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The goal of the proposed effort in analysis and simulation of cell networks is to increase our understanding of life phenomena at the level of bacterial cells.  To achieve this goal, we propose a two-pronged effort focusing on (1) development and analysis of large-scale mathematical models of selected sequenced photo- and heterotrophic bacteria and their populations and (2) fitting of the models to quantitative experimental data.

Specifically, we plan the following developments in mathematical modeling:

· We will automate development, debugging, solving, optimizing, analyzing, and visualizing mathematical models of large cell networks.  The complexity of models will range from stoichiometric matrices to nonlinear ODE and PDE equation sets with possible stochastic perturbations all covering large parts of cells or entire cells. 

· From the available sequenced genomes, we will compute a universal metabolic core, common for all sequenced autotrophic bacteria, and use it as a basis for the initial mathematical simulation of the central metabolism, common for such bacteria.  

· We will extend this core flux model to a model with specific features of Synechococcus WH8102, SFM, common for other cyanobacteria, and to a model of Pseudomonas fluorescens, PFM, common for other organotrophs.  
· Based on proteomic data from Pseudomonas fluorescens and Synechococcus, we will analyze the metabolic differences between plaktonic and adhered (biofilm) bacteria to develop a more complete characterization of the differences in bacterial behavior between these two environments.
Background and Significance

It is well known that an open biochemical reaction system described by a deterministic model of three nonlinear ordinary differential equations, ODEs, can generate a chaotic behavior [Goldbetter 1996, Gurel, 1983, Sel’kov 1980]. There is no way to precisely describe or explain such complex behavior by using a spoken language or quite scientific biological terminology.  Language of mathematics and mathematical models are the only way toward precise description and deep understanding of complex biological systems.

Therefore, once a genome is sequenced and the encoded metabolism is reconstructed, building a mathematical model of the metabolism to understand how it works is the next obvious step. 

Serious obstacles, however, make simulation of the metabolic networks a challenging task.  The most significant of these are the following:

1. Lack of information on regulatory mechanisms.  In spite of a very successful use of the metabolic reconstruction technology in academia and in industry, the current applications of it are limited by predicting a metabolic skeleton of the cellular organization and chromosomal clustering of functionally related genes. The whole complex network of regulatory interactions is currently beyond resolution of this technology.

2. Lack of numeric data.  For a realistic quantitative dynamic model of the whole cellular metabolism, one needs an enormous amount of numeric data on enzyme and transporters, their activities and substrate specificities, kinetic and equilibrium constants, concentrations of proteins and intermediates, and so forth. Even for a minimum model of the smallest reconstructed genome of Mycoplasma genitalium, one may require hundreds of such numbers.  It would take many years to get the required data experimentally.

3. Insufficiency of data for a single cell.  Simulation of the dynamic behavior of a single cell progressing along its cell cycle requires qualitative and quantitative data on the temporal behavior of many components of a single cell.  Measuring a dozen of parameters along several cycles of a synchronously growing bacterial culture is a heroic endeavor that is no longer attempted.  It is not well known that intercellular interactions in an apparently synchronous and homogenous cell culture can lead to a wide spectrum of dynamic behavior that can be attributed to a single statistically averaged cell.  

4. Lack of knowledge about the functions of many proteins.  It is common to point out that the essential percentage of every sequenced genome constitutes hypothetical proteins.  Unfortunately, there is no indication that all of them are of even minor importance for the cellular life.

5. Uncertainty about intracellular conditions. Intracellular conditions may be quite different from those used in experiments in vitro to determine the kinetics of purified enzymes.  The debate has continued for decades.

6. Complexity of the mathematical model. The mathematical model may be too complex to be a good substitute for a real cell. Even the simplest mathematical dynamic model of growing M. genitalium may have at least tens of variables and many tens of parameters.  A complete bifurcation analysis of such model may seem to be barely possible.  Manual encoding and debugging mathematical models derived from genomes much larger that the M. genitalium represent a tough technical problem even if all other problems are solved.

7. Nomenclature problems.   All parts of the living cell  (mini-, midi-, and macromolecules, their aggregates, functional blocks, control signals, mechanisms, locations, and many others) have names.  Unfortunately, there is no universal nomenclature─with the rare exception of chemical nomenclature and nomenclature of enzymes─and even these two nomenclatures are only recommendations that are ignored by many scientists.

Mathematics of complex biological system developed during the past several decades has found many techniques to address these problems. We will use these techniques in our mathematical simulation of reconstructed cellular networks.

Preliminary Results
Occam’s razor and other theoretical methods of reducing complexity.  Facing an enormous complexity of biological organization, theoreticians must find the ways of making complex system much simpler and transparent. The well-known economy principle of William Occam [Thorburn, 1915] remains among the most fundamental philosophical ideas underlying the formulation of the most successful model of biological systems. 

Hodgkin and Huxley [Hodgkin, 1952] neglected all details of excitable plasma membrane of giant axon of Loligo (molecular structure of its ion channels, slow regulation of channels and interaction with the axon metabolism, etc.) and developed an elegant quantitative mathematical model of membrane excitation. Their model that not only explained the observed phenomena but predicted a number of generic channel features that were confirmed decades later when the 3D structure of voltage-controlled ion channels became known. 

Mathematics has developed powerful tools of systematic dramatic reducing complexity of mathematical models.  Many of them basically exploit a very simple idea of neglecting small numbers when they are compared with large ones.  Among these mathematical tools is Tikhonov’s theorem [Tikhonov, 1952] and its generalizations [Vasilieva, 1967].  The general idea of this theorem is that if a mathematical model of a dynamic system can be represented as an ODE set 

x’= f(x, y),
y’= g(x, y)/e,

where x and y are vectors of slow x and fast y variables, f and g are vector functions, and e << 1 a small scalar number (a famous “small parameter”), then the conditions specified by the theorem allow a limit transition e ( 0 that gives a much simpler asymptotically perturbed system

x’= f(x, y),
 g(x, y) = 0,

solutions of which are very close to the solutions of the original one. The beauty of this reduction is that the details of the fast motion can be treated separately in the short time ts = e*t, t is the original time. Rewriting the original model for the short time ts gives it a new look 

x’= ef(x, y),
y’= g(x, y).

The model is now to be used to analyze details of the fast motion. This form suggests making another radical simplification of the original model by a new limit transition e ( 0.  This transition friezes the slow variables (x’=0, x= const) and gives a simplified version of model 

y’= g(x, y),

describing fast converging of variables y to their quasi-stationary values determined by the solutions of  g(x, y) = 0.

Tikhonov’s theorem is probably the most frequently used mathematical tool used in simulation of complex cellular networks (see general references in [Reich, 1975, 1981]).  It is suffice to say, that all rate laws of enzyme reactions, published in the literature since the classical article of Michaelis and Menten [Michaelis, 1913] are derived as quasi-stationary approximations justified by the Tikhonov’s theorem.

Mathematical analysis and simulation of cell energy metabolism.  In a series of publications, Selkov and his coworkers showed [Selkov, 1979; Reich, 1981] that an uncontrolled stoichiometric backbone of intermediary metabolism is capable of fine stabilizing of relative ATP concentration (i.e., Atkinson’s adenylate charge, or energy charge [Atkinson, 1969]) against variation of metabolic demand in a wide range [Ivanitsky, 1978; Selkov, 1975, 1979; Reich, 1981].  This theoretical prediction was later confirmed in experiments with a glycolytic system of a cell-free yeast extract treated by an excess of ammonium ions to desensitize key glycolytic enzymes to any allosteric signals [Boiteux, 1984].

Two recipies for predicting regulatory mechanisms and missing paramer.  It has also been shown that stoichiometric structures of cellular metabolic networks can generate a wide range nonlinear phenomena (hysteresis, multiple steady states, fine stabilization of concentrations, self-oscillations, etc.) earlier ascribed to much more complicated allosterically or genetically controlled networks [Ivanitsky, 1978; Selkov, 1975, 1979; Reich, 1981].   

These observations led Selkov [Ivanitsky, 1978, Selkov, 1979, 1980c4] to the idea that evolutionary younger nonstoichiometric regulatory mechanisms (allosteric and genetic) have evolved during the biology evolution to improve functioning of stoichiometric networks by compensating for their functional drawbacks.  From this follows the recipe of theoretical predicting regulatory mechanisms: 

· Formulate a mathematical model of a stoichiometric network.

· Analyze the model to find the defects.

· Compute the best control mechanisms and their optimum parameter values to compensate the defects.

Selkov [1980c] applied this method for predicting possible allosteric mechanism in purine metabolism. The function of the searched control mechanisms was to keep absolute concentration of ATP constant. The literature search confirmed that the predicted mechanisms were experimentally found in different organisms and tissues, although in different combinations with each other. 

The proposed method helps to solve two heavy problems simultaneously: it predicts control mechanisms and missing parameter values.  It appears that the method requires one to know the functions of cellular systems in order to formulate an optimization algorithm.  One can argue that such functions may be completely unknown or our assumptions about them wrong.

There exists, however, a simple way to circumvent this problem.  It requires experimental data on concentrations of metabolites, enzyme activities, time behavior, and so forth─the more, the better.  The data can be used to search for the best combination of regulatory mechanisms and parameter values of a system model satisfying the best fit to the data.  This variant of optimization does not require any information a priory about system functions.  

In fact, we do assume one formal function – keeping the model behavior as close as possible to the experimentally observed one.  Yet, we are free to formulate our hypothesis about the possible functions to optimize controls and parameter them.  We thus have a regular way of testing our hypothesis about possible system functions. 

We will use such optimizations to extend the limits of the reconstruction technology and to build comprehensive qualitative models of bacterial cells. The MCS Division has considerable expertise and excellent software, and hardware to support this part of our project

Studies of biochemical oscillations and the cell clock.   Studies of biochemical oscillations in metabolic and genetically controlled systems were very popular in the 60s and 70s; see references in [Goldbetter, 1996; Gurel, 1983].  These studies were always heated by a hope to understand mechanisms of the cell clock [Bunning, 1972; Edmunds, 1984, 1988].  The cell clock is a hypothetical self-oscillatory mechanism controlling periodic changes in the cell leading to cell divisions.  

Selkov [Sel’kov, 1970] has suggested that the cell clock is a limit cycle phenomenon related to thiol metabolism.  His very speculative model assumed that the leading factor generating auto-oscillations in thiol content is a positive feedback in formation of reduced thiols.  The model has been developed to theoretically explain experimentally observed oscillations in thiol content (aka Rapkine’s cycle [Rapkine, 1931]) in many experimentally studied organisms and in cell-free extracts of sea urchin eggs [Mano, 1968, 1969, 1970].  Later, Mano extended his studies on thiol clock and has shown that the thiol oscillations propagate through the cellular metabolism of cleaving eggs and cause cyclic response in protein synthesis, RNA polymerase, and DNA polymerase [Mano, 1971-1977, Mano, 1976].  Thus, Mano confirmed Selkov’s idea [Selkov, 1970] that the thiol clock controls the entire cell metabolism.    

Tin spite of these successes, the purely qualitative model of Selkov [Sel’kov, 1970] could not give answers to the following basic questions::

1. What is the primary function of the clock if the clock ticks with a period much shorter or longer than a day?

2. How can the clock generate very slow oscillations with the period of about a day in the metabolism that have characteristic times of several minutes, tens of minutes, or even hours?

3. What does make the Circadian version of the clock so stable? 

4. What are relationships between the clock and the cell division

5. What is the precise molecular mechanism of the clock?  

6. Is it universal, or there are many versions of the clock?

Analysis of stoichiometric models of cell energy metabolism suddenly led Selkov and coworkers [Ivanitsky, 1978, Selkov, 1979, 1980c; Avseenko, 1980, Boiteux, 1980] to a discovery of a critical role of temporal separation of futile cycles of cell energy metabolism. The model computations show that an uncontrolled substrate cycling in the futile cycle formed by two cytosolic enzymes 6-phosphofructokinase, PFK, (EC 2.7.1.11) and fructose-bisphosphatase, FBPase, (EC 3.1.3.11) leads to the negative net production of ATP. There is no way to prevent this wasteful substrate cycling besides a temporal organization. 

Such organization requires an auto-oscillator (a clock) to control these two enzyme activities reciprocally.  The theory predicted that the oscillator must have the oscillation period as long as possible to minimize the futile recycling during the transitions between two alternating states [Selkov, 1979a, 1979c].  Minimization of futile recycling requires the transition times as short as possible.  From this point of view sine waveform is among the worst possible and must be avoided [Selkov, 1979c].  Such oscillations with a very short transition time can be generated by a mechanism of product activation only. 

This conclusion about the required waveform kills all theories about any cell clock mechanism based on a negative feedback [Goldbetter, 1966].  The negative feedback oscillators require at least three consequtive reactions [Selkov 1967, Morales, 1967, Aponin, 1971, Hunding 1974, Othmer, 1976, Heirich, 1996].  These three steps act as a low band pass filter and cutoff effectively all high frequencies except the frequency of excitation for which the phase delay is 180 degrees.  This makes the waveform, generated by negative feedback oscillators, quasi-sinusoidal. The smooth oscillations observed so far in many experiments with cell clocks of different organisms can be explained by a wide phase distribution of individual cell clocks in a not ideally synchronous cell population.  It is clear that one needs a special research to study population effects on the waveform generated in many individual cells.  Without such study, any effort to guess about a possible waveform of intracellular oscillations will have a very low chance to reflect reality.

Selkov [Selkov, 1972, 1979, 1980a; Schulmeister, 1978] found the answer to the problem of the long oscillation period.  He determined that a fast reversible exchange between a storage compound like glycogen with the glycolytic oscillator makes the oscillation period very long.  His estimates made specifically for a glycolytic oscillator [Selkov, 1980a] gave oscillation period about a day. 

The prediction that glycogen must be a participant of the Circadian clock was confirmed in experiments with Gonyaulax polyedra [Dunlap, 1980; Rensing, 1980].  The work showed that phase shifts of the clock induced by cycloheximide are connected with the corresponding phase shits in the glycogen content.  

The authors explain the phase shits by an inhibitory action of cycloheximide on protein synthesis.  However, the concentration of the inhibitor was very low and inhibited protein synthesis only partially.  The hypothesis that the inhibitor acts specifically on synthesis of some clock protein(s) is not convincing.  

In rats, cycloheximide activates a quick disappearance of liver glycogen which cannot be explained be action of the inhibitor on protein synthesis.  If the inhibitor had the similar effect on G. polyedra the addition of it in the phase of glycogen accumulation would result in phase delay.  Addition of the inhibitor in the phase of glycogen degradation should result in the phase advancement.  The authors [Dunlap, 1980; Rensing, 1980] described precisely that kind of action of cycloheximide.  

Glycogen plays a central role in Circadian temporal organization of cyanobacteria.  Direct measurements of glycogen content in synchronous culture demonstrate large a Circadian oscillations in glycogen content with the expected wave form [Schneegurt, 1994].  Thus, participation of glycogen in the Circadian clock mechanism seems well documented.

Selkov [1979a] predicted that multiple negative feedbacks protecting all aspects of cellular metabolism should stabilize the clock period.  This prediction has been tested with a large mathematical model describing the cell energy metabolism [Avseenko, 1987; Selkov, 1989].  The model included glycogen metabolism connected with oscillation-generating futile cycle, catalyzed by 6-phosphofructokinase (EC 2.7.1.11) and fructose-bisphosphatase (EC 3.1.3.11), and four well known negative feedbacks controlling glycolysis/gluconeogenesis.  

This model demonstrated all main features theoretically expected from the Circadian clock.  The model generated very stabile Circadian oscillations.  The oscillations effectively suppressed wasteful substrate cycling in three major futile cycles of the metabolism.  The temporally organized energy metabolism maintained a high and stabile level of ATP to power an external metabolic load.   The optimized model had a very large valley in its parametric space – in this valley, variation of parameters in a wide range did not resulted in a substantial variation of oscillation period.  Thus, it has been proven that the temporal organization of energy metabolism can behave as a Circadian clock with all its postulated attributes.

This model, however, did not solve problem of the molecular mechanism yet.  The oscillation mechanism of the model had two positive feedbacks, activation of PFK by FBP and reciprocal inhibition of FBPase by FBP.  These positive feedbacks are missing in cyanobacteria.  Therefore, we need to find functional analogs of these positive feedbacks.  

Our preliminary study, based on the comparative analysis of sequenced and reconstructed genomes, predicts that the most probable positive feedback mechanism will include reciprocal control of several key enzymes by a thioredoxins, the redox status of which will be tightly controlled by an intermediate of the lower part of the glycolytic system.  Such a model could display a strong coupling between energy metabolism and macromolecular metabolism.  It will show phase shits to induced by addition of redox dyes, intermediates like pyruvate, lactate, inhibitors of protein synthesis, and respiratory inhibitors.   

The problem 5 listed above has been more or less solved experimentally.  It is known that in cyanobacteria the clock ticks in stationary cells. This means the clock is independent from division cycle but gates the division.

Enzyme reactions of real cells are open twice. They are open with respect to their reactants and products and with respect to enzyme molecules as well.  A slow spontaneous or catalytic degradation of enzyme molecules in is usually compensated by a de novo biosynthesis to keep a certain steady state level of enzymes.  Selkov and Nazarenko [Sel’kov 1980, Nazarenko 1983] have shown that a double open enzyme reaction behaves quite unexpectedly -- it can generate oscillations with a very long oscillation period T ~ 1/kE where kE is enzyme degradation rate constant.  In a simple single-reaction model oscillations are slowly converge to a stable steady state.  There are many ways of converting such oscillations into limit-cycle oscillations.

In particular, Brownian noise due to a low concentration of enzymes may continuously perturb the slowly damping oscillations.  This eventually will produce a limit cycle the size of which will be strongly dependent on the average amplitude of the noise.  Such transformation of a stable focus into a limit cycle has been studied in with simple variant of a glycolytic model [Ebeling, 1983, 1985] 

Derivation of rate lows for complex controlled reaction mechanisms.  The founders of modern theories on mechanism of action of allosteric enzymes [Monod, 1963, Koshland, 1966, Cornish-Bowden ,1995] did not bother themselves by the complexity of real enzyme reaction.  Their models describe the simplest possible enzyme reaction catalyzed by active sites of oligomeric enzymes, that is an irreversible transformation of a single substrate into a product.  

The vast majority of enzyme reactions are reversible and they have two-three substrates and two-three products [Enzyme Nomenclature, 1992].  Multiple attempts to derive rate laws for such reaction catalyzed by oligomeric enzymes failed before Popova and Selkov [Popova, 1975, 1976, 1978, 1979; Ivanitsky, 1978] have found a regular way of deriving such complex rate laws and demonstrated that a generalized multisubstrate model gives a good fit to 6-phosphofructokinase and pyruvate kinase reactions from E. coli [Malkova, 1980, Miakishev, 1983]

Experiment Design and Methods 

Our simulation strategy will be based on gradually increasing the complexity of mathematical models and the levels of biological hierarchy matched by the simulation. It has been shown [Edwards, 2000; Cowert, 2001] that such models can successfully represent the metabolic phenotype of bacterial cells. The flux models later will be upgraded to kinetic and dynamic models of a single cell. Finally, a series of models of increasing complexity will be developed to describe the dynamics of cell populations under different environmental conditions.

Specifically, the steps of developing of steady-state models of Synechococcus and P. fluorescens will be the following:

1. Metabolic reconstruction for available sequenced genomes of cyanobacteria and gram-negative organotrophs, phylogenically close to Pseudomonas fluorescens will be performed.  This will require analysis of 20-30 phylogenically related genomes for each organism to predict conserved chromosomal gene clusters, and therefore to increase precision of gene function annotation; use and development of standard data type definitions, ontologies, and nomenclatures; and updating of the metabolic pathway database.  Some assertions of functions and pathways will require experimental tests. 

2. Compilation and debugging of the flux core models for Synechocystis and P. fluorescens, based on the metabolic reconstructions of these organisms from sequenced genomes. 

3. Development of consistent nomenclature of metabolites, protein functions, pathways, compartments, and so forth.  Normalization of the nomenclatures is a bottleneck in the entire reconstruction technology preventing an automation conversion of reconstructions into mathematical models.

4. Diurnal modeling of Synechococcus by fitting the flux model of Synechococcus to two incompatible alternative metabolic states: (1) of CO2 fixation and (2) N2 reduction to obtain models of flux distribution under these conditions.  This step requires experimental measurment  of metabolic fluxes toward main storage compounds (glycogen, cyanophycin, sucrose, trehalose, glycosylglycerol, reserve lipids, polyphosphates, etc.) in addition to the main metabolic fluxes across the plasma membrane. Experimental measurment of the intermediate compounds will be done by using data from a chemostat culture culture synchronized by periodic illumination LD 12:12 hrs.

5. Fitting the flux model of Pseudomonas fluorescens, PFM, to experimental data obtained at different modes of batch growth (log-phase/stationary phase) and physiological  state (planktonic/attached)

6. Sensitivity analysis of these models to allow prediction of the most probable control steps in the metabolism affected by different physiology states.  This analysis will be supported by the cluster analysis of gene expression data.

7. Conversion of the flux models into the simplest stationary kinetic model in which all reactions rate laws have no saturation terms. This “chemical approximation” will be represented by a large set of nonlinear algebraic equations.  It will be used for an initial evaluation of a large number of rate constant from computed fluxes.  Optimization software developed by MCS will be used for this parameter fitting.

8. Qualitative and then quantitative analysis of the fitted algebraic models to reveal inconsistencies due to lack of regulation component in developed “unregulated” model of central metabolism.  Such inconsistencies will be used in the next step for computing the best combination of regulatory mechanisms that leads to a correction of the defects. Experimental validation and support will be integral to this process.

9. Formulation of an optimization task to compute the best set of allosteric mechanisms and regulatory parameter values that minimize the revealed defects.  This is a computationally demanding task. Initially it will be simplified by a number of technical methods, including the power law approximation of control functions and the use of blockwise optimization as opposed to global optimization.  It will be further simplified by assuming that only cross-road metabolites are allosteric regulators and that only irreversible reactions are potential regulation targets.  Experimentally confirmed regulatory interactions will be a subject of further detailed experimental kinetic studies with purified enzymes. 

10. These optimized models will then be converted to more realistic ones by introducing saturation terms into rate laws of controlled reactions.  This will require using detailed kinetic models for description of the mechanisms of these reactions.  This extension will introduce many unknown kinetic parameters, which will be computed by fitting the models to experimental data on flux distributions.

At this stage the models can be upgraded to dynamic models describing temporal changes in the cellular metabolism.

We propose to address the following six specific issues: (1) building of dynamic models of a single cell, (2)development of the cell clock theory, (3) simulation of synchronous modes, (4) simulation of inhomogeneous cell populations, (5) simulation of possible dynamic behavior in a homogeneous film, and (6) analysis of possible effects of small numbers of molecules on cell population. Below, we discuss each of these in turn.

Building of dynamic models of a single cell. This project is focused on the process of adhesion in which bacterial cells, initially free-floating, become adhered and then mature into a structured community called a biofilm.  During this process, the physiology of the cell changes dramatically, as does its relationship to its environment.  To build a dynamic model of this process requires far more experimental information about the process than we currently have in hand.  However, initial modeling will be based on the detailed evaluation of the two states: planktonic (a representative free-floating state) and adhered (a representative biofilm state).  The cellular subsystems that need to be shut down and the others that need to be turned on to make this transition will be detailed through a combination of proteomics, metabolic modeling, and analysis of the transcriptome, supplemented by additional experimental data as deemed needed for the detailed modeling.  The regulatory pathways will be mapped through a close interaction between our efforts to build a database of signal transduction proteins (Sentra) and our protein interaction mapping work.

Development of the cell clock theories and controversies. Because of the different physiologies of cells in planktonic and biofilms, the interaction of the process of adhesion/biofilm formation and the cell clock will be critical for developing a comprehensive understanding of biofilms.  This is particularly true in the case of Synechococcus, which maintains a cell division cycle of approximately 24 hours that is critical for its incorporation of incompatible metabolic pathways within a single cell.

The controversy about the mechanism of the cell clock involves the nature of the feedback mechanism controlling it. The popular negative feedback model is not convincing, however, for a number of reasons.

The primary function of the cell clock is to separate in time incompatible biochemical processes.  In all oxygenic N2-fixing cyanobacteria C O2 fixation coupled with O2 evolution is incompatible with N2 reduction. In H2-generating Synechococcus strains C O22 fixation/O2 evolution is incompatible with H2 generation by cytosolic hydrogenase.  In both cases, light-driven CO2 fixation/O2 evolution leads to accumulation of glycogen that is used then to generate reducing equivalents and ATP to power N2 fixation by nitrogenase or H2 formation by  reversible cytosolic hydrogenase. 

Any bioengineering of cyanobacteria to improve their CO2 sequestration, nitrogen fixation, H2 generation, and biomass production requires optimizing periodic solutions of dynamic models describing the whole metabolism and its regulation.  In nonphototrophic bacteria, the biochemical incompatibility can be not that obvious.  Yet, theoretical analysis (Selkov, 1979; Bioteux, 1980) has shown that any cell energy metabolism containing futile cycles cannot generate net ATP without temporal separation of oppositely directed reactions of such cycles.  In phototrophic organisms, including photrophic bacteria, the oscillation period of the clock is close to 24 hours and very stable.  Such a stable Circadian clock has an additional function of measuring diurnal time.  

The temporal organization of incompatible biochemistry requires very fast transitions from one metabolic state to another to prevent overlapping of the incompatible processes (Selkov, 1979).  Rectangular oscillations, typical for positive feedback mechanisms, are the best to meet this requirement.  By contrast, negative feedback mechanisms with their smooth sine wave-like oscillations do not fit the criterion. 

We believe that building the whole cell dynamic model of Synechococcus, a classical organism for studying Circadian cell clock, and fitting it to experimental data obtained with synchronous cell populations will be the shortest way of resolving the long theoretical discussion on the cell clock mechanism.

We will investigate whether the core of the clock mechanism is common for such different organisms as Synechococcus and Pseudomonas fluorescens.  This effort will require building quantitative whole cell dynamic models of each of these organisms and their comparative theoretical and experimental analysis.   It will also require extending the single cell simulation study toward simulation of synchronous populations of these organisms.

Simulation of synchronous modes in homogeneous populations of cells (interacting via common factors of the growth medium.). Interactions among cell clocks of individual cells in cell populations can lead to a synchronization of metabolic and physiology events of individual cells.  The interactions can be established via common growth substrates, secreted products, dissolved O2 and CO2, and specific hormone-like compounds and toxins. Mutual synchronization of intracellular events may be vitally important for many species in their natural habitats.  Obtaining the maximum cell population synchrony is critically important to enable measurement of intracellular events and tracing their temporal order. 
We propose to analyze an ODE model of 1,000 SynechococcusWH8102 cells interacting with each other via different factors common of its cultivation medium including quorum sensing compounds.  We will initially analyze this model under assumption of a homogeneous distribution of cells and ideal stirring of the medium. We expect to carry out a bifurcation analysis to determine parameter domains of existence of different modes of full or partial synchrony under conditions of a complete identity of individual cells and preset parameter scatter. We will determine the conditions favoring a stable auto-synchrony in the population even under essential scatter of individual cell parameters.  We will test hypotheses concerning possible instrumental control mechanisms stabilizing the population synchrony. We will use experience obtained to repeat the analysis with the model developed for P.  fluorescens.  
Simulation of spatially inhomogeneous cell population. We will convert the ODE models of Synechococcus and P. fluorescens into a hybrid model of partial differential equations (PDEs), describing diffusion of extracellular compounds into and out of cells, and systems of ODE, each describing a single cell.  Such models will represent a thin 2D layer of 100-100 cells equidistantly or randomly spaced in a square space of cultivation medium. 

Similar but much simpler systems have been analyzed, theoretically and experimentally, to study wave propagation in homogeneous chemical and biological media. Extrapolating the results, we expect to find the whole variety of dynamic behavior in such 2D cell communities, including propagation of slow waves of local metabolic synchrony and strong synchronizing effect of periodic illumination for Synechococcus. 

A more complex variant of the 2D layer of Synechococcus cells will also be analyzed.  The layer will model a vertical cross-section of seawater with a gravity force applied along one axis and a free float of the cells.  The buoyant density of the cells will be computed from the current amount of storage compounds (glycogen, cyanophycin, triglycerides, polyphosphates).  The model will describe periodic motion of the cells during the diurnal cycle of illumination.  The maximum content of glycogen by the end of light phase will result in slow sinking the cells.  Possible effects of quorum sensing on this cyclic migration are difficult to predict now. 

Similarly, a vertical 2D layer of floating P. fluorescens will be analyzed.  Here, the gravity force will act on the cell of the buoyant density dependent on the current content of polyphosphates, glycogen, and lipids.  We expect that the model will predict a number of critical phenomena associated with gradients of O2, cells, and temporal changes in the buoyant density of cells: beyond some critical local concentration of O2, the cells switch to the fermentation mode associated with accumulating polyphosphates. The increasing buoyant density results in sedimentation of the cells to the bottom.  

Simulation of dynamic behavior in a homogeneous film of Pseudomonas fluorescens. We will extend the 2D model for P. fluorescens by converting it into a 3D model.  The model will describe a cubic cultivation volume with the cells attached to the bottom of the volume as a regular or irregular mesh of cells.  The cultivation fluid can be still or flow with a constant flow along the cell layer. The geometry of biofilm, cell layering and spacing, and so forth will be specified depending on the results of previous simulations and comparisons with experimental studies of biofilms.  

Analysis of possible effects of small number of molecules on cell and cell population dynamics. Several investigators have pointed out that the limited number of molecules present in a cell may give rise to stochastic behaviors that must be incorporated in any comprehensive effort at cell modeling. Synechococcus and Pseudomonas have cytosol volumes of about 1e-15 to 1e-14 l.  With concentrations of metabolites it the range of 0.01 to10 mM, the cytosol would have 1e3 to 1e7 molecules of each molecular species.   A very low concentration of some catalytic or regulatory proteins might be a problem if they interact with each other.  There is no problem, however, if weakly expressing proteins interact with metabolites in the above-mentioned range.  Yet, typical for cytosol compartment pH = 7.0 accounts for only 10 to 100 protons in the compartment.  The ubiquitous presence of protons as a reactant or an effector appears to make the whole metabolism quite stochastic.  

These estimates do not take into account the strong buffer effect of the whole network.  Many low-concentration reactants are buffered by their metabolic or binding partners.  For instance, for a single virtual free proton in a compartment at pH = 8.0 there will be excessive buffer capacity of all moieties R, which are in a very quick equilibrium with free protons 

 H+ + R == RH.

With total R+RH of about 10 to 100 mM one could apparently neglect possible very fast fluctuations in a local proton concentration.

We realize, however, that only a detailed computer simulation of a metabolic network running in a cell volume with realistically chosen numbers of molecular species can give a convincing picture about possible stochastic component in the dynamics of the cell metabolism.  We plan to use a dynamic model describing the core metabolism of a phototrophic bacterium to test contribution.

4. Identification of Classes of Proteins Involved in Biofilm Formation

We will identify the following classes of proteins involved in a process of biofilm formation in Synechococcus WH8102 and P. fluorescens:

· Proteins involved in quorum sensing (lux-genes, signal transduction proteins) using the Sentra database technology based on domain and motif analysis 

· LPS biosynthetic genes in P. aeroginosa and P. fluorescens (upon availability of a genome) will be predicted using gene function predictions algorithms and tools described in the Bioinformatics section of this proposal

· Secreted proteins (e.g., proteases): Synechococcus and P. fluorescens proteins containing one or two transmembrane domains according to TMHHM analysis of the whole genomes will be extracted and further analyzed using Psort and Pfam programs in order to identify and characterize a set of excreted proteins in these organisms.

· Flagella and pili structural genes and related regulatory genes

· Adhesion proteins

The results of identification and characterization of proteins relevant to a process of biofilm formation will be passed to transcriptome, proteome, and protein-protein interaction analysis groups. Information regarding architecture of gene networks for these gene products and composition of protein complexes under variety of experimental conditions will be incorporated into the computational model of a transition state between planktonic and attached fases of Synechoccus WH8102 and P. fluorescens existence.


Deliverables
 

Year 1:

· Compilation and debugging of selected flux models based on the metabolic reconstructions
· Fitting of the flux model of Synechococcus to different metabolic states. This involves measuring metabolic fluxes toward main storage compounds and main metabolic fluxes crossing plasma membranes.
· Fitting of the flux model of Pseudomonas fluorescens to experimental data obtained at different modes of btach growth and physiology state
Year 2:

· Sensitivity analysis of fitted models

· Conversion of flux models into steady-state kinetic models; qualitative and quantitative analysis of kinetic models to revel defects in functioning uncontrolled central metabolism

· Simulation of synchronous modes in homogeneous cell populations

Year 3:

· Generation and debugging of stoichiometric matrices generated from the pathway collection, cross-linking with small molecules nomenclature

· Simulation of dynamic behavior in homogeneous film of Pseudomonas fluorescens
· Conversion of steady-state models of into dynamic models

Year 4:

· Optimizing the dynamic models to predict control mechanisms governing intermediary metabolism of Synechococcus and Pseudomonas fluorescens.  

· Fitting the dynamic model of Synechococcus to experimental data obtained in experiments with continuous synchronous culture of this organism.

· Conversion of the fitted dynamic model of Synechococcus sp. into a model describing of spatially homogeneous population of this organism
Year 5:

· Simulation of dynamic behavior of a mixed homogeneous population of Synechococcus and Pseudomonas fluorescens

· Simulation of spatially inhomogeneous cell populations Synechococcus and Pseudomonas
· Simulation of dynamic behavior in homogeneous film of Pseudomonas fluorescens
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