
 Proceedings of HPDC-12, 2003

A Performance Study of Monitoring and Information Services for

Distributed Systems

Xuehai Zhang,1 Jeffrey L. Freschl,2 and Jennifer M. Schopf3

hai@cs.uchicago.edu, jefflf@cats.ucsc.edu, jms@mcs.anl.gov

1Department of Computer Science, University of Chicago
2Department of Computer Science, University of California at Santa Cruz

3Mathematics and Computer Science Division, Argonne National Laboratory

Abstract To date, very few results have been published that
quantitatively study the performance of the current
monitoring and information services in distributed
systems. Aloisio et al. [1] studied the capabilities and
limitations of the Globus Toolkit’s Monitoring and
Discovery Service; however, their experiments were
limited to simple tests on a Grid Index Information
Service (GIIS) only. Plale, Dinda and Laszewski [22]
examined the advantages of building a Grid Information
Service on a hierarchical representation and a relational or
flat table representation; however, the comparison was
based only on the discussion of the different features of
concepts and services used in these two representations.
Currently no information or monitoring service uses
either of these approaches, though the Avaki Data Grid
[17] uses a built-in relational database to maintain its
metadata as a data access service. A recent study by Plale
[21] benchmarked a synthetic workload formed by a set
of basic operators (queries, updates, etc.) against a
theoretical information service implemented by using two
different databases, MySQL and Xindice, and then
evaluated the performance, however this work did not
evaluate any current system used in practice. The methods
and topics we address in this paper (caching, connectivity,
serial bottleneck, etc.) have a strong link to modeling and
evaluation of distributed file systems [2] and distributed
data systems [19][20] as well.

Monitoring and information services form a key

component of a distributed system, or Grid. A quantitative
study of such services can aid in understanding the
performance limitations, advise in the deployment of the
monitoring system, and help evaluate future development
work. To this end, we study the performance of three
monitoring and information services for distributed
systems: the Globus Toolkit® Monitoring and Discovery
Service (MDS2), the European Data Grid Relational Grid
Monitoring Architecture (R-GMA) and Hawkeye, part of
the Condor project. We perform experiments to test their
scalability with respect to number of users, number of
resources and amount of data collected. Our study shows
that each approach has different behaviors, often due to
their different design goals. In the four sets of
experiments we conducted to evaluate the performance of
the service components under different circumstances, we
found a strong advantage to caching or pre-fetching the
data, as well as the need to have primary components at
well-connected sites because of the high load seen by all
systems.

1. Introduction

In this paper, we describe the scalability and
performance of three monitoring and information
services: the Globus Toolkit® Monitoring and Discovery
Service (MDS2) [3][16], the Relational Grid Monitoring
Architecture (R-GMA) [5] used in the European Data
Grid [4], and Hawkeye [11], part of the Condor project
[15]. Each of these systems is in use in production or
near-production Grid testbeds. To facilitate the
performance comparison among the three services, we
map the functional components of one service to the
counterparts of the others. Details of each are given in
Section 2.

Grid platforms [8] depend on monitoring and
information services to support the discovery and
monitoring of the distributed resources for various tasks.
For example, a user may want to determine the best
platform on which to run an application, a client program
may want to collect a stream of data to help steer an
application, or a system administrator may want to be
notified when changes in system load or free disk space
occur. Hence, it is helpful to study the behavior of a
monitoring and information services under different
circumstances in order to understand any performance
limitations in common settings.

 1

GIIS

Cache contains info from
A and B

GIIS requests info
from GRIS services

Client 1 Client 2

Client 2 uses GIIS for
searching collective
information

GRIS register with GIIS

Resource A

GRIS

IP
IP Resource B

GRIS

IP
IP

IP

Client 1 searches
the GRIS directly

GIIS

Cache contains info from
A and B

GIIS requests info
from GRIS services

Client 1 Client 2

Client 2 uses GIIS for
searching collective
information

GRIS register with GIIS

Resource A

GRIS

IP
IPResource A

GRIS

IP
IP Resource B

GRIS

IP
IP

IP

Resource B

GRIS

IP
IP

IP

Client 1 searches
the GRIS directly

Figure 1: The MDS2 Architecture. This architecture is flexible: There can be several levels of GIISs,

and any GRIS or GIIS can register with another, making this approach modular and extensible.

We designed a set of experiments to evaluate the

effect of a large number of concurrent users, resources,
and information sources for each service. We used a
LAN setting because we did not want to have network
times as the dominating factor in the experiments – we
wanted to test the software on its own merits. We
analyzed the performance limiting factors and their
influence, and compared the performance behavior. The
analysis and comparison results, given in Section 3, also
provide constructive suggestions for performance
improvements. Section 4 presents our recommendations
for using these services. Section 5 gives our conclusions
and briefly discusses future work.

2. MDS2, R-GMA, and Hawkeye

This section describes the background of the three

monitoring and information services and the mapping of
the functional components among them.

2.1. MDS2

The Monitoring and Discovery Service (MDS2)

[3][16] is the Grid information service used in the
Globus Toolkit [7]. It uses an extensible framework for
managing static and dynamic information about the
status of a computational Grid and all its components:
networks, compute nodes, storage systems, instruments,
and so on. MDS2 is built on top of the Lightweight
Directory Access Protocol (LDAP) [18][26].

MDS2 is used primarily to address the resource
selection problem, namely, how a user identifies the host
or set of hosts on which to run an application. It is

designed to provide a standard mechanism for publishing
and discovering resource status and configuration
information. MDS2 provides a uniform, flexible
interface to data collected by lower-level information
providers. It has a decentralized structure that allows it to
scale, and it can handle static or dynamic data about
resources, queues and the like. With MDS2, one can also
restrict access to data using GSI (Grid Security
Infrastructure) credentials.

MDS2 has a hierarchical structure (see Figure 1)
that consists of three main components. A Grid Index
Information Service (GIIS) provides an aggregate
directory of lower level data. A Grid Resource
Information Service (GRIS) runs on a resource and acts
as a modular content gateway for a resource. Information
Providers (IPs) interface from any data collection
service and then talk to a GRIS. Each service registers
with others using a soft-state protocol that allows
dynamic cleaning of dead resources. Each level also has
caching to minimize the transfer of un-stale data and
lessen network overhead.

2.2. GMA and R-GMA

The Relational Grid Monitoring Architecture (R-
GMA) [5] monitoring system is an implementation of
the Grid Monitoring Architecture (GMA) [25] defined
within the Global Grid Forum (GGF) [10]. It is based on
the relational data model [6] and Java Servlet
technologies [13]. Its main use is the notification of
events—that is, a user can subscribe to a flow of data
with specific properties directly from a data source. For
example, a user can subscribe to a load-data data stream,

 2

and create a new Producer/Consumer pairing to allow
notification when the load reaches some maximum or
minimum.

group and designed to automate problem detection, for
example to identify high CPU load, high network traffic,
or resource failure within a distributed system. Its
underlying infrastructure builds on the Condor [15] and
ClassAd [23] technologies. The main use case that
Hawkeye was built to address is that of being able to
offer monitoring information to anyone interested and to
execute actions in response to conditions. It also allows
for easier software maintenance within a pool.

Hawkeye involves two fundamental ideas: its use of
the Condor ClassAd Language to identify resources in a
pool, and ClassAd Matchmaking [23][24] to execute jobs
based on attribute values of resources to identify
problems in a pool. A ClassAd is a set of attribute/value
pairs (e.g., “operating system” and “Linux”). The
Manager performs ClassAd Matchmaking between a
Trigger ClassAd, submitted by a client, and all Startd

POOL
master

Startd
Collector

Hawkeye Manager

M

Hawkeye Monitoring Agent
host1

master

Startd

Hawkeye Monitoring Agent

host4

master

Startd

host3

Hawkeye Monitoring Agent

host6

master

Startd

MM M MM

MODULE

Figure 4: Summary of the Hawkeye Architecture

Inform ation

Consumer

Producer

directory
service

events

event
publication
information

event
publication
information

Application

Producer
Servlet

Registry
Servlet

Schem a
Servlet

Schem a Interface

R
egistry Interface

Sensor
Producer

GMA
Consumer

GMA
Producer

GMA
Registry

Client Side Hidden
Com ponents Server Side

Invocation

Consum er
Servlet

Consum er

Figure 2: GMA Components Figure 3: R-GMA Components

GMA is an architecture for monitoring components
that specifically addresses the characteristics of Grid
platforms. GMA consists of three components (shown in
Figure 2): Consumers, Producers, and a Registry.
Producers register themselves with the Registry, and
Consumers query the Registry to find out what types of
information are available and to locate the corresponding
Producers. Then the Consumer can contact a specific
Producer directly. GMA as defined currently does not
specify the protocols or the underlying data model to be
used.

Figure 3 illustrates the R-GMA components and
their mapping to GMA. In R-GMA, to register with a
Registry, a Producer advertises a table and a definition of
a partitioning predicate; this predicate defines the view
of the complete virtual table that the Producer publishes.
The Producer module communicates with a
ProducerServlet, which registers the information to the
RDBMS in the Registry. The RDBMS holds the
information for all the Producers, namely the registered
table name, the predicate, and some internal information.
Consumers can issue SQL queries against a set of
supported tables. The ConsumerServlet consults the
Registry to find suitable Producers. Then, the
ConsumerServlet acting on behalf of the Consumer
issues new queries to the located Producers to request
and return the data to the Consumer. The
ProducerServlet (or ConsumerServlet) is typically
configured to be near to the Producer (or the Consumer)
for a better performance.

2.3. Hawkeye

along with the Basic Function of Each Node Hawkeye [11] is a tool developed by the Condor

 3

Table 1: Component Mapping

 MDS2 R-GMA Hawkeye

Information Collector Information
Provider Producer Module

Information Server GRIS ProducerServlet Agent
Aggregate Information

Server GIIS None Manager

Directory Server GIIS Registry Manager

ClassAds. A Trigger ClassAd specifies an event and a
job to execute if the event occurs. For example, consider
the case in which a Trigger ClassAd specifies an event in
which the CPU load is greater than 50 and a job that will
kill a Netscape client running on the matched machine; if
any machine advertises a Startd ClassAd with a CPU
load value of greater than 50, the Manager will kill that
machine’s Netscape process.

The architecture of Hawkeye comprises four major
components: pool, Manager, Monitoring Agent, and
Module (Figure 4). The components are organized in a
four-level hierarchical structure. A pool is a set of
computers, in which one computer serves as the
Manager and the remaining computers serve as
Monitoring Agents. A Manager is the head computer in
the pool that collects and stores (in an indexed resident
database) monitoring information from each Agent
registered to it. It is also the central target for queries
about the status of any pool member. A Monitoring
Agent is a distributed information service component
that collects ClassAds from each of its Modules and then
integrates them into a single Startd ClassAd. At fixed
intervals, the Agent sends the Startd ClassAd to its
registered Manager. An Agent can also directly answer
queries about a particular Module; however, the client
must first consult the Manager for the Agent’s IP
address. A Module is simply a sensor that advertises
resource information in a ClassAd format.

In addition, it is important to note that Hawkeye
does not use a pre-defined schema for the sensor
information. Thus, Modules can send any type of
information, and any client that understands the
information can use it.

2.4. Component Mapping

In addition to examining the individual performance

of MDS2, R-GMA, and Hawkeye in various
environments, we compare the behavior between the
systems. To facilitate this comparison, we map the
functional components of the services to one another.

Table 1 shows the mapping selections defined for
this comparison. At the lowest level, we have the
Information Collector, which is equivalent to a sensor or
other program that generates a piece of data. This maps

to the MDS2 information provider, an R-GMA Producer,
or a Hawkeye Module. At the resource level, these
systems gather together the data from several
information collectors into a component we term the
Information Server. Examples of this are the MDS2
GRIS, an R-GMA ProducerServlet, and a Hawkeye
Agent. Some systems allow data to be aggregated from a
set of resources; we term this an Aggregate Information
Server. Examples are the MDS2 GIIS and the Hawkeye
Manager. This component could easily be built for R-
GMA by using an Archiver that is a composite
Consumer/Producer registered with the data streams of a
number of Producers and serves the data in an
aggregated form. The fourth component of the systems is
a Directory Server that provides resource lookup and
discovery. This role is played by the GIIS in MDS2, the
Registry in R-GMA and the Manager in Hawkeye.

3. Experimental Results and Evaluation

In this section we briefly describe the experimental
setup and the performance metrics. We then analyze and
compare the results of the experiments.

The goal of these experiments was to test the
scalability of the components of the information systems.
Since each system had a different architecture and
different design principles, not all of the comparisons are
direct and fully unbiased. We considered the following:

• How does the performance of an information
server scale with the number of users? The
information server is the most important service
component and usually heavily accessed by
users to obtain the needed data.

• How does the performance of a directory server
scale with the number of users? The importance
of this study comes from the anticipation that
the number of the users depending on directory
servers to discover and locate the resources will
increase dramatically as deployed Grid testbeds
grow in size.

• How does the performance of an information
server scale with the amount of data it contains
(the number of information collectors)? We
think it is inevitable that new information

 4

collectors will be added to the monitoring and
information services in the near future, and an
information server must have the potential to
meet this scalability. For example, other
monitoring systems (such as WatchTower [14])
can publish as many as 2,000 individual pieces
of information from a single machine.

• How does an aggregate information server
scale with the number of information servers it
is aggregating? The answer to this question
will help us understand the upper limit of the
size of information an aggregate information
server can control, as it becomes more common
to aggregate data of interest from a number of
machines.

By evaluating these questions we can make
suggestions for deployment or future updates to the
systems themselves.

3.1. Experimental Setup

The experiments were run on two sites: the Lucky
testbed at Argonne National Laboratory (ANL)
providing the server-sided services and a testbed at the
University of Chicago (UC) as client side. We did this so
that the network factors would be relatively similar and
uniform, and network times would not be the dominating
factor in the experiments; rather we could look at the
software factors more closely. The bandwidth between
ANL and UC is around 55 Mbits per sec (as measured
by Iperf [12]), and the latency (round trip time) is around
2.3 ms on average.

The Lucky testbed includes seven Linux machines
with hostnames lucky{0,1,3,..,7}.mcs.anl and a shared
file system on a 100 Mbps LAN. Each machine is
equipped with two 1133 MHz Intel PIII CPUs (with a
512 KB cache per CPU) and 512 MB main memory and
runs a Linux kernel 2.4.10.

The UC client side comprises a cluster of 20 Linux
machines in a shared file system on a 100 Mbps LAN.
Fifteen of them were equipped with a 1208 MHz CPU
and 256 MB RAM, while the rest had a slightly slower
CPU (but at least 756 MHz), also with 256 MB RAM.

We deployed MDS 2.1, MDS 2.2, R-GMA 2.2.3
(9/2002), R-GMA 2.3.5, and Hawkeye 0.1.4 on both
sites.

We simulated concurrent users (Consumers in R-
GMA experiments) by running individual user processes
(scripts) on these machines. We evenly divided the
number of simulated users by the number of machines to
balance the load, with a maximum of 50 users per
machine. In the case of R-GMA 2.2.3, we could simulate
only less than 128 Consumers per ConsumerServlet
because of a limit of the table size and the shared
filespace on this system (so a single table is shared

among all UC hosts). This is an issue not with R-GMA
but with our testing environment. Because of this
situation, for both versions of R-GMA experiments we
also simulated a larger number of users on the Lucky
testbed with a ConsumerServlet running on each Lucky
node. R-GMA 2.3.5 did not have this constraint, but we
ran similar experiments for a full comparison of the
technologies.

In the R-GMA 2.2.3 experiments, the Producer used
was a CircularBufferProducer with a 1-day termination
interval, and the Consumer used non-streaming queries.
In R-GMA 2.3.5 experiments, we used the
StreamProducer with termination interval set to 20
minutes. The StreamProducer maintained a buffer to
store the published information and streamed the
information to all connection Consumers.

The values reported in each experiment are the
average (mean value) over all the values recorded during
a 10-minute time span. We used Ganglia [9] to collect
the performance data at five-second intervals. All
requests to the servers in MDS2, R-GMA, and Hawkeye
occurred with a one-second wait period. That is, after a
user queried a service component and received a
response, the user waited one second before sending its
next query. Note this does not mean that queries were
sent once a second, rather, this is equivalent to blocking
sends with a 1-second wait in between each.

We performed all the experiments in a LAN setting
to ensure the performance of the service was affected
primarily by the service components. WAN-based
performance evaluation is more complicated because
more variable factors will affect the performance,
especially the networking fluctuation. We leave this as
future work.

3.2. Performance Metrics

Throughput and response time were the primary
metrics in our study. We define throughput as the
average number of requests (or queries) processed by a
service component per second. The response time
denotes the average amount of time (in seconds) required
for a service component to handle a request from a user.

We also used two load metrics for the experiments,
CPU-load (load) and a one-minute load average (load1).
Load indicates the percentage of the CPU cycles spent in
user mode and system mode, we measured by averaging
the sum of cpu_user and cpu_system recorded by
Ganglia. The metric load1 is the average number of
processes in the ready queue waiting to run over the last
minute measured by the Ganglia metric “load_one”.
Load may be high while load1 is low if a machine is
running a small number of compute intensive
applications. Load may be low while load1 is high if the

 5

same machine is trying to run a large number of
applications that are blocking on I/O.

3.3. Experiment Set 1 – Information Server

Scalability (with users)

In the first experiment set, we evaluated the
performance of the information servers for three
systems—the MDS2 GRIS, the R-GMA
ProducerServlet, and the Hawkeye Agent—when a large
number of users accessed it concurrently.

To study the MDS2 GRIS, we ran a GRIS and 10
information providers at lucky7 with two different
configurations: the information providers’ data always in
GRIS cache and the data never in cache. We simulated
up to 600 users making concurrent queries. Each query
requested all the data elements in the directory that were
generated by all the reported information providers.

For the study of the ProducerServlet in R-GMA, we
ran a ProducerServlet at lucky3 with 10 local Producers,
and a Registry on lucky1. We simulated Consumers in
the two ways as described in Section 3.1: with up to 100
simulated users on the UC nodes reporting to a single

ConsumerServlet, and with up to 600 users on the Lucky
nodes, with each node running its own ConsumerServlet.
We queried for the CPU load values from all the 10
Producers.

 To study the performance of the Hawkeye Agent,
we ran an Agent on lucky4 and the Hawkeye Manager on
lucky3. We simulated up to 600 users to concurrently
query the Agent from the UC nodes. The query we
performed was for all information in the ClassAd
published by the lucky4 Agent.

Figures 5–8 show the performance of the three
information servers including two different scenarios for
each R-GMA version and two for each MDS2 version.
For both version 2.1 and 2.2, the MDS2 GRIS
throughput has a near linear relationship with the number
of concurrent users if the data is in cache. Its throughput,
however, does not exceed 2 queries per second when the
data is not in cache, suggesting that data caching is very
important to support a large number of users. We
observe throughput thresholds for the information
servers that did not cache data. We believe this is
because the network on the server side can no longer
handle the traffic from the queries, thereby limiting the

0

20

40

60

80

100

120

140

160

0 100 200 300 400 500 600
No. of Users

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

MDS 2.1 GRIS (cache) MDS 2.1 GRIS (nocache)
MDS 2.2 GRIS (cache) MDS 2.2 GRIS (nocache)
R-GMA 2.2.3 ProducerServlet(lucky) R-GMA 2.2.3 ProducerServlet(UC)
R-GMA 2.3.5 ProducerServlet(lucky) R-GMA 2.3.5 ProducerServlet(UC)
Hawkeye Agent

 Figure 5: Information Server Throughput vs.
No. of Concurrent Users

0

20

40

60

80

100

120

0 100 200 300 400 500 600No. of Users

R
es

po
ns

e
Ti

m
e(

se
c)

MDS 2.1 GRIS (cache) MDS 2.1 GRIS (nocache)
MDS 2.2 GRIS (cache) MDS 2.2 GRIS (nocache)
R-GMA 2.2.3 ProducerServlet(lucky) R-GMA 2.2.3 ProducerServlet(UC)
R-GMA 2.3.5 ProducerServlet(lucky) R-GMA 2.3.5 ProducerServlet(UC)
Hawkeye Agent

Figure 6: Information Server Response Time vs.
No. of Concurrent Users

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 100 200 300 400 500 600No. of Users

Lo
ad

1

MDS 2.1 GRIS (cache) MDS 2.1 GRIS (nocache)
MDS 2.2 GRIS (cache) MDS 2.2 GRIS (nocache)
R-GMA 2.2.3 ProducerServlet(lucky) R-GMA 2.2.3 ProducerServlet(UC)
R-GMA 2.3.5 ProducerServlet(lucky) R-GMA 2.3.5 ProducerServlet(UC)
Hawkeye Agent

Figure 7: Information Server Load1 vs. No. of
Concurrent Users

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600
No. of Users

C
P

U
 L

oa
d

MDS 2.1 GRIS (cache) MDS 2.1 GRIS (nocache)
MDS 2.2 GRIS (cache) MDS 2.2 GRIS (nocache)
R-GMA 2.2.3 ProducerServlet(lucky) R-GMA 2.2.3 ProducerServlet(UC)
R-GMA 2.3.5 ProducerServlet(lucky) R-GMA 2.3.5 ProducerServlet(UC)
Hawkeye Agent

Figure 8: Information Server CPU Load vs. No.
of Concurrent Users

 6

number of concurrent queries presented to the
information server, and so the throughput does not rise
above a set level.

With respect to response time behavior, both MDS
2.1 and 2.2 GRIS results show stable performance
(approximately 4 seconds per query) for 50 concurrent
users or more if the GRIS has data in cache. Otherwise
the performance is much worse. For the R-GMA 2.2.3
ProducerServlet, the response time grows almost linearly
with the number of users, indicating that for larger
number of users the system should be configured to have
multiple ProducerServlets for the same information to
allow better scaling. Compared with the older version,
the R- GMA 2.3.5 ProducerServlet shows a smaller
response time and a higher throughput. Using the
StreamProducer to “push” the data to Consumers
contributes to this performance improvement. The
Hawkeye Agent had under a 10-second response time
per query until 500 users were tested, quite likely
because the Hawkeye Agent does not hold the indexed
resident database as the Hawkeye Manager and it has to
retrieve new information for each query.

From Figures 7–8, we also observe that the
machines hosting the three information servers
experienced a higher load with the increasing number of
users below the load threshold. The load decreased
sharply after the threshold for both the Hawkeye Agent
and the R-GMA 2.2.3 ProducerServlet, indicating that
many of the processes were blocked waiting for
resources.

These experiments show that caching can
significantly improve performance of the information
server. Caching is particularly desirable if one wishes the
server to scale well with an increasing number of users.
In addition, when setting up an information server, care
should be taken to make sure the server is on a well-
connected machine, since network behavior plays a
larger role than expected. If this is not an option, thought
should be given to duplicating the server if more than
200 users are expected to query it.

3.4. Experiment Set 2 – Directory Server

Scalability

The second functionality we tested was the

scalability of the directory server with the number of
users. In particular, we examined the performance of the
MDS2 GIIS, the R-GMA Registry and the Hawkeye
Manager.

We configured the Lucky testbed for the MDS2
GIIS to run a GIIS on lucky0 with a GRIS and 10
information providers on each of lucky3-7 registered to
it. We simulated up to 600 users on the UC client nodes.
To analyze only the directory functionality of the GIIS
and not its information serving capacity, we set the

cachettl (cache element time to live) parameter to a very
large value so that the data was always in the cache. The
user queries were the same as those used in experiment
set 1.

For the Hawkeye Manager experiment, we ran the
Manager at lucky3 and up to 600 users concurrently
querying the Manager at the UC client nodes. There
were 6 Agents (one on each Lucky node) each running
11 default Modules. The query we used was for all
information contained in the ClassAds published by the
Lucky nodes.

For R-GMA we ran the Registry at lucky1 and one
ProducerServlet on each of five other Lucky nodes with
10 local Producers. Again, we simulated Consumers in
two ways, up to 100 with a local ConsumerServlet on the
UC nodes and up to 600 Consumers on the Lucky nodes.
Each query asked for the CPU load values generated by
all Producers in our test, and a new Consumer was
created to contact the Registry for the information.

Figures 9-12 illustrate that both the MDS2 GIIS and
Hawkeye Manager present good scalability with respect
to the number of users, while R-GMA had slightly less
scalability. After approximately 10 users, the load on the
Hawkeye Manager rapidly increases, reaching a
maximum load1 average of .45 at about 200 users. At
400 users, the load begins to decrease gradually. We
believe this decrease occurs because the network on the
server side can no longer handle the traffic from the
queries.

For both MDS 2.1 and 2.2, the throughput goes up
quickly when the number of users is smaller than 100,
then saturates at approximately 200 users. We believe
the primary cause of this threshold is similar to that for
the Hawkeye Manager. The response time remains
relatively small (less than 2 seconds) even as the number
of users increases (up to 600). However, we observe the
load of MDS 2.1 GIIS (Figure 12) is nearly twice as bad
as Hawkeye Manager when the number of users is large.
This performance is likely due to better efficiency in the
indexed resident database used in the Manager than seen
in the LDAP backend used in GIIS.

The R-GMA Registry presents a lower throughput
and higher response time. The reduction in throughput
may be due to the fact since R-GMA is based on Java, it
must spawn additional threads to handle the user queries.
However, a large number of Consumers accessing R-
GMA 2.2.3 Registry placed a much higher load to the
hosting machine than accessing 2.3.5 Registry.

The results also show that there is little difference
between the performances of R-GMA’s Registry when
accessed by two different kinds of simulated Consumers
(remotely from UC and locally from Lucky nodes).
These results suggest that the effect of networking
constraint is less significant than that of the resource
contention at the Registry.

 7

0

20

40

60

80

100

120

140

0 100 200 300 400 500 600No. of Users

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)
MDS 2.1 GIIS MDS 2.2 GIIS
R-GMA 2.2.3 Registry(lucky) R-GMA 2.2.3 Registry(UC)
R-GMA 2.3.5 Registry(lucky) R-GMA 2.3.5 Registry(UC)
Hawkeye Manager

Figure 9: Directory Servers Throughput vs. No.
of Concurrent Users

0

20

40

60

80

100

120

0 100 200 300 400 500 600
No. of Users

R
es

po
ns

e
Ti

m
e(

se
c)

MDS 2.1 GIIS MDS 2.2 GIIS
R-GMA 2.2.3 Registry(lucky) R-GMA 2.2.3 Registry(UC)
R-GMA 2.3.5 Registry(lucky) R-GMA 2.3.5 Registry(UC)
Hawkeye Manager

Figure 10: Directory Servers Response Time
vs. No. of Concurrent Users

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 100 200 300 400 500 600No. of Users

Lo
ad

1

MDS 2.1 GIIS MDS 2.2 GIIS
R-GMA 2.2.3 Registry(lucky) R-GMA 2.2.3 Registry(UC)
R-GMA 2.3.5 Registry(lucky) R-GMA 2.3.5 Registry(UC)
Hawkeye Manager

Figure 11: Directory Servers Host Load1 vs.

No. of Concurrent Users

0

10

20

30

40

50

60

70

80

90

0 100 200 300 400 500 600
No. of Users

C
PU

 L
oa

d

MDS 2.1 GIIS MDS 2.2 GIIS
R-GMA 2.2.3 Registry(lucky) R-GMA 2.2.3 Registry(UC)
R-GMA 2.3.5 Registry(lucky) R-GMA 2.3.5 Registry(UC)
Hawkeye Manager

Figure 12: Directory Servers Host CPU Load

vs. No. of Concurrent Users

From these experiments we see again that, because
of the network contention issues, the placement of a
directory server on a highly connected machine will play
a large role in the scalability as the number of users
grows. In addition, because significant loads are seen
even with only a few users, it will be important that this
service be run on a dedicated machine, or that it be
duplicated as the number of users grows.

For the MDS2 experiments, we modified the default
memory information provider and added copies of the
new version (catchtime set to 30 seconds) to simulate the
expanded information providers. The GRIS was located
at lucky7 and 10 concurrent users sent queries to it for
the information from all the information providers for up
to 90 information providers reporting to the same GRIS.
We also simulated two different cases of caching for the
GRIS: the data always in the GRIS cache and never in
the GRIS cache. In this experiment, we queried for the
memory information from every element in the
Directory.

3.5. Experiment Set 3 – Information Server

Scalability (with information collectors)

For Hawkeye, we varied the total number of
Modules running on each pool member from the 11
default Modules to 90 using multiple instances of the

Our third set of experiments evaluated how the
performance of an information server scaled with the
amount of data it contained, specifically the MDS2
GRIS and its information providers, the Hawkeye Agent
and its Modules, and the R-GMA ProducerServlet and
Producers. Currently, a default installation of the MDS2
has 10 information providers, and Hawkeye uses 11
Modules in a standard install, while R-GMA currently
has a flexible configuration for the initial set of
Producers.

“vmstat” Module. Once the Modules were running on
each pool member, 10 concurrent users queried the
Manager. Each query was only for information on hard
disk space for each pool member. In this way, we were
not measuring a possible increase in network latency

 8

0

2

4

6

8

10

12

0 20 40 60 80
No. of Information Collectors

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

100

MDS 2.1 GRIS(cache) MDS 2.1 GRIS(no cache)
MDS 2.2 GRIS(cache) MDS 2.2 GRIS(no cache)
R-GMA 2.2.3 ProducerServlet R-GMA 2.3.5 ProducerServlet
Hawkeye Agent

Figure 13: Information Server Throughput vs.
No. of Information Collectors

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100
No. of Information Collectors

R
es

po
ns

e
Ti

m
e(

se
c)

MDS 2.1 GRIS(cache) MDS 2.1 GRIS(no cache)
MDS 2.2 GRIS(cache) MDS 2.2 GRIS(no cache)
R-GMA 2.2.3 ProducerServlet R-GMA 2.3.5 ProducerServlet
Hawkeye Agent

Figure 14: Information Server Response Time
vs. No. of Information Collectors

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80No. of Information Collectors

Lo
ad

1

100

MDS 2.1 GRIS(cache) MDS 2.1 GRIS(no cache)
MDS 2.2 GRIS(cache) MDS 2.2 GRIS(no cache)
R-GMA 2.2.3 ProducerServlet R-GMA 2.3.5 ProducerServlet
Hawkeye Agent

Figure 15: Information Server Host Load1 vs.
No. of Information Collectors

0

10

20

30

40

50

60

0 20 40 60 80
No. of Information Collectors

C
P

U
 L

oa
d

100

MDS 2.1 GRIS(cache) MDS 2.1 GRIS(no cache)
MDS 2.2 GRIS(cache) MDS 2.2 GRIS(no cache)
R-GMA 2.2.3 ProducerServlet R-GMA 2.3.5 ProducerServlet
Hawkeye Agent

Figure 16: Information Server Host CPU Load
vs. No. of Information Collectors

from the Manager to the client caused by the increase in
information contained in the ClassAds. The maximum
number of Modules currently able to register to an Agent
was 98: Adding another Module caused the Startd to
crash because of the code limitations.

For R-GMA, we ran the ProducerServlet at lucky3
and the Registry on lucky1 with up to 90 Producers.
Each Producer is a StreamProducer instance that collects
and publishes the CPU load data every 30 seconds. We
used 10 Consumers with query type set to
CONTINUOUS and buffer size set to 1024 from the UC
client nodes with a ConsumerServlet at UC. We queried
the ProducerServlet directly for the CPU load
information from all the reported Producers.

In Figures 13–16, we observe that the performance
of the information servers degrades dramatically when
the number of information providers grows. The
Hawkeye Agent, MDS2 GRIS without data in cache, and
the R-GMA 2.2.3 ProducerServlet have throughput
levels of less than 1 query per second and over 10-
second response times when information collectors are

over 80. However, both MDS 2.1 and 2.2 GRIS
can still achieve a throughput of 7 queries per seconds
with a less than 1-second response time for 90
information providers if their data is cached. One
possible reason is that the caching mechanism in the
GRIS allows it to not re-fetch the data from the
information providers. The R-GMA 2.3.5
StreamProducer ProducerServlet follows a similar
pattern of performance; unlike the earlier version of R-
GMA, this approach “pushes” information to the
connected Consumers thus decreasing the workload from
the ProducerServlet and improving the performance.

Our analysis shows that too many information
collectors can become the performance bottleneck but
that caching data at the information server or using a
push model for data transmission can be an effective
solution. Alternatively, different sets of information
collectors can register to more instances of information
servers with each handling a subset of the collectors.
How to coordinate these instances needs further
investigation.

 9

3.6. Experiment Set 4 – Aggregate
Information Server Scalability

Our fourth set of experiments examined the

aggregation of data, specifically the scalability of the
MDS2 GIIS varying the number of GRIS, and the
Hawkeye Manager varying the number of Agents. R-
GMA currently has no aggregate information server, but
one could easily be built by using a composite
Consumer/Producer that registered with the data streams
of a number of Producers and served the data in an
aggregated form. Since this component is not yet part of
the standard distribution, we compared only the MDS2
and Hawkeye for this experiment.

For the MDS2, we simulated extra GRIS by running
multiple instances at each Lucky node, except on lucky0
where the GIIS ran. During the experiment, 10 users
from a UC node concurrently sent queries to the GIIS for
10 minutes. We tested two kinds of queries: The first
queried for all of the data available from each of the
registered GRIS, and the second asked for only a portion
of the data (memory information) from each registered
GRIS.

For Hawkeye, we simulated the large number of

Agents (computers) in a pool by using the
“hawkeye_advertise” command to send Startd ClassAds
at 30-second intervals to the collector machine. Once the
simulated machines were running, 10 concurrent users
queried the Manager for information. The Manager
searched through all of the ClassAds (one for each of the
simulated machines) to try to match on a constraint
(specified by the query) that was not met by any
machine, simulating the worst-case scenario.

From the experiments results shown in Figures17–
20, we observe a large degradation in both throughput
and response time by the MDS2 GIIS and Hawkeye
Manager.

For the MDS 2.1 GIIS, because of the software
constraints, we were able to simulate only up to 200
registered GRIS if all the users queried GIIS for the
information from all the registered GRIS and up to 500
GRIS if all the users queried GIIS for the information
from part of the registered GRIS. In each case, the
machine hosting the GIIS reaches a maximum load at
around 100 registered GRIS. For the MDS 2.2 GIIS, we
could simulate up to 700 GRIS in both cases. Adding
more GRIS caused an error because the GIIS host hits an
upper limit of the number of open files. This can be fixed
by changing the system default, but we did not make this

0

1

2

3

4

5

6

7

8

9

10

0 100 200 300 400 500 600 700 800 900 1000 1100
No. of Information Servers

Th
ro

ug
hp

ut
(q

ue
rie

s/
se

c)

MDS 2.1 GIIS(query all) MDS 2.1 GIIS (query part)
MDS 2.2 GIIS(query all) MDS 2.2 GIIS (query part)
Hawkeye Manager

Figure 17: Aggregate Information Server

Throughput vs. No. of Information Servers

0

10

20

30

40

50

60

70

0 100 200 300 400 500 600 700 800 900 1000 1100
No. of Information Servers

R
es

po
ns

e
Ti

m
e(

se
c)

MDS 2.1 GIIS(query all) MDS 2.1 GIIS (query part)
MDS 2.2 GIIS(query all) MDS 2.2 GIIS (query part)
Hawkeye Manager

Figure 18: Aggregate Information Server
Response Time vs. No. of Information Servers

0

0.2

0.4

0.6

0.8

1

1.2

0 100 200 300 400 500 600 700 800 900 1000 1100
No. of Information Servers

Lo
ad

1

MDS 2.1 GIIS(query all) MDS 2.1 GIIS (query part)
MDS 2.2 GIIS(query all) MDS 2.2 GIIS (query part)
Hawkeye Manager

Figure 19: Aggregate Information Server Host

Load1 vs. No. of Information Servers

0

5

10

15

20

25

30

35

40

45

50

0 100 200 300 400 500 600 700 800 900 1000 1100
No. of Information Servers

C
P

U
 L

oa
d

MDS 2.1 GIIS(query all) MDS 2.1 GIIS (query part)
MDS 2.2 GIIS(query all) MDS 2.2 GIIS (query part)
Hawkeye Manager

Figure 20: Aggregate Information Server Host
CPU Load vs. No. of Information Servers

 10

4. Recommendations change.
For the Hawkeye Manager, after approximately 10

simulated computers, the load on the Manager rapidly
increases until about 200 computers. After 200, the load
begins to decrease slightly but remains relatively
constant. The reason that the load does not continue to
increase is that the number of incoming ClassAds to the
Manager is high, which once again overloads the
network at the server-end.

Based on the analysis of our four experiment sets,

we present some general recommendations for the
deployment of monitoring software. These are meant as
broad rules of thumb. The best values for a given
situation may be different because of specific
deployment and application requirements.

For MDS2 (either 2.1 or 2.2) we highly recommend
that both GIIS and GRIS enable data caching, with time-
to-live values set as long as is feasible for the
information in question in order to take advantage of
caching as much as possible. As a directory server, the
GIIS should be placed on a highly connected machine
that is dedicated to this server only. If there are over
about 500 users, the GIIS should be replicated. Likewise,
a GIIS should have no more than approximately 100
GRIS registered to it at a time. In turn, a GRIS can
support around 100 information providers depending on
how often the data in cache is out of date. In the ideal
case when it is always in cache we have shown this will
scale; however, if one’s data is rapidly changing, then
this number might be smaller.

The experimental results suggest that no current
aggregate information server has good scalability when
it is aggregating more than 100 information servers and a
large number of users are querying the server. To
achieve higher scalability for an aggregate information
server, one should examine a multi–layer architecture in
which each middle-level aggregate information server
that manages a subset of information servers.

3.7. Review of MDS2, R-GMA and Hawkeye

MDS2 and R-GMA share many similarities; in

particular, both provide solutions for a Grid information
system and are driven by basic properties of the Grid
environment. Hawkeye, too, has the same functional
components (i.e., an information collector, an
information server, and a directory), although it focuses
on monitoring a single pool. All three services describe
the monitoring information uniformly using a global
schema (e.g., LDAP in MDS2, Relational Data Model in
R-GMA, and ClassAds in Hawkeye).

For R-GMA, the ProducerServlet can maintain good
performance if there are fewer than 400 concurrent
Consumers and fewer than 100 Producers being
managed. For higher values we recommend replicating
the components.

For Hawkeye, an Agent can easily handle 300 to
400 concurrent users. Because of a current software
constraint, however, an Agent cannot support over 98
Modules, but this solution will likely be modified in the
software release available by the time this work is
published. The Manager shows a very good scalability
and can support over 600 users. However, similar to the
MDS2 GIIS, the Manager should not manage over 100
Agents reporting to it at a time. (This limitation is not
currently an issue on deployed systems, but it may be
one in the future.)

The three services, however, have several key
differences in design goals, architecture, and underlying
technologies. For example, the MDS2 GIIS provides a
simple registration mechanism (where a GIIS registers to
another GIIS) to construct a decentralized hierarchy of
information. It is possible to distribute a Registry, but
there is no standard protocol to distribute multiple
Registries. Hawkeye does not support a decentralized
architecture (e.g., there is no mechanism to link different
pools, although it is possible in future development) and
hence may be more vulnerable to failure.

5. Conclusions and Future Work

How the data is communicated, using a push or a
pull mechanism, also differs. MDS2 allows only a pull
model for data transfer. This can cause a bottleneck
between client and server, and may not meet the needs of
a user who would rather have a notification or push
model. R-GMA supports both the pull and the push
models for transferring the information data. For
Hawkeye, executing a job based on a resource attribute
value is similar to a Producer initiating contact with a
Consumer. The administrator or user submits a trigger
ClassAd to the Manager and, when the requested data is
available, (i.e., the event specified in the trigger ClassAd
occurs), an action takes place, such as notifying the
administrator in email.

We have investigated three monitoring and

information services for distributed systems: MDS2, R-
GMA and Hawkeye. Experiments were performed on
each service to study their performance behaviors and
constraints. Our work shows that all three services
present good scalability in most of the cases we
evaluated. We also found a strong performance
advantage to caching or pre-fetching the data, as well as
the need to have primary components at well-connected
sites due to high load seen by all systems.

In our future work, we plan to do more experiments
to study other characteristics of these services. For
example, the testbeds in our study were built in a LAN

 11

 12

environment; the experiments should be repeated to
study performance in a WAN environment. We also
want to determine the difference between querying an
aggregate information server and an information server
for the same piece of information. We plan to consider
additional patterns of user access and test more varieties
of service components, for example, the other kinds of
Producers provided by R-GMA.

Acknowledgments

We thank John Mcgee, ISI, for assistance with the
MDS2; James Magowan, IBM-UK, for assistance with
R-GMA; and both Alain Roy and Nick LeRoy at the
University of Wisconsin, Madison, for assistance with
Hawkeye. We also thank Scott Gose and Charles Bacon
for assistance with the testbed at Argonne. Significant
comments on this paper were provided by Brian Tierney,
LBNL, Dan Gunter, LBNL, Steve Fisher, RAL, Alain
Roy, UW, and Ian Foster, ANL. This work was
supported in part by the Mathematical, Information, and
Computational Sciences Division subprogram of the
Office of Advanced Scientific Computing Research,
U.S. Department of Energy, under contract W-31-109-
Eng-38.

6. References

[1] Aloisio, G., M. Cafaro, I. Epicoco, and S. Fiore, “Analysis

of the Globus Toolkit Grid Information Service”.
Technical report GridLab-10-D.1-0001-GIS_Analysis,
GridLab project,
http://www.gridlab.org/Resources/Deliverables/D10.1.pdf
.

[2] Baker, M., J. Hartman, M. Kupfer, K. Shirriff, and J.
Ousterhout, "Measurements of a Distributed File System".
In Proceedings of the Thirteenth Symposium on Operating
Systems Principles, pages 198–211.

[3] Czajkowski, K., S. Fitzgerald, I. Foster, and C.
Kesselman, “Grid Information Services for Distributed
Resource Sharing”. In Proc. 10th IEEE International
Symposium on High Performance Distributed Computing
(HPDC-10), IEEE Press, 2001.

[4] DataGrid: http://eu-datagrid.web.cern.ch/eu-datagrid/
[5] “DataGrid Information and Monitoring Services

Architecture: Design, Requirements and Evaluation
Criteria”, Technical Report, DataGrid, 2002.

[6] Fisher, S., “Relational Model for Information and
Monitoring”. Technical Report GWD-Perf-7-1, GGF,
2001.

[7] Foster, I., and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”.Intl J. Supercomputer
Applications, 11(2):115–128, 1997.

[8] Foster, I., and C. Kesselman, eds, “The Grid: Blueprint of
a New Computing Infrastructure”, Morgan Kaufmann,
1999. ISBN 1-55860-475-8.

[9] Ganglia: http://ganglia.sourceforge.net
[10] Global Grid Forum: http://www.gridforum.org/
[11] Hawkeye: http://www.cs.wisc.edu/condor/hawkeye
[12] Iperf: http://dast.nlanr.net/Projects/Iperf/
[13] Java™ Servlet Technology:

http://java.sun.com/products/servlet
[14] Knop, M., J. Schopf, and P. Dinda, “Windows

Performance Monitoring and Data Reduction using
WatchTower”, 11th IEEE Symposium on High-
Performance Distributed Computing (HPDC11), 2002.

[15] Litzkow M., M. Livny, and M. Mutka, “Condor - A
Hunter of Idle Workstations”. In Proceedings of the 8th
International Conference of Distributed Computing
Systems, pages 104–111, June 1988.

[16] MDS2: http://www.globus.org/mds/
[17] “A New Approach to Enterprise Data Sharing - Avaki

Data Grid Conceptual Overview”, Avaki Corporation,
2003.

[18] OpenLdap: http://www.openldap.org/
[19] Ozsy, M. and P. Valduriez, "Principles of Distributed

Database Systems". Prentice Hall, 1991.
[20] Patterson, R., G. Gibson, E. Ginting, D. Stodolsky, and J.

Zelenka, "Informed prefetching and caching". In
Proceedings of the Fifteenth ACM Symposium on
Operating Systems Principles, pages 79–95, December
1995.

[21] Plale, B., “Whitepaper on Synthetic Workload for Grid
Information Services/Registries”. DataWorkshop 2003
held in conjunction with GlobusWorld 2003, San Diego,
2003.

[22] Plale, B., P. Dinda, and G. Laszewski, “Key Concepts and
Services of a Grid Information Service”. ISCA 15th
International Parallel and Distributed Computing Systems
(PDCS), 2002.

[23] Raman, R., “Matchmaking Frameworks for Distributed
Resource Management”. PhD thesis, Department of
Computer Science, University of Wisconsin, 2001.

[24] Raman R., M. Livny, and M. Solomon, “Matchmaking:
Distributed Resource Management for High Throughput
Computing”. In Proceedings of the Seventh IEEE
International Symposium on High Performance
Distributed Computing (HPDC7), July 1998.

[25] Tierney, B., R. Aydt, D. Gunter, W. Smith, V. Taylor, R.
Wolski, and M. Swany, “A Grid Monitoring
Architecture”. The Global Grid Forum GWD-GP-16-2,
January 2002.

[26] Yeong, W., T. Howes, and S. Kille, “Lightweight
Directory Access Protocol”, IETF RFC 1777, March
1995.

	Introduction
	MDS2, R-GMA, and Hawkeye
	MDS2
	GMA and R-GMA
	Hawkeye
	Component Mapping

	Experimental Results and Evaluation
	Experimental Setup
	Performance Metrics
	Experiment Set 1 – Information Server Scalability
	Experiment Set 2 – Directory Server Scalability
	Experiment Set 3 – Information Server Scalability
	Experiment Set 4 – Aggregate Information Server S
	Review of MDS2, R-GMA and Hawkeye

	Recommendations
	Conclusions and Future Work
	References

