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Abstract To date, very few results have been published that 
quantitatively study the performance of the current 
monitoring and information services in distributed 
systems. Aloisio et al. [1] studied the capabilities and 
limitations of the Globus Toolkit’s Monitoring and 
Discovery Service; however, their experiments were 
limited to simple tests on a Grid Index Information 
Service (GIIS) only. Plale, Dinda and Laszewski [22] 
examined the advantages of building a Grid Information 
Service on a hierarchical representation and a relational or 
flat table representation; however, the comparison was 
based only on the discussion of the different features of 
concepts and services used in these two representations. 
Currently no information or monitoring service uses 
either of these approaches, though the Avaki Data Grid 
[17] uses a built-in relational database to maintain its 
metadata as a data access service. A recent study by Plale 
[21] benchmarked a synthetic workload formed by a set 
of basic operators (queries, updates, etc.) against a 
theoretical information service implemented by using two 
different databases, MySQL and Xindice, and then 
evaluated the performance, however this work did not 
evaluate any current system used in practice. The methods 
and topics we address in this paper (caching, connectivity, 
serial bottleneck, etc.) have a strong link to modeling and 
evaluation of distributed file systems [2] and distributed 
data systems [19][20] as well. 

 
Monitoring and information services form a key 

component of a distributed system, or Grid. A quantitative 
study of such services can aid in understanding the 
performance limitations, advise in the deployment of the 
monitoring system, and help evaluate future development 
work. To this end, we study the performance of three 
monitoring and information services for distributed 
systems: the Globus Toolkit® Monitoring and Discovery 
Service (MDS2), the European Data Grid Relational Grid 
Monitoring Architecture (R-GMA) and Hawkeye, part of 
the Condor project. We perform experiments to test their 
scalability with respect to number of users, number of 
resources and amount of data collected. Our study shows 
that each approach has different behaviors, often due to 
their different design goals. In the four sets of 
experiments we conducted to evaluate the performance of 
the service components under different circumstances, we 
found a strong advantage to caching or pre-fetching the 
data, as well as the need to have primary components at 
well-connected sites because of the high load seen by all 
systems. 
 
 
1. Introduction 
 

In this paper, we describe the scalability and 
performance of three monitoring and information 
services: the Globus Toolkit® Monitoring and Discovery 
Service (MDS2) [3][16], the Relational Grid Monitoring 
Architecture (R-GMA) [5] used in the European Data 
Grid [4], and Hawkeye [11], part of the Condor project 
[15]. Each of these systems is in use in production or 
near-production Grid testbeds. To facilitate the 
performance comparison among the three services, we 
map the functional components of one service to the 
counterparts of the others. Details of each are given in 
Section 2. 

Grid platforms [8] depend on monitoring and 
information services to support the discovery and 
monitoring of the distributed resources for various tasks. 
For example, a user may want to determine the best 
platform on which to run an application, a client program 
may want to collect a stream of data to help steer an 
application, or a system administrator may want to be 
notified when changes in system load or free disk space 
occur. Hence, it is helpful to study the behavior of a 
monitoring and information services under different 
circumstances in order to understand any performance 
limitations in common settings.  
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Figure 1: The MDS2 Architecture. This architecture is flexible: There can be several levels of GIISs, 

and any GRIS or GIIS can register with another, making this approach modular and extensible. 
 
We designed a set of experiments to evaluate the 

effect of a large number of concurrent users, resources, 
and information sources for each service. We used a 
LAN setting because we did not want to have network 
times as the dominating factor in the experiments – we 
wanted to test the software on its own merits. We 
analyzed the performance limiting factors and their 
influence, and compared the performance behavior. The 
analysis and comparison results, given in Section 3, also 
provide constructive suggestions for performance 
improvements. Section 4 presents our recommendations 
for using these services. Section 5 gives our conclusions 
and briefly discusses future work. 

 
2. MDS2, R-GMA, and Hawkeye 

 
This section describes the background of the three 

monitoring and information services and the mapping of 
the functional components among them. 

 
2.1. MDS2 

 
The Monitoring and Discovery Service (MDS2) 

[3][16] is the Grid information service used in the 
Globus Toolkit [7]. It uses an extensible framework for 
managing static and dynamic information about the 
status of a computational Grid and all its components: 
networks, compute nodes, storage systems, instruments, 
and so on. MDS2 is built on top of the Lightweight 
Directory Access Protocol (LDAP) [18][26].  

MDS2 is used primarily to address the resource 
selection problem, namely, how a user identifies the host 
or set of hosts on which to run an application. It is 

designed to provide a standard mechanism for publishing 
and discovering resource status and configuration 
information. MDS2 provides a uniform, flexible 
interface to data collected by lower-level information 
providers. It has a decentralized structure that allows it to 
scale, and it can handle static or dynamic data about 
resources, queues and the like. With MDS2, one can also 
restrict access to data using GSI (Grid Security 
Infrastructure) credentials.  

MDS2 has a hierarchical structure (see Figure 1) 
that consists of three main components. A Grid Index 
Information Service (GIIS) provides an aggregate 
directory of lower level data. A Grid Resource 
Information Service (GRIS) runs on a resource and acts 
as a modular content gateway for a resource. Information 
Providers (IPs) interface from any data collection 
service and then talk to a GRIS. Each service registers 
with others using a soft-state protocol that allows 
dynamic cleaning of dead resources. Each level also has 
caching to minimize the transfer of un-stale data and 
lessen network overhead. 

 
2.2. GMA and R-GMA 
 

The Relational Grid Monitoring Architecture (R-
GMA) [5] monitoring system is an implementation of 
the Grid Monitoring Architecture (GMA) [25] defined 
within the Global Grid Forum (GGF) [10]. It is based on 
the relational data model [6] and Java Servlet 
technologies [13]. Its main use is the notification of 
events—that is, a user can subscribe to a flow of data 
with specific properties directly from a data source. For 
example, a user can subscribe to a load-data data stream,  

 2



  

and create a new Producer/Consumer pairing to allow 
notification when the load reaches some maximum or 
minimum.  

group and designed to automate problem detection, for 
example to identify high CPU load, high network traffic, 
or resource failure within a distributed system.  Its 
underlying infrastructure builds on the Condor [15] and 
ClassAd [23] technologies. The main use case that 
Hawkeye was built to address is that of being able to 
offer monitoring information to anyone interested and to 
execute actions in response to conditions.  It also allows 
for easier software maintenance within a pool.  

Hawkeye involves two fundamental ideas:  its use of 
the Condor ClassAd Language to identify resources in a 
pool, and ClassAd Matchmaking [23][24] to execute jobs 
based on attribute values of resources to identify 
problems in a pool.  A ClassAd is a set of attribute/value 
pairs (e.g., “operating system” and “Linux”). The 
Manager performs ClassAd Matchmaking between a 
Trigger ClassAd, submitted by a client, and all Startd 
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Figure 2: GMA Components Figure 3: R-GMA Components 

GMA is an architecture for monitoring components 
that specifically addresses the characteristics of Grid 
platforms. GMA consists of three components (shown in 
Figure 2): Consumers, Producers, and a Registry. 
Producers register themselves with the Registry, and 
Consumers query the Registry to find out what types of 
information are available and to locate the corresponding 
Producers. Then the Consumer can contact a specific 
Producer directly. GMA as defined currently does not 
specify the protocols or the underlying data model to be 
used. 

Figure 3 illustrates the R-GMA components and 
their mapping to GMA. In R-GMA, to register with a 
Registry, a Producer advertises a table and a definition of 
a partitioning predicate; this predicate defines the view 
of the complete virtual table that the Producer publishes. 
The Producer module communicates with a 
ProducerServlet, which registers the information to the 
RDBMS in the Registry. The RDBMS holds the 
information for all the Producers, namely the registered 
table name, the predicate, and some internal information. 
Consumers can issue SQL queries against a set of 
supported tables. The ConsumerServlet consults the 
Registry to find suitable Producers. Then, the 
ConsumerServlet acting on behalf of the Consumer 
issues new queries to the located Producers to request 
and return the data to the Consumer.  The 
ProducerServlet (or ConsumerServlet) is typically 
configured to be near to the Producer (or the Consumer) 
for a better performance. 

 
2.3. Hawkeye 

 
along with the Basic Function of Each Node  Hawkeye  [11]  is  a  tool  developed by the Condor  
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Table 1: Component Mapping 
 

 MDS2 R-GMA Hawkeye 

Information Collector Information 
Provider Producer Module 

Information Server GRIS ProducerServlet Agent 
Aggregate Information 

Server GIIS None Manager 

Directory Server GIIS Registry Manager 
 
ClassAds. A Trigger ClassAd specifies an event and a 
job to execute if the event occurs.  For example, consider 
the case in which a Trigger ClassAd specifies an event in 
which the CPU load is greater than 50 and a job that will 
kill a Netscape client running on the matched machine; if 
any machine advertises a Startd ClassAd with a CPU 
load value of greater than 50, the Manager will kill that 
machine’s Netscape process.  

The architecture of Hawkeye comprises four major 
components: pool, Manager, Monitoring Agent, and 
Module (Figure 4).  The components are organized in a 
four-level hierarchical structure.  A pool is a set of 
computers, in which one computer serves as the 
Manager and the remaining computers serve as 
Monitoring Agents.  A Manager is the head computer in 
the pool that collects and stores (in an indexed resident 
database) monitoring information from each Agent 
registered to it.  It is also the central target for queries 
about the status of any pool member.  A Monitoring 
Agent is a distributed information service component 
that collects ClassAds from each of its Modules and then 
integrates them into a single Startd ClassAd.  At fixed 
intervals, the Agent sends the Startd ClassAd to its 
registered Manager. An Agent can also directly answer 
queries about a particular Module; however, the client 
must first consult the Manager for the Agent’s IP 
address.  A Module is simply a sensor that advertises 
resource information in a ClassAd format.  

In addition, it is important to note that Hawkeye 
does not use a pre-defined schema for the sensor 
information.  Thus, Modules can send any type of 
information, and any client that understands the 
information can use it. 

 
2.4. Component Mapping 

 
In addition to examining the individual performance 

of MDS2, R-GMA, and Hawkeye in various 
environments, we compare the behavior between the 
systems. To facilitate this comparison, we map the 
functional components of the services to one another. 

Table 1 shows the mapping selections defined for 
this comparison. At the lowest level, we have the 
Information Collector, which is equivalent to a sensor or 
other program that generates a piece of data. This maps 

to the MDS2 information provider, an R-GMA Producer, 
or a Hawkeye Module. At the resource level, these 
systems gather together the data from several 
information collectors into a component we term the 
Information Server. Examples of this are the MDS2 
GRIS, an R-GMA ProducerServlet, and a Hawkeye 
Agent. Some systems allow data to be aggregated from a 
set of resources; we term this an Aggregate Information 
Server. Examples are the MDS2 GIIS and the Hawkeye 
Manager. This component could easily be built for R-
GMA by using an Archiver that is a composite 
Consumer/Producer registered with the data streams of a 
number of Producers and serves the data in an 
aggregated form. The fourth component of the systems is 
a Directory Server that provides resource lookup and 
discovery. This role is played by the GIIS in MDS2, the 
Registry in R-GMA and the Manager in Hawkeye. 

 
3. Experimental Results and Evaluation 
 

In this section we briefly describe the experimental 
setup and the performance metrics. We then analyze and 
compare the results of the experiments. 

The goal of these experiments was to test the 
scalability of the components of the information systems. 
Since each system had a different architecture and 
different design principles, not all of the comparisons are 
direct and fully unbiased. We considered the following: 

• How does the performance of an information 
server scale with the number of users? The 
information server is the most important service 
component and usually heavily accessed by 
users to obtain the needed data. 

• How does the performance of a directory server 
scale with the number of users? The importance 
of this study comes from the anticipation that 
the number of the users depending on directory 
servers to discover and locate the resources will 
increase dramatically as deployed Grid testbeds 
grow in size. 

• How does the performance of an information 
server scale with the amount of data it contains 
(the number of information collectors)? We 
think it is inevitable that new information 
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collectors will be added to the monitoring and 
information services in the near future, and an 
information server must have the potential to 
meet this scalability. For example, other 
monitoring systems (such as WatchTower [14]) 
can publish as many as 2,000 individual pieces 
of information from a single machine. 

• How does an aggregate information server 
scale with the number of information servers it 
is aggregating? The answer to this question 
will help us understand the upper limit of the 
size of information an aggregate information 
server can control, as it becomes more common 
to aggregate data of interest from a number of 
machines. 

By evaluating these questions we can make 
suggestions for deployment or future updates to the 
systems themselves. 
 
3.1. Experimental Setup 
 

The experiments were run on two sites: the Lucky 
testbed at Argonne National Laboratory (ANL) 
providing the server-sided services and a testbed at the 
University of Chicago (UC) as client side. We did this so 
that the network factors would be relatively similar and 
uniform, and network times would not be the dominating 
factor in the experiments; rather we could look at the 
software factors more closely. The bandwidth between 
ANL and UC is around 55 Mbits per sec (as measured 
by Iperf [12]), and the latency (round trip time) is around 
2.3 ms on average.  

The Lucky testbed includes seven Linux machines 
with hostnames lucky{0,1,3,..,7}.mcs.anl and a shared 
file system on a 100 Mbps LAN. Each machine is 
equipped with two 1133 MHz Intel PIII CPUs (with a 
512 KB cache per CPU) and 512 MB main memory and 
runs a Linux kernel 2.4.10.  

The UC client side comprises a cluster of 20 Linux 
machines in a shared file system on a 100 Mbps LAN. 
Fifteen of them were equipped with a 1208 MHz CPU 
and 256 MB RAM, while the rest had a slightly slower 
CPU (but at least 756 MHz), also with 256 MB RAM.  

We deployed MDS 2.1, MDS 2.2, R-GMA 2.2.3 
(9/2002), R-GMA 2.3.5, and Hawkeye 0.1.4 on both 
sites.  

We simulated concurrent users (Consumers in R-
GMA experiments) by running individual user processes 
(scripts) on these machines. We evenly divided the 
number of simulated users by the number of machines to 
balance the load, with a maximum of 50 users per 
machine. In the case of R-GMA 2.2.3, we could simulate 
only less than 128 Consumers per ConsumerServlet 
because of a limit of the table size and the shared 
filespace on this system (so a single table is shared 

among all UC hosts). This is an issue not with R-GMA 
but with our testing environment. Because of this 
situation, for both versions of R-GMA experiments we 
also simulated a larger number of users on the Lucky 
testbed with a ConsumerServlet running on each Lucky 
node. R-GMA 2.3.5 did not have this constraint, but we 
ran similar experiments for a full comparison of the 
technologies. 

In the R-GMA 2.2.3 experiments, the Producer used 
was a CircularBufferProducer with a 1-day termination 
interval, and the Consumer used non-streaming queries. 
In R-GMA 2.3.5 experiments, we used the 
StreamProducer with termination interval set to 20 
minutes. The StreamProducer maintained a buffer to 
store the published information and streamed the 
information to all connection Consumers. 

The values reported in each experiment are the 
average (mean value) over all the values recorded during 
a 10-minute time span. We used Ganglia [9] to collect 
the performance data at five-second intervals. All 
requests to the servers in MDS2, R-GMA, and Hawkeye 
occurred with a one-second wait period. That is, after a 
user queried a service component and received a 
response, the user waited one second before sending its 
next query. Note this does not mean that queries were 
sent once a second, rather, this is equivalent to blocking 
sends with a 1-second wait in between each. 

We performed all the experiments in a LAN setting 
to ensure the performance of the service was affected 
primarily by the service components. WAN-based 
performance evaluation is more complicated because 
more variable factors will affect the performance, 
especially the networking fluctuation. We leave this as 
future work. 
  
3.2. Performance Metrics 
 

Throughput and response time were the primary 
metrics in our study. We define throughput as the 
average number of requests (or queries) processed by a 
service component per second. The response time 
denotes the average amount of time (in seconds) required 
for a service component to handle a request from a user.  

We also used two load metrics for the experiments, 
CPU-load (load) and a one-minute load average (load1).  
Load indicates the percentage of the CPU cycles spent in 
user mode and system mode, we measured by averaging 
the sum of cpu_user and cpu_system recorded by 
Ganglia. The metric load1 is the average number of 
processes in the ready queue waiting to run over the last 
minute measured by the Ganglia metric “load_one”.  
Load may be high while load1 is low if a machine is 
running a small number of compute intensive 
applications. Load may be low while load1 is high if the 
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same machine is trying to run a large number of 
applications that are blocking on I/O. 
 
3.3. Experiment Set 1 – Information Server 

Scalability (with users) 
 

In the first experiment set, we evaluated the 
performance of the information servers for three 
systems—the MDS2 GRIS, the R-GMA 
ProducerServlet, and the Hawkeye Agent—when a large 
number of users accessed it concurrently.  

To study the MDS2 GRIS, we ran a GRIS and 10 
information providers at lucky7 with two different 
configurations: the information providers’ data always in 
GRIS cache and the data never in cache. We simulated 
up to 600 users making concurrent queries. Each query 
requested all the data elements in the directory that were 
generated by all the reported information providers. 

For the study of the ProducerServlet in R-GMA, we 
ran a ProducerServlet at lucky3 with 10 local Producers, 
and a Registry on lucky1. We simulated Consumers in 
the two ways as described in Section 3.1: with up to 100 
simulated users on the UC nodes reporting to a single 

ConsumerServlet, and with up to 600 users on the Lucky 
nodes, with each node running its own ConsumerServlet. 
We queried for the CPU load values from all the 10 
Producers. 

 To study the performance of the Hawkeye Agent, 
we ran an Agent on lucky4 and the Hawkeye Manager on 
lucky3. We simulated up to 600 users to concurrently 
query the Agent from the UC nodes. The query we 
performed was for all information in the ClassAd 
published by the lucky4 Agent. 

Figures 5–8 show the performance of the three 
information servers including two different scenarios for 
each R-GMA version and two for each MDS2 version. 
For both version 2.1 and 2.2, the MDS2 GRIS 
throughput has a near linear relationship with the number 
of concurrent users if the data is in cache. Its throughput, 
however, does not exceed 2 queries per second when the 
data is not in cache, suggesting that data caching is very 
important to support a large number of users. We 
observe throughput thresholds for the information 
servers that did not cache data.  We believe this is 
because the network on the server side can no longer 
handle the traffic from the queries, thereby limiting the 
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number of concurrent queries presented to the 
information server, and so the throughput does not rise 
above a set level.  

With respect to response time behavior, both MDS 
2.1 and 2.2 GRIS results show stable performance 
(approximately 4 seconds per query) for 50 concurrent 
users or more if the GRIS has data in cache. Otherwise 
the performance is much worse.  For the R-GMA 2.2.3 
ProducerServlet, the response time grows almost linearly 
with the number of users, indicating that for larger 
number of users the system should be configured to have 
multiple ProducerServlets for the same information to 
allow better scaling. Compared with the older version, 
the R- GMA 2.3.5 ProducerServlet shows a smaller 
response time and a higher throughput. Using the 
StreamProducer to “push” the data to Consumers 
contributes to this performance improvement. The 
Hawkeye Agent had under a 10-second response time 
per query until 500 users were tested, quite likely 
because the Hawkeye Agent does not hold the indexed 
resident database as the Hawkeye Manager and it has to 
retrieve new information for each query.  

From Figures 7–8, we also observe that the 
machines hosting the three information servers 
experienced a higher load with the increasing number of 
users below the load threshold. The load decreased 
sharply after the threshold for both the Hawkeye Agent 
and the R-GMA 2.2.3 ProducerServlet, indicating that 
many of the processes were blocked waiting for 
resources. 

These experiments show that caching can 
significantly improve performance of the information 
server. Caching is particularly desirable if one wishes the 
server to scale well with an increasing number of users. 
In addition, when setting up an information server, care 
should be taken to make sure the server is on a well-
connected machine, since network behavior plays a 
larger role than expected. If this is not an option, thought 
should be given to duplicating the server if more than 
200 users are expected to query it. 

 
3.4. Experiment Set 2 – Directory Server 

Scalability  
 
The second functionality we tested was the 

scalability of the directory server with the number of 
users. In particular, we examined the performance of the 
MDS2 GIIS, the R-GMA Registry and the Hawkeye 
Manager. 

We configured the Lucky testbed for the MDS2 
GIIS to run a GIIS on lucky0 with a GRIS and 10 
information providers on each of lucky3-7 registered to 
it. We simulated up to 600 users on the UC client nodes. 
To analyze only the directory functionality of the GIIS 
and not its information serving capacity, we set the 

cachettl (cache element time to live) parameter to a very 
large value so that the data was always in the cache. The 
user queries were the same as those used in experiment 
set 1. 

For the Hawkeye Manager experiment, we ran the 
Manager at lucky3 and up to 600 users concurrently 
querying the Manager at the UC client nodes. There 
were 6 Agents (one on each Lucky node) each running 
11 default Modules.  The query we used was for all 
information contained in the ClassAds published by the 
Lucky nodes.       

For R-GMA we ran the Registry at lucky1 and one 
ProducerServlet on each of five other Lucky nodes with 
10 local Producers. Again, we simulated Consumers in 
two ways, up to 100 with a local ConsumerServlet on the 
UC nodes and up to 600 Consumers on the Lucky nodes. 
Each query asked for the CPU load values generated by 
all Producers in our test, and a new Consumer was 
created to contact the Registry for the information. 

Figures 9-12 illustrate that both the MDS2 GIIS and 
Hawkeye Manager present good scalability with respect 
to the number of users, while R-GMA had slightly less 
scalability. After approximately 10 users, the load on the 
Hawkeye Manager rapidly increases, reaching a 
maximum load1 average of .45 at about 200 users.  At 
400 users, the load begins to decrease gradually.  We 
believe this decrease occurs because the network on the 
server side can no longer handle the traffic from the 
queries.  

For both MDS 2.1 and 2.2, the throughput goes up 
quickly when the number of users is smaller than 100, 
then saturates at approximately 200 users. We believe 
the primary cause of this threshold is similar to that for 
the Hawkeye Manager. The response time remains 
relatively small (less than 2 seconds) even as the number 
of users increases (up to 600). However, we observe the 
load of MDS 2.1 GIIS (Figure 12) is nearly twice as bad 
as Hawkeye Manager when the number of users is large. 
This performance is likely due to better efficiency in the 
indexed resident database used in the Manager than seen 
in the LDAP backend used in GIIS. 

The R-GMA Registry presents a lower throughput 
and higher response time. The reduction in throughput 
may be due to the fact since R-GMA is based on Java, it 
must spawn additional threads to handle the user queries. 
However, a large number of Consumers accessing R-
GMA 2.2.3 Registry placed a much higher load to the 
hosting machine than accessing 2.3.5 Registry. 

The results also show that there is little difference 
between the performances of R-GMA’s Registry when 
accessed by two different kinds of simulated Consumers 
(remotely from UC and locally from Lucky nodes). 
These results suggest that the effect of networking 
constraint is less significant than that of the resource 
contention at the Registry. 
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Figure 9: Directory Servers Throughput vs. No. 
of Concurrent Users 
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Figure 10: Directory Servers Response Time 
vs. No. of Concurrent Users 
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Figure 11: Directory Servers Host Load1 vs. 

No. of Concurrent Users 
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Figure 12: Directory Servers Host CPU Load 

vs. No. of Concurrent Users 

From these experiments we see again that, because 
of the network contention issues, the placement of a 
directory server on a highly connected machine will play 
a large role in the scalability as the number of users 
grows. In addition, because significant loads are seen 
even with only a few users, it will be important that this 
service be run on a dedicated machine, or that it be 
duplicated as the number of users grows. 

For the MDS2 experiments, we modified the default 
memory information provider and added copies of the 
new version (catchtime set to 30 seconds) to simulate the 
expanded information providers. The GRIS was located 
at lucky7 and 10 concurrent users sent queries to it for 
the information from all the information providers for up 
to 90 information providers reporting to the same GRIS.   
We also simulated two different cases of caching for the 
GRIS: the data always in the GRIS cache and never in 
the GRIS cache. In this experiment, we queried for the 
memory information from every element in the 
Directory. 

 
3.5. Experiment Set 3 – Information Server 

Scalability (with information collectors) 
 

For Hawkeye, we varied the total number of 
Modules running on each pool member from the 11 
default Modules to 90 using multiple instances of the  

Our third set of experiments evaluated how the 
performance of an information server scaled with the 
amount of data it contained, specifically the MDS2 
GRIS and its information providers, the Hawkeye Agent 
and its Modules, and the R-GMA ProducerServlet and 
Producers. Currently, a default installation of the MDS2 
has 10 information providers, and Hawkeye uses 11 
Modules in a standard install, while R-GMA currently 
has a flexible configuration for the initial set of 
Producers. 

“vmstat” Module.  Once the Modules were running on 
each pool member, 10 concurrent users queried the 
Manager. Each query was only for information on hard 
disk space for each pool member.  In this way, we were 
not  measuring  a  possible  increase  in  network  latency  
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Figure 13: Information Server Throughput vs. 
No. of Information Collectors 
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Figure 14: Information Server Response Time 
vs. No. of Information Collectors 

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20 40 60 80No. of Information Collectors

Lo
ad

1

100

MDS 2.1 GRIS(cache) MDS 2.1 GRIS(no cache)
MDS 2.2 GRIS(cache) MDS 2.2 GRIS(no cache)
R-GMA 2.2.3 ProducerServlet R-GMA 2.3.5 ProducerServlet
Hawkeye Agent

Figure 15: Information Server Host Load1 vs. 
No. of Information Collectors 
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Figure 16: Information Server Host CPU Load 
vs. No. of Information Collectors 

from the Manager to the client caused by the increase in 
information contained in the ClassAds.  The maximum 
number of Modules currently able to register to an Agent 
was 98: Adding another Module caused the Startd to 
crash because of the code limitations.  

For R-GMA, we ran the ProducerServlet at lucky3 
and the Registry on lucky1 with up to 90 Producers. 
Each Producer is a StreamProducer instance that collects 
and publishes the CPU load data every 30 seconds. We 
used 10 Consumers with query type set to 
CONTINUOUS and buffer size set to 1024 from the UC 
client nodes with a ConsumerServlet at UC. We queried 
the ProducerServlet directly for the CPU load 
information from all the reported Producers.  

In Figures 13–16, we observe that the performance 
of the information servers degrades dramatically when 
the number of information providers grows. The 
Hawkeye Agent, MDS2 GRIS without data in cache, and 
the R-GMA 2.2.3 ProducerServlet have throughput 
levels of less than 1 query per second and over 10-
second response times when information collectors are 

over 80. However, both   MDS   2.1   and   2.2   GRIS   
can still achieve a throughput of 7 queries per seconds  
with a less than 1-second response time for 90 
information providers if their data is cached. One 
possible reason is that the caching mechanism in the 
GRIS allows it to not re-fetch the data from the 
information providers. The R-GMA 2.3.5 
StreamProducer ProducerServlet follows a similar 
pattern of performance; unlike the earlier version of R-
GMA, this approach “pushes” information to the 
connected Consumers thus decreasing the workload from 
the ProducerServlet and improving the performance. 

Our analysis shows that too many information 
collectors can become the performance bottleneck but 
that caching data at the information server or using a 
push model for data transmission can be an effective 
solution. Alternatively, different sets of information 
collectors can register to more instances of information 
servers with each handling a subset of the collectors. 
How to coordinate these instances needs further 
investigation. 
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3.6. Experiment Set 4 – Aggregate 
Information Server Scalability 

 
Our fourth set of experiments examined the 

aggregation of data, specifically the scalability of the 
MDS2 GIIS varying the number of GRIS, and the 
Hawkeye Manager varying the number of Agents. R-
GMA currently has no aggregate information server, but 
one could easily be built by using a composite 
Consumer/Producer that registered with the data streams 
of a number of Producers and served the data in an 
aggregated form. Since this component is not yet part of 
the standard distribution, we compared only the MDS2 
and Hawkeye for this experiment. 

For the MDS2, we simulated extra GRIS by running 
multiple instances at each Lucky node, except on lucky0 
where the GIIS ran. During the experiment, 10 users 
from a UC node concurrently sent queries to the GIIS for 
10 minutes. We tested two kinds of queries: The first 
queried for all of the data available from each of the 
registered GRIS, and the second asked for only a portion 
of the data (memory information) from each registered 
GRIS.  

For Hawkeye, we simulated the large number of 

Agents (computers) in a pool by using the 
“hawkeye_advertise” command to send Startd ClassAds 
at 30-second intervals to the collector machine. Once the 
simulated machines were running, 10 concurrent users 
queried the Manager for information. The Manager 
searched through all of the ClassAds (one for each of the 
simulated machines) to try to match on a constraint 
(specified by the query) that was not met by any 
machine, simulating the worst-case scenario. 

From the experiments results shown in Figures17–
20, we observe a large degradation in both throughput 
and response time by the MDS2 GIIS and Hawkeye 
Manager.  

For the MDS 2.1 GIIS, because of the software 
constraints, we were able to simulate only up to 200 
registered GRIS if all the users queried GIIS for the 
information from all the registered GRIS and up to 500 
GRIS if all the users queried GIIS for the information 
from part of the registered GRIS. In each case, the 
machine hosting the GIIS reaches a maximum load at 
around 100 registered GRIS. For the MDS 2.2 GIIS, we 
could simulate up to 700 GRIS in both cases. Adding 
more GRIS caused an error because the GIIS host hits an 
upper limit of the number of open files. This can be fixed 
by changing the system default, but we did not make this 
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Figure 17: Aggregate Information Server 

Throughput vs. No. of Information Servers 
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Figure 18: Aggregate Information Server 
Response Time vs. No. of Information Servers 
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Figure 19: Aggregate Information Server Host 

Load1 vs. No. of Information Servers 
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Figure 20: Aggregate Information Server Host 
CPU Load vs. No. of Information Servers 
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4. Recommendations change.  
For the Hawkeye Manager, after approximately 10 

simulated computers, the load on the Manager rapidly 
increases until about 200 computers. After 200, the load 
begins to decrease slightly but remains relatively 
constant. The reason that the load does not continue to 
increase is that the number of incoming ClassAds to the 
Manager is high, which once again overloads the 
network at the server-end.  

 
Based on the analysis of our four experiment sets, 

we present some general recommendations for the 
deployment of monitoring software. These are meant as 
broad rules of thumb. The best values for a given 
situation may be different because of specific 
deployment and application requirements. 

For MDS2 (either 2.1 or 2.2) we highly recommend 
that both GIIS and GRIS enable data caching, with time-
to-live values set as long as is feasible for the 
information in question in order to take advantage of 
caching as much as possible. As a directory server, the 
GIIS should be placed on a highly connected machine 
that is dedicated to this server only. If there are over 
about 500 users, the GIIS should be replicated. Likewise, 
a GIIS should have no more than approximately 100 
GRIS registered to it at a time. In turn, a GRIS can 
support around 100 information providers depending on 
how often the data in cache is out of date. In the ideal 
case when it is always in cache we have shown this will 
scale; however, if one’s data is rapidly changing, then 
this number might be smaller. 

The experimental results suggest that no current 
aggregate information server has good scalability when 
it is aggregating more than 100 information servers and a 
large number of users are querying the server. To 
achieve higher scalability for an aggregate information 
server, one should examine a multi–layer architecture in 
which each middle-level aggregate information server 
that manages a subset of information servers.  

 
3.7. Review of MDS2, R-GMA and Hawkeye  

 
MDS2 and R-GMA share many similarities; in 

particular, both provide solutions for a Grid information 
system and are driven by basic properties of the Grid 
environment. Hawkeye, too, has the same functional 
components (i.e., an information collector, an 
information server, and a directory), although it focuses 
on monitoring a single pool.  All three services describe 
the monitoring information uniformly using a global 
schema (e.g., LDAP in MDS2, Relational Data Model in 
R-GMA, and ClassAds in Hawkeye). 

For R-GMA, the ProducerServlet can maintain good 
performance if there are fewer than 400 concurrent 
Consumers and fewer than 100 Producers being 
managed. For higher values we recommend replicating 
the components. 

For Hawkeye, an Agent can easily handle 300 to 
400 concurrent users. Because of a current software 
constraint, however, an Agent cannot support over 98 
Modules, but this solution will likely be modified in the 
software release available by the time this work is 
published. The Manager shows a very good scalability 
and can support over 600 users.  However, similar to the 
MDS2 GIIS, the Manager should not manage over 100 
Agents reporting to it at a time. (This limitation is not 
currently an issue on deployed systems, but it may be 
one in the future.) 

The three services, however, have several key 
differences in design goals, architecture, and underlying 
technologies.  For example, the MDS2 GIIS provides a 
simple registration mechanism (where a GIIS registers to 
another GIIS) to construct a decentralized hierarchy of 
information. It is possible to distribute a Registry, but 
there is no standard protocol to distribute multiple 
Registries. Hawkeye does not support a decentralized 
architecture (e.g., there is no mechanism to link different 
pools, although it is possible in future development) and 
hence may be more vulnerable to failure. 

 
5. Conclusions and Future Work 

How the data is communicated, using a push or a 
pull mechanism, also differs. MDS2 allows only a pull 
model for data transfer. This can cause a bottleneck 
between client and server, and may not meet the needs of 
a user who would rather have a notification or push 
model. R-GMA supports both the pull and the push 
models for transferring the information data. For 
Hawkeye, executing a job based on a resource attribute 
value is similar to a Producer initiating contact with a 
Consumer.  The administrator or user submits a trigger 
ClassAd to the Manager and, when the requested data is 
available, (i.e., the event specified in the trigger ClassAd 
occurs), an action takes place, such as notifying the 
administrator in email. 

 
We have investigated three monitoring and 

information services for distributed systems: MDS2, R-
GMA and Hawkeye. Experiments were performed on 
each service to study their performance behaviors and 
constraints. Our work shows that all three services 
present good scalability in most of the cases we 
evaluated. We also found a strong performance 
advantage to caching or pre-fetching the data, as well as 
the need to have primary components at well-connected 
sites due to high load seen by all systems. 

In our future work, we plan to do more experiments 
to study other characteristics of these services. For 
example, the testbeds in our study were built in a LAN 
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environment; the experiments should be repeated to 
study performance in a WAN environment. We also 
want to determine the difference between querying an 
aggregate information server and an information server 
for the same piece of information. We plan to consider 
additional patterns of user access and test more varieties 
of service components, for example, the other kinds of 
Producers provided by R-GMA. 
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