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Abstract 

 

Application run-time information is a fundamental component in application and job scheduling, as well as in 

resource selection. However, accurate predictions of run times are difficult to achieve for parallel applications 

running in shared environments where resource capacities can change dynamically over time. Many 

conventional approaches used in scheduling research activities assume that accurate performance models of 

the applications are available or that the applications execute only on space-shared resources. We believe, 

however, that it is not always possible to obtain such performance models of complex applications, as they 

require a deep understanding of the application and a significant number of experiments to validate. In this 

paper, we propose a run-time prediction technique for parallel applications that uses regression methods and 

filtering techniques to derive the application execution time without using standard performance models. The 

experimental results show that our use of regression models delivers tolerable prediction accuracy and that 

we can improve the accuracy dramatically by using appropriate filters. 
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1. Introduction 

Application run-time information is needed in most application and job-scheduling approaches for 

parallel and distributed systems, as well as in resource selection in Grid computing environments [1, 

2, 10, 17, 19, 20]. However, accurate predictions of application run-times are difficult to achieve, 

especially for parallel applications running in shared environments, where resource capacities (e.g., 

CPU load, bandwidth, latency) can change dynamically over time and poor predictions can 

dramatically affect the performance of the scheduler and increase application run-times [3].   

In order to achieve accurate predictions of application run-times, many conventional approaches 

used in scheduling research assume that accurate performance models of the applications are 

available or that the applications execute only on space-shared resources where no two processes can 

run simultaneously. For accurate predictions of run times of parallel applications, such performance 

models must include parameters for both system-specific and application-run-specific information 

such as CPU load, bandwidth, the number of processors to use, message size, and operation counts, 

etc. For simple applications such as matrix multiplication codes, developing accurate performance 

models of the applications is relatively easy. In general, however, obtaining such performance models 

of complex applications is not always possible, as they require a deep understanding of the 

application and a significant number of experiments to validate the models developed. 

In this paper, we propose a run-time prediction technique for parallel applications running in 

shared environments. The novel aspect of our technique is that it derives the application execution 

times without using performance models of the applications. Instead, it discovers the relationship 

between variables that affect the run times of the application (e.g., the input to the application, 

resource capacities) and the actual run times from the past application run history. The proposed 

technique is based on regression methods and a filtering technique. The key idea of our approach is 
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that regression methods are applied only to subsets of past history in order to discover the 

relationship. A filtering technique is used to select such subsets. We evaluated the performance of our 

technique using two parallel applications: an N-body simulation code and a heat distribution code. 

These applications are implementations of two representative paradigms of high-performance 

distributed computing: master-slave and regular SPMD. The experimental results show that the use of 

regression methods delivers tolerable prediction accuracy and that we can improve the accuracy 

dramatically by using appropriate filters. 

The rest of the paper is organized as follows. Section 2 presents related work. Section 3 describes 

our prediction technique in detail and Section 4 presents the experimental results and analysis. 

Section 5 briefly discusses future work. 

 

2. Related Work 

Significant research has been conducted in the area of performance prediction. Much of this 

research, however, is tightly coupled with the applications in the sense that a thorough analysis of the 

codes is required. For example, much previous work assumed that operation counts and other low 

level details were available to predict application behavior [4,11,12,16]. 

Kapadia et al. [7] use three instance-based learning algorithms to predict resource usage for each 

application run in the PUNCH network-computing environment. Their approach is similar to ours in 

that only subsets of past performance information is used to learn the relationship. However, they do 

not consider parallel applications. In addition, by exploiting temporal and spatial locality of 

application runs, they implicitly assume that system-specific and application-run-specific information 

does not change significantly.  
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Lee and Weissman [8] use local linear regression and clustering techniques to predict the run 

times of parallel applications using columnwise predictions that reflect the performance change 

depending on input parameters given the same resource set and rowwise predictions that reflect 

performance change depending on the resource set given the same input parameters to the 

application. This work is limited to dedicated execution environments where no two processes run 

simultaneously on a single processor. 

Parashar and Hariri [12] propose an interpretive performance prediction technique that uses a 

characterization of the high-performance computing system and the application. In order to 

characterize the application, however, very detailed application information is required. 

Schopf and Berman [15] use stochastic values of parameters in performance models to predict 

behavior over a range of likely system states. They address the problem of using performance models 

parameterized by single values of resource status on shared environments. However, their technique 

can be applied only when accurate performance models of the applications are available. 

Taylor et al. [18] develop an infrastructure, called Prophesy, that automates the performance 

analysis and modeling processes. The application codes can be instrumented at different levels of 

granularity and the resultant performance data is automatically stored in the performance database. 

The performance models are developed based upon performance data from the performance database, 

model templates from the template database, and system characteristics from the system database. 

These models are used to predict the performance of the application under different system 

configurations. Prophesy also uses curve fitting as one of its automatic modeling technique 

Our work assumes very limited performance information (similar to Kapadia et al. and Lee and 

Weissman) and yet functions in a dynamic environment (as seen in Parashar and Hariri, Schopf and 

Berman, and Taylor et al.). 
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3. Run-Time Prediction Using Regression Methods 

To predict the execution times based on past application run history without using accurate 

performance models raises several significant issues. For example, one must evaluate which variables 

affect the run time of the application and to what extent. Furthermore, since the ranges and 

distributions of values of individual variables are unknown, appropriate scaling factors must be 

determined in order to compare values of different variables. To make the prediction problem 

tractable, we make the following assumptions: 

 

• The set of application input parameters that can affect the application run-time is known. In 

addition, some of the values have been converted into a more appropriate form; for example, if 

the application has the input parameter of a file name and the run time depends directly on the 

size of the file, the run-time predictors will be fed with the file size, instead of the file name. 

To what extent the input parameters affect the run time is unknown; we assume only that this 

set should be tracked. In our experience, users of the applications understand the meanings of 

individual input parameters and know which input parameters affect the run time of the 

application, so this assumption does not significantly affect the usability of our approach. 

• We do not consider parallel applications with run times that are nondeterministic or that 

depend on the distributions of the input data. For example, in iterative Jacobi computation, the 

number of iterations depends on the distribution of eigenvalues of the input matrix, which is 

difficult to compute in advance. To our knowledge, however, no existing performance 

prediction technique considers these types of application. 

• The parallel applications are not instrumented. Therefore, the only information we can collect 

is the start times and end times of the application runs. By making this assumption, we believe 
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Figure 1. Sequence of steps to predict the run time
of a parallel application run. The information for
the application run is given by the query point.

that our technique can be applied to many parallel applications without modifying the 

applications. 

• Every application executes on the same resource set. In other words, we do not predict how 

long an application that ran on a system X will now take on a system Y.  

 

Figure 1 shows the steps we use to predict the run time of a parallel application run. The set of 

information needed for a given run we call a query point. This includes the input to the application 

run, the number of processors to use for the run, and the current status of the processors and links 

connecting the processors. When each application run finishes, the following information is recorded: 

(1) input to the application run, (2) number of processors used, (3) average CPU load, (4) average 

bandwidth, (5) average latency, and (6) actual run time. Note that in order to compute (3), (4), and 

(5), only the processors and communication links that will be used for the run are considered; these 

are computed before the application run starts. When the query point is fed into the run-time 

predictor, it first extracts a subset of past run-time histories that are relevant to the query point as 

defined by a set of filters (see Section 3.2). Using this selected dataset, the predictor applies 
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regression methods to discover the relationship and then predicts the run time given the query point 

(see Section 3.1). 

 

3.1. Regression Methods 

Regression methods are mathematical tools that are often used to predict the behavior of one 

variable (e.g., the actual run-time), the dependent variable, from multiple independent variables (e.g., 

the input, the number of processors to use, and the resource status). The principle underlying 

regression methods is to minimize the sum of squared deviations of the predicted values from the 

actual observations [13]. In this work, we use the linear regression method because the computation 

cost is less than that of nonlinear regression methods such as quadratic and cubic methods. Note that 

using a linear regression method in our prediction technique does not mean that we assume that the 

performance models of the applications are linear. Instead, only a set of past run history sufficiently 

close to the query point, which is selected by filters, will be approximated by a linear relationship. 

Linear regression methods can be applied in different ways depending on which independent 

variables are used. 

 

• Direct Prediction) 

Direct prediction (DP) treats as independent variables every variable that affects the run time. 

Therefore, the following equation holds. 
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In this model, the run time of the parallel application run is a linear function of the input to the 

run, the number of processors, and the current resource status. Note that if there are n input 

parameters, the term β1*ip is expanded into n terms. For example, if two input parameters, x, y, are 

used for the application run, β1*ip is replaced with β11*x+β12*y, where β11 and β12 are linear 

regression coefficients. In addition, depending on which data stream is used for resource status, β3*rs 

term also can be expanded into multiple terms. For example, if both CPU load and bandwidth are 

considered, then β31*cpu load +β32*bandwidth will be used for the linear equation, where β31 and β32 

are linear regression coefficients. 

 

• Indirect Prediction  

In indirect prediction (IP), the run time is predicted by a two-step process. Unlike DP, the linear 

regression model is applied to predict base time (time to compute the unit size of the problem on a 

processor). The predicted base time and query point then are used to generate the final run-time 

prediction. 

tscoefficienregressionlinear
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This method is made available because we assume that the individual input parameters to the 

applications are already known. Therefore, the problem size that each participating processor should 

compute can be easily computed. 
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Y

Figure 2. The actual value of Y given X is q is
represented by rectangle. The dashed line is
generated by a global linear regression method and
the solid line by a local linear regression model. 

DP is the more traditional way of applying regression methods. It will generate accurate 

predictions when the regression models used can capture the relationship between dependent variable 

and independent variables. On the other hand, IP introduces new independent variables that are a 

function of existing independent variables. Our experiments, described in Section 4, show that this 

method is superior to DP as long as the values of the new variables are correct. 

 

3.2.  Filtering Technique 

Any linear regression technique attempts to fit a straight line to the available data in order to 

minimize the sum of squared deviations of the predicted values from the actual observations. 

Therefore, if the observations do not show strong linearity, applying the linear regression model will 

not generate accurate predictions. To support parallel applications whose performance models are not 

linear, we use a filtering technique to extract subsets of observations that are close to the query point 

and show strong linearity. Figure 2 shows the effects of using filters. Since the global regression 

model considers all of the observed data in order to predict that the actual value of Y, given X, is q, it 

generates a straight line in such a way that it minimizes the error for data points not only close to q 
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but also far from q. On the other hand, in a local regression model, since only data points close to q 

are considered in order to generate a straight line, the prediction accuracy is improved. 

The closeness of each data point to the query point is defined by the distance function of the filter. 

Since the range and distribution of variables used for run-time predictions are unknown, the distance 

function should normalize distances with respect to the query point. In addition, the extent to which 

individual variables influence the run time is also different. Therefore, the importance of each 

variable with respect to the run time also should be incorporated into the distance function. Formally, 

the distance between data point (d1, d2, …, dn) and query point (q1, q2, …, qn) is defined as follows. 
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For each dimension, local distance is computed, which denotes how far the value of a variable is 

distant from the corresponding variable in the query point and is normalized to 1. The denominator 

used in local distance function represents the range of the variable based on observed data so far. The 

weight associated with each dimension represents the importance of the dimension with respect to the 

run times. For example, for applications that require small amounts of data transfer among 

constituent processes, fluctuation of network status will affect the run times less than the CPU load 

will. 

Many possible filters exist, and each is differentiated by which variables are used to define the 

distance function. We used four filters for the experiments. Table 1 shows the filter names and 

variables that are used for each filter.  
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Table 1. Filters and their constituent variables 

Filter Name Variables Used 

NP Number of processors used 

NP_R Number of processors used, Resource capacities 

NP_PARM Number of processors used, Input parameters 

NP_R_PARM Number of processors used, Resource capacities, Input parameters 

 

We use the number of processors in all of our filters; hence, the rest of the data is first sorted by 

this variable, and then others are considered as part of the filtering function. Thus, only the past run 

time history data that has the same value as the one in the query point is considered to compute 

distances. 

 

4. Empirical Analysis 

We conducted experiments using two parallel applications implemented in MPI: an N-body 

simulation code and a heat distribution code. These applications are implementations of two 

representative paradigms of high-performance distributed computing: master-slave and regular 

SPMD.  

The N-body problem is concerned with determining the effects of forces between bodies (for 

example, astronomical bodies that are attracted to each other through gravitational forces). The N-

body problem also appears in other areas, including molecular dynamics and fluid dynamics [21]. We 

implemented an O(N2) version of an N-body simulation code using the master-slave paradigm. For 

each time step, the master sends the entire set of bodies to each slave and also assigns a portion of the 

 11



 

 12

bodies to each slave. The slaves compute the new positions and velocities for their assigned bodies 

and then return the new data to the master. 

The heat distribution code simulates the temperature changes of the surface over time, given that 

temperatures along each of edges of the surface are known. Temperature distribution is simulated by 

covering the area with an evenly spaced grid of points. In our parallel implementation, the grid is 
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Figure 3. Homogeneous background workloads. 
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decomposed and then distributed by rows to the each process. At each time step, participating 

processes must exchange border data with neighboring processes because a grid point’s current 

temperature depends on its previous time step value and the values of the neighboring grid points. 

We deployed the applications on the data grid nodes at Argonne National Laboratory. This testbed 

consists of 20 dual 845 MHz Intel Pentium III machines with 512 MB memory interconnected with 

100 Mbit Ethernet. Resource status such as CPU load, bandwidth, and latency are measured every 5 

minutes by the Network Weather Service (NWS) [22]. 

The status of each participating processor can affect the performance of the parallel applications. 

For this reason, we compared the performance of our technique under two different background 

workloads: homogeneous and heterogeneous. In homogeneous background workloads every 

processor in the testbed shows similar patterns of background workloads during the experiments 

(Figure 3), whereas in heterogeneous background workloads each machine shows different 

background workload patterns (Figure 4). The competing workloads on the resources were generated 

by other users on the system in the normal course of use; they were not simulated or generated from 

traces. Hence, every run experienced a slightly different load. 

Table 2 shows the configuration for the experiments. For each application run, the values are 

randomly selected. 

Table 2. Configuration for the experiments 

 N-body Simulation Codes Heat Distribution Codes 

Problem size 2,000 – 13,000 bodies 100x100 – 800x800 grids 

Number of processors 1-20 1-20 
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We measured the prediction accuracy using the normalized percentage error, defined as follows. N )
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each variable would affect the run times. For each filter, we applied several different sets of weights 

selected so that the sum of the weights was 1.0. These weights were selected based on preprocessing 

of a related set of experiments and were fixed throughout. The presented graphs are only subsets of 

the experimental results. 

 

4.1. Homogeneous Workloads 

Figure 5 presents the normalized percentage errors of several run-time predictors under 

homogeneous background workloads. In the graph, run-time predictors are grouped by the filter used. 

And, under each filter, run-time predictors are differentiated by what data streams for resource status 

are used. For example, one predictor used only the load status of the processors, whereas another 

used both load status and latency. 

Without filters, IP outperforms DP. The reason is that DP predicts the run time using linear 

relationship with all variables, which is not the case with parallel applications. For both IP and DP, 

the prediction accuracy can be improved by using appropriate filters.  However, we did not observe 

significant difference in the performance with different data streams for resource status. The reason is 

that the resource status of each machine is homogeneous and the system itself is lightly loaded. 

 

4.2. Heterogeneous Workloads 

Figure 6 shows results under heterogeneous workloads. As with homogeneous workloads, filtering 

improved the prediction accuracy. In addition, depending on the information used for resource status, 

the prediction accuracy can also be improved. The run-time predictors that take into account both 

CPU load and latency always produce better prediction accuracy. The best two were the predictor 
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using NP_PARM filter with 20.2% error in DP and the predictor using NP_PARM filter with 22.9% 

error in IP, respectively.  

Under both homogeneous and heterogeneous background workloads, when IP is applied, the 

NP_PARM filter (which uses only the number of processors and input parameters) generated 

noticeably improved performance. However, in IP, the improvement achieved by the other filters was 

either negligible or worse than the prediction accuracy of the run-time predictor without filters. This 

result can be explained by the following equation modeling IP. 

{ } { 10 α*rs*SαS }
T*S

+∗=
=RunTime

 

The first term (S*α0) is called main effects, and the second term (S*rs*α1) is called interaction 

effects between S and rs. Typically, the main effects have a larger impact on the response than do the 

interaction effects, as reflected by the magnitude of the coefficients of each term. Therefore, filtering 

over the main effects can collect closer data points to the query point. In N-body simulation example, 

S can be represented by {the number of bodies/the number of processors}. Therefore, only filters that 

include S, which include both the number of processors and the number of bodies, can generate more 

accurate predictions. An interesting result is that the filter that includes the number of bodies and the 

number of processors, as well as resource status, performed worse than the other predictors even 

though it uses the main effect for filtering. This filter collects data points too much concentrated 

around the query point and therefore cannot capture the relationship correctly. 

In both homogeneous and heterogeneous background workloads, run-time predictors with 

appropriate filters improved the prediction accuracy dramatically compared with those without filters. 

The reason is that only parts of history that are close to the query point and show strong linearity are 
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considered to predict the run time. In addition, using appropriate data streams for resource status 

helped improve the accuracy. 

 

5. Conclusions and Future Work 

In this paper, we proposed a run-time prediction technique based on linear regression methods and 

filtering techniques in order to discover the relationship between variables that affect the run times of 

parallel applications and the actual run-times. The experimental results show that without accurate 

performance models, our prediction techniques can generate satisfactory prediction accuracies for 

parallel applications running in shared environments. 

Since this work is at early stage, many issues need to be addressed. In particular, in the current 

technique, the variables and weights used in filters are manually selected. In general, however, we do 

not know which variables are more important than others. To address the problem, we are 

investigating principal component analysis [6] as a means of identifying a set of variables that affect 

the application run-times most. In addition, we are examining nonlinear regression models to derive 

the relationship of past history selected by filters. We also plan to apply our technique to the two 

LHC physics codes, ATLAS [1] and CMS [5]. 
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