side data nodes respectively. 

 
Figure 8. Execution Time of CESM Kernel Code with Different Data Sets on 
96 Nodes, with 24 and 48 storage-side data nodes respectively. 

 

We can also analyze the results from the effective 
bandwidth obtained for different scenarios tested. The 
effective bandwidth is calculated by the actual amount of data 
processed (the amount of data that is supposed to be moved) 
divided by the time taken. Figure 9 illustrates the results with 
different data sets tested on 96 nodes. It can be observed that 
the DEP significantly increases the effective bandwidth for 
data processing. The performance advantages primarily come 
from the decoupled operations and significantly reduced data 
movement. The DEP tends to be more scalable as well in 
terms of the amount of data processed, while the conventional 
execution paradigm suffers a decreasing performance trend.  
The further investigation reveals that the performance 
degradation of the conventional case is mainly caused by the 
contention from competing nodes, while the DEP achieved 
stable performance improvement. 
 

 

 
Figure 9. Effective Bandwidth of CESM Kernel Code with Different Data 
Sets on 96 Nodes. 
 

C. Results of the GIS Kernel Code 
We have also performed extensive tests with the GIS kernel 

code that computes the flow routing and accumulation.  

Figures 10, 11, and 12 report the effective bandwidth 
results of the flow routing and accumulation code with 
different data sets on 24, 48, and 96 nodes respectively. Each 
figure reports the results with two cases, one case with one 
fourth of nodes as storage-side data nodes, and the other case 
with half of nodes as the storage-side data nodes. The results 
are mostly consistent across various runs under different 
scenarios.  
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Figure 10. Effective Bandwidth of Flow Routing and Accumulation Code with 
Different Data Sets on 24 Nodes. Left: with 6 storage-side data nodes. Right: 
with 12 storage-side data nodes. 

 

 

Figure 11. Effective Bandwidth of Flow Routing and Accumulation Code with 
Different Data Sets on 48 Nodes. Left: with 12 storage-side data nodes. Right: 
with 24 storage-side data nodes. 

 

It can be observed that the DEP achieved clear better 
performance in all cases due to decoupling and reducing data 
movement. The DEP achieved up to six folds of speedup when 
compared with the conventional execution model, which is a 
promising result. Overall, the DEP achieved stable 
performance improvement and clearly outperformed the 
existing execution model. The results are encouraging. 
 

 

Figure 12. Effective Bandwidth of Flow Routing and Accumulation Code with 
Different Data Sets on 96 Nodes. Left: with 24 storage-side data nodes. Right: 
with 48 storage-side data nodes. 

 

Figure 13 plots the results of various tests together for easy 
comparison across various tests. These tests have confirmed the 
clear benefits of the DEP.  

 

 

Figure 13. Comparison among Various Tests for the Flow Routing and 
Accumulation Code. 
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VI. CONCLUSION 
With the tremendous advance in processor architectures and 

the computational capability, I/O has been widely recognized 
as the bottleneck in high-end computing for data-intensive 
applications. These data-intensive applications are critical for 
scientific discovery and innovations. However, the I/O 
bottleneck issue and massive amount of data movement for 
these applications can largely limit the productivity of data-
intensive sciences.  

In this study, we propose a decoupled execution paradigm 
(DEP) for data-intensive high-end computing. The DEP builds 
separate data-processing nodes and compute nodes, 
decomposes application operations into computation-intensive 
and data-intensive operations, and maps these decoupled 
operations onto compute nodes and data-processing nodes 
respectively. The data-processing nodes and compute nodes 
collectively provide a balanced system design and deliver the 
best performance for data-intensive applications. We have 
verified the idea with an initial prototype. The results are 
promising: for both climate model kernel code and the flow 
routing and accumulation code in the GIS, the prototype has 
shown significantly better results than the conventional 
execution paradigm due to decoupled operations and reduced 
data movement. While this study is an initial step of building a 
new execution paradigm for data-intensive HEC, the current 
results are encouraging. The current study confirms that the 
DEP has a great potential for data-intensive HEC. Given the 
growing importance of supporting data-intensive sciences, the 
DEP can have an impact. 
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