
In Proceedings of the 15th Workshop on Languages and Compilers for Parallel Computing (LCPC), July 2002.

Combining Performance Aspects of Irregular Gauss-Seidel via Sparse Tiling

Michelle Mills Strout, Larry Carter, Jeanne Ferrante, Jonathan Freeman, and Barbara Kreaseck
University of California, San Diego

9500 Gilman Dr.
La Jolla, CA 92093-0114

mstrout@cs.ucsd.edu

Abstract

Finite Element problems are often solved using multi-
grid techniques. The most time consuming part of multi-
grid is the iterative smoother, such as Gauss-Seidel. To im-
prove performance, iterative smoothers can exploit paral-
lelism, intra-iteration data reuse, and inter-iteration data
reuse. Current methods for parallelizing Gauss-Seidel
on irregular grids, such as multi-coloring and owner-
computes based techniques, exploit parallelism and pos-
sibly intra-iteration data reuse but not inter-iteration data
reuse. Sparse tiling techniques were developed to improve
intra-iteration and inter-iteration data locality in iterative
smoothers. This paper describes how sparse tiling can ad-
ditionally provide parallelism. Our results show the ef-
fectiveness of Gauss-Seidel parallelized with sparse tiling
techniques on shared memory machines, specifically com-
pared to owner-computes based Gauss-Seidel methods. The
latter employ only parallelism and intra-iteration locality.
Our results support the premise that better performance oc-
curs when all three performance aspects (parallelism, intra-
iteration, and inter-iteration data locality) are combined.

1 Introduction

Multigrid methods are frequently used in Finite Element
applications to solve simultaneous systems of linear equa-
tions. The iterative smoothers used at each of the various
levels of multigrid dominate the computation time [3]. In
order for iterative smoothers to improve performance, the
computation can be scheduled at runtime to exploit three
different performance aspects: parallelism, intra-iteration
data reuse, and inter-iteration data reuse.

Figure 2 shows the iteration space graph for two
commonly-used smoothers, Gauss-Seidel and Jacobi. The
iteration space graph in figure 2(a) visually represents the
computation and data dependences for the Gauss-Seidel
pseudocode in figure 1. Thex andy axes suggest that the

unknowns of the simultaneous equations might lie in a 2-
dimensional domain; however, the unknowns are indexed
by a single variablei. The iter axis shows threeconver-
gence iterations(applications of the smoother). Each it-
eration point< iter, i > in the iteration space represents
all the computation for the unknownui at convergence it-
erationiter. The dark arrows show the data dependences
between iteration points for one unknownui in the three
convergence iterations. At each convergence iterationiter
the relationships between the unknowns are shown by the
lightly shadedmatrix graph. Specifically, for each non-zero
in the sparse matrixA, aij 6= 0, there is an edge<i, j > in
the matrix graph.

GaussSeidel(A,~u,~f)
for iter = 1, 2, ..., T

for i = 1, 2, ..., R
ui = fi

for all j in order where (aij 6= 0 andj 6= i)
ui = ui − aijuj

ui = ui/aii

Figure 1. Gauss-Seidel pseudocode

In Gauss-Seidel, each iteration point<iter, i> depends
on the iteration points of its neighbors in the matrix graph
from either the current or the previous convergence itera-
tion, depending on whether the neighbor’s indexj is or-
dered before or afteri. In Jacobi (figure 2(b)), each itera-
tion point<iter, i> depends only on the iteration points of
its neighbors in the matrix graph from the previous conver-
gence iteration.

Tiling [35, 20, 14, 34, 8, 24] is a compile-time trans-
formation which subdivides the iteration space for aregu-
lar computation so that a new tile-based schedule, where
each tile is executed atomically, exhibits better data local-
ity. However, sparse matrix computations used for irreg-
ular grids have data dependences that are not known un-

1

iter

x

y

(a) Gauss-Seidel Iteration Space with 3 convergence iterations

iter

x

y

(b) Jacobi Iteration Space with 3 convergence iterations

Figure 2. The arrows show the data depen-
dences for one unknown ui. The relation-
ships between the iteration points are shown
with a matrix graphs.

til run-time. This prohibits the use of compile-time tiling.
Instead, sparse tiling techniques use iteration space slic-
ing [27] combined with inspector-executor [30] ideas to dy-
namically subdivide iteration spaces induced by the non-
zero structure of a sparse matrix (like those shown in fig-
ure 2). In the case of Gauss-Seidel, it is necessary to re-
order the unknowns to apply sparse tiling. The fact that we
can apply ana priori reordering requires domain-specific
knowledge about Gauss-Seidel.

iter

y

x

(a) Sparse tiled Gauss-Seidel iteration space using the full sparse
tiling technique. Notice that the seed partition is at the middle con-
vergence iteration.

iter

x

y

(b) Sparse tiled Gauss-Seidel iteration space using the cache block
sparse tiling technique. The iteration points which are not shaded
belong to a tile which will be executed last. The seed partition is at
the first convergence iteration.

Figure 3. A visual comparison of the two
sparse tiling techniques.

There are two known sparse tiling techniques. Our pre-
vious work [33] developed a sparse tiling technique which
in this paper we callfull sparse tiling. Douglas et. al.
[12] described another sparse tiling technique which they
refer to as cache blocking of unstructured grids. In this pa-
per, we will refer to their technique ascache block sparse
tiling. Figures 3(a) and 3(b) illustrate how the full sparse

2

tiling and the cache block sparse tiling techniques divide
the Gauss-Seidel iteration space intotiles. Executing each
tile atomically improves intra- and inter-iteration locality.
Intra-iteration locality refers to cache locality upon data
reuse within a convergence iteration, andinter-iteration lo-
cality refers to cache locality upon data reuse between con-
vergence iterations.

This paper describes how sparse tiling techniques can
also be used to parallelize iterative irregular computations.
To parallelize cache block sparse tiled Gauss-Seidel, the
“pyramid”-shaped tiles are inset by one layer of iteration
points at the first convergence iteration. Then all of the
pyramid-shaped tiles can execute in parallel. This however
still leaves a large final tile which must be executed seri-
ally and which, because of its size, may exhibit poor inter-
iteration locality. To parallelize full sparse tiled Gauss-
Seidel it is necessary to create a tile dependence graph
which indicates the dependences between tiles. Indepen-
dent tiles can be executed in parallel. We have implemented
both sparse tiling techniques within the same framework,
therefore, we can compare their effectiveness.

Other methods take advantage of the ability toa priori
reorder the unknowns in order to parallelize Gauss-Seidel.
Multi-coloring is the standard way to parallelize irregular
Gauss-Seidel [5]. It works by coloring the matrix graph
so that adjacent nodes have different colors. Having done
so, all nodes of a given color within one convergence it-
eration can be executed in parallel. The number of colors
is the minimum number of serial steps in the computation.
Owner-computes methods use coloring at a coarser granu-
larity. The nodes in the matrix graph are partitioned and
assigned to processors. Adjoining partitions have data de-
pendences. Therefore, a coloring of the partition graph can
determine which cells in the partitioning can legally be exe-
cuted in parallel. Adams [2] developed an owner-computes
method called nodal Gauss-Seidel, which renumbers the un-
knowns so that good parallel efficiency is achieved. Both of
these techniques require synchronization between conver-
gence iterations.

The main difference between these techniques for par-
allelizing Gauss-Seidel and sparse tiling techniques is that
the former do not directly result in intra-iteration and
inter-iteration locality. It is relatively easy to adjust the
nodal Gauss-Seidel [2] technique for intra-iteration local-
ity, but neither multi-coloring nor owner-computes based
techniques like nodal Gauss-Seidel take advantage of inter-
iteration data reuse.

Sparse tiling techniques explicitly manage all three as-
pects of performance: parallelism, intra-iteration locality,
and inter-iteration locality. Although current compilers are
not able to analyze a Gauss-Seidel solver and automatically
incorporate sparse tiling due to the need for domain specific
knowledge, we believe that it will eventually be possible

with the help of user-specified directives.
Section 2 describes sparse tiling from a traditional tiling

perspective. In section 3, we describe how to create a
parallel schedule for full sparse tiling and show experi-
mental results for parallel executions of full sparse tiled
and cache block sparse tiled Gauss-Seidel. In section 4,
we qualitatively evaluate methods of parallelizing Gauss-
Seidel, including multi-coloring, owner-computes methods,
and parallel full sparse tiling, in terms of their intra- and
inter-iteration data locality and parallel efficiency. Owner-
computes methods are only unable to provide inter-iteration
data locality, so we quantitatively compare owner-computes
methods with full sparse tiling to investigate the importance
of inter-iteration locality. Section 5 discusses future plans
for automating sparse tiling techniques, further improving
the parallelism exposed by full sparse tiling, and imple-
menting parallel full sparse tiling on a distributed memory
machine. Finally, we discuss related work and conclude.

2 A Simple Illustration

Although the focus of this paper is on irregular problems,
we would like to introduce our techniques in a simplified
setting, using a regular one-dimensional problem as an ex-
ample.

Suppose we have a vector~u of N unknowns and want
to solve a set of simultaneous equations,A~u = ~f . If
the unknowns~u correspond to some property of points in
a suitable one-dimensional physics problem, the matrixA
will be tri-diagonal, i.e. the only non-zeros will be in
the major diagonal and the two adjacent diagonal. In this
case, the following code corresponds to applying three iter-
ations of a Jacobi smoother (assuming we have initialized
u[0]=u[N+1]=0):

for iter = 1 to 3
for i = 1 toN

newu[i] = (f[i]-A[i,i-1]*u[i-1]
-A[i,i+1]*u[i+1]) / A[i,i]

for i = 1 toN
u[i] = newu[i]

Under certain assumptions about the matrixA, after each
iteration of theiter loop,~u will be a closer approximation to
the solution of the simultaneous equations (hence the term,
“convergence iterations”.)

Our goal is to parallelize this computation and to im-
prove the use of the computer’s memory hierarchy through
intra- and inter-iteration locality. The simplest method of
parallelizing it for a shared-memory computer is to parti-
tion the~u and ~newu vectors among the processors. Then
for each convergence iteration, each processor can compute

3

its portion of ~newu in parallel. Next, the processors per-
form a global synchronization, copy their portion of~newu
to ~u, resynchronize, and proceed to the next convergence
iteration. On a distributed memory machine, the two syn-
chronizations are replaced by a single communication step.

In this example, the resulting code will have decent intra-
iteration locality. Specifically, the elements of~u, ~newu, and
A are accessed sequentially (i.e., with spatial locality). Fur-
ther, in thei loop, each elementu[i] is used when cal-
culating u[i-1] and u[i+1] , which results in temporal
locality.

However, there is no inter-iteration locality. During each
convergence iteration, each processor makes a sweep over
its entire portion ofA, ~u and ~newu, and then a second
sweep over~u and ~newu. Since these data structures are typ-
ically much larger than caches, there is no temporal local-
ity between convergence iterations. Such locality is impor-
tant because even with prefetching, most processors cannot
fetch data from memory as fast as they can perform arith-
metic.

Tiling provides a method of achieving inter-iteration lo-
cality. The rectangle in figure 4 represents the3×N itera-
tion space for the example code - each point in the rectangle
represents a computation ofnewu[i] . To simplify the ex-
position, we ignore the storage-related dependences and the
copy of ~newu to ~u, but note in passing that this is a sophis-
ticated application of tiling involving two loops, that neither
tile boundary is parallel to the iteration space boundary, and
that the tiling could benefit from the storage-savings tech-
niques of [33].

i
1

3

N

iter

T1 T2 T4 T5 T6T3

1

Figure 4. Tiling the two-dimensional itera-
tion space corresponding to a simple one-
dimensional regular stencil computation.
The dashed lines illustrate how the trape-
zoidal tiles arise from a regular parallelogram
tiling of a conceptually infinite space. The
arrows in tile T5 show the dependences be-
tween iterations.

In figure 4, there are six tiles labeled T1 to T6. For any
of the odd-numbered tiles, all of the computations in the
tile can be executed without needing the results from any

other tiles. After all the odd-numbered tiles are completed,
then the even-numbered tiles can be executed in parallel.
Furthermore, assuming the tiles are made sufficiently small,
each tile’s portions of the three arrays will remain in cache
during the execution of the tile. Thus, tiling can achieve
parallelism as well as intra- and inter-iteration locality for a
simple regular computation. Unfortunately, tiling requires
that the dependences be regular. If we replace the tridiag-
onal matrixA by an arbitrary sparse matrix then the im-
plementation will use indirect memory references and non-
affine loop bounds and tiling will no longer be applicable.

We now illustrate how sparse tiling achieves parallelism,
as well as intra- and iter-iteration locality. Sparse tiling is a
run-time technique that partitions the~newu vector into cells
that can conveniently fit into cache, then chooses an order
on the cells, and then “grows” each cell into the largest re-
gion of the iteration space that can be computed consistent
with the dependences and the ordering on the cells. The
tiles are grown so that each tile can be executed atomically.
Since all of this is done at runtime, sparse tiling is only prof-
itable if the overhead of forming the tiles can be amortized
over multiple applications of the smoother on the same un-
derlying matrix. Fortunately, this is often the case.

Figure 5 shows how sparse tiling would work on our sim-
ple example. The horizontal axis (representing the indices
of the~u and ~newu vectors) is partitioned into six cells. In
the top diagram, these are numbered sequentially from left
to right; in the bottom, they are given a different numbering.
Then, each tile in turn is “grown” upwards assuming adja-
cent tiles will be executed in numerical order. If the neigh-
boring iteration points have already been computed by an
earlier tile, then the upward growth can expand outwards;
otherwise, the tile contracts as it grows upwards through
the iteration space.

1 2 4 6

1 2 3 4 5 6

3 5

Figure 5. Two applications of sparse tiling to
the iteration space of figure 4. In both cases,
the data was partitioned into six cells. In
the top diagram, they were ordered from left
to right. The resulting tiling achieves inter-
iteration locality. The small arrows indicate
dependences between tiles.

4

Both diagrams result in a tiling that achieves inter-
iteration locality. However, there will be dependences be-
tween the tiles, as shown by the arrows in the diagrams. The
six tiles in the top diagram must be executed sequentially —
tile i + 1 cannot be executed until tilei is completed, un-
der the usual assumption that tiles are executed atomically.
However, in the bottom diagram, the tiles numbered 1 and 2
can be executed concurrently. When 1 is complete, 3 can be
started; when 2 is done, 4 can be started, and so on. Thus,
sparse tiling can achieve parallelism, intra-iteration locality,
and inter-iteration locality on irregular problems. However,
it requires either luck or a thoughtful choice for the initial
numbering of the cells given by the partitioner.

In the remainder of this paper, we will move away from
the simplifying assumptions of this section. In particular,
we will consider higher dimensional, unstructured prob-
lems. Thus, there will be more non-zeros in theA matrix,
they will occur in an irregular pattern, and a space-efficient
sparse data structure will be used. Furthermore, we will
concentrate on using a Gauss-Seidel smoother rather than a
Jacobi one. This eliminates the temporary vector~newu. In-
stead, eachi iteration reads and updates the~u vector which
introduces dependences within a convergence iteration as
well as between convergence iterations. As mentioned ear-
lier, it is common with Gauss-Seidel that a reordering of the
unknowns is permitted, provided that once an order is cho-
sen, the same order is used throughout the execution of the
iteration space. This allows us to choose any numbering on
the cells of the partitioning as well.

3 Executing Sparse Tiled Gauss-Seidel in
Parallel

Sparse tiling techniques perform runtime rescheduling
and data reordering by partitioning the matrix graph, grow-
ing tiles from the cells of the seed partitioning, constructing
the new data order, and creating the new schedule based on
the sparse tiling. In order to execute tiles in parallel we con-
struct a tile dependence graph. The tile dependence graph is
used by a master-worker implementation. The master puts
tiles whose data dependences are satisfied on a ready queue.
The workers execute tiles from the ready queue and notify
the master upon completion.

The following is an outline of the sparse tiling process
for parallelism.

• Partition the matrix graph to create the seed partition-
ing. Each piece of the partition is called acell. Cur-
rently we use the Metis [22] partitioning package for
this step.

• Choose a numberingon the cells of the seed partition.

• Grow tiles from each cell of the seed partitioning in

Name Description L2 cache

Ultra SUN HPC10000, up to 32 4MB
400 MHz UltraSPARCII processors

Blue One node of an IBM SP, 8MB
Horizon Eight 375 MHz Power3 processors
Node

Table 1. Descriptions of architectures used in
experiments.

turn to create the tiling functionθ which assigns each
iteration point to a tile. The tile growth algorithm will
also generate constraints on the data reordering func-
tion.

• Reorder the data using the reordering function.

• Rescheduleby creating a schedule function based on
the tiling functionθ. The schedule function provides a
list of iteration points to execute for each tile at each
convergence iteration.

• Generate tile dependence graphidentifying which
tiles may be executed in parallel.

Either full tile growth (called serial sparse tiling in [33])
or cache blocking tile growth [12] can be used to grow tiles
based on an initial matrix graph partitioning. We show re-
sults for both methods.

Our experiments were conducted using the IBM Blue
Horizon and SUN Ultra at the San Diego Supercomputer
center. Details on both machines are given in table 1. We
generated three matrices by solving a linear elasticity prob-
lem on a 2D bar, a 3D bar, and a 3D pipe using the FEtk [18]
software package. The Sphere and Wing examples are pro-
vided by Mark Adams [1]. These are also linear elasticity
problems. Table 2 shows statistics on the matrices.

In all our experiments, the sparse matrix is stored in
a compressed sparse row (CSR) format. Our previous
work [33] compared sparse tiled Gauss-Seidel (with a serial
schedule) using CSR with a version of Gauss-Seidel which
used a blocked sparse matrix format with a different format
for the diagonal blocks, upper triangle blocks, and lower
triangle blocks. The blocked sparse matrix format exploits
the symmetric nature of the sparse matrices generated by
the Finite Element package FEtk [18]. Further experimen-
tation has shown that the CSR matrix format results in a
more efficient implementation of the typical Gauss-Seidel
schedule.

Our experiments examine the raw speedup of sparse tiled
versions of Gauss-Seidel over a typical schedule for Gauss-
Seidel (as shown in figure 1), the overhead of computing

5

avg
non-zeros

Matrix numrows num non-zeros per row

2D Bar 74,926 1,037,676 13.85
3D Bar 122,061 4,828,779 39.56
Sphere150K 154,938 11,508,390 74.28
Pipe 381,120 15,300,288 40.15
Wing903K 924,672 38,360,266 41.49

Table 2. Descriptions of input matrices.

the sparse tiling, and the average parallelism within the tile
dependence graph.

3.1 Raw Speedup

Figure 6 shows the raw speedups of cache blocked and
full sparse tiled Gauss-Seidel for 1, 2, 4, and 8 processors
on a node of the IBM Blue Horizon. Figure 7 shows the
raw speedups on the SUN Ultra using up to 32 processors.
In [12], cache block sparse tiling uses seed partitions which
fit into half of L2 cache, and we do the same. In our experi-
ence, full sparse tiling gets better performance when we se-
lect the seed partition size to fit into one-eighth of L2 cache.
More work is needed to improve on this heuristic.

While both sparse tiling techniques achieve speedups
over the unoptimized Gauss-Seidel, full sparse tiling fre-
quently achieves the best speedups. With cache block
sparse tiling all of the tiles are executed in parallel except
for the last tile. This last tile cannot be started until all
the other tiles have completed, so parallelism is inhibited.
Further, the last tile may be large and therefore have poor
inter-iteration locality and intra-iteration locality.

Sparse tiling performs well in all cases but the Wing ma-
trix on the Ultra. Further investigation is needed for the
largest problem set.

3.2 Overhead

Sparse tiling techniques are performed at runtime, there-
fore the overhead of performing sparse tiling must be con-
sidered. We present the overhead separately because Gauss-
Seidel is typically called many times within applications
like multigrid. We can amortize the overhead over these
multiple calls which use the same sparse matrix. Our re-
sults show that Gauss-Seidel with two convergence itera-
tions must be called anywhere from 56 to 194 times on the
sample problems to amortize the overhead. Specific break
even points are given in table 3. On average,75% of the
overhead is due to the graph partitioner Metis. A break
down of the overhead per input matrix is given in table 4.

 2D Bar
 R=74,926
NZ=1,037,676

 3D Bar
 R=122,061
NZ=4,828,779

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381,120
NZ=15,300,288

 Wing
 R=924,672
NZ=38,360,266

0

1

2

3

4

5

6

7

8

9

10

11

R
aw

 S
pe

ed
up

Cache Block ST for 1/2 L2, n=1
Cache Block ST for 1/2 L2, n=2
Cache Block ST for 1/2 L2, n=4
Cache Block ST for 1/2 L2, n=8

0

1

2

3

4

5

6

7

8

9

10

11
Full ST for 1/8 L2, n=1
Full ST for 1/8 L2, n=2
Full ST for 1/8 L2, n=4
Full ST for 1/8 L2, n=8

Blue Horizon, numiter=2

Figure 6. Raw speedup of sparse tiled Gauss-
Seidel with 2 convergence iterations over a
typical Gauss-Seidel schedule. These exper-
iments were run on a node of the IBM Blue
Horizon at SDSC. Each node has 8 Power3
processors.

 2D Bar
 R=74,926
NZ=1,037,676

 3D Bar
 R=122,061
NZ=4,828,779

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381,120
NZ=15,300,288

 Wing
 R=924,672
NZ=38,360,266

0

2

4

6

8

10

12

14

16

18

20

R
aw

 S
pe

ed
up

Cache Block ST for 1/2 L2, n=1
Cache Block ST for 1/2 L2, n=2
Cache Block ST for 1/2 L2, n=4
Cache Block ST for 1/2 L2, n=8
Cache Block ST for 1/2 L2, n=16
Cache Block ST for 1/2 L2, n=32

0

2

4

6

8

10

12

14

16

18

20 Full ST for 1/8 L2, n=1
Full ST for 1/8 L2, n=2
Full ST for 1/8 L2, n=4
Full ST for 1/8 L2, n=8
Full ST for 1/8 L2, n=16
Full ST for 1/8 L2, n=32

Ultra, numiter=2

Figure 7. Raw speedup of sparse tiled Gauss-
Seidel with 2 convergence iterations over a
typical Gauss-Seidel schedule. These exper-
iments were run on a SUN HPC10000 which
has 36 UltraSPARCII processors with uniform
memory access.

6

Blue Horizon, Gauss-Seidel with numiter=2, Rescheduling for parallelism
Savings/Execution (sec) Break Even (# executions)

Input Matrix Overhead(sec) n=2 n=4 n=8 n=2 n=4 n=8

Matrix9 2.03 0.02 0.03 0.04 90 63 57
Matrix12 13.69 0.14 0.20 0.21 96 71 66
Sphere150K 31.41 0.17 0.26 0.29 191 120 110
PipeOT15mill 48.28 0.39 0.52 0.58 125 93 83
Wing903K 116.86 0.65 0.96 1.10 182 122 107

Table 3. Number of Gauss-Seidel (2 convergence iterations) executions required to amortize sparse
tiling overhead.

Blue Horizon, Gauss-Seidel with numiter=2, Rescheduling for parallelism
Input Matrix Partition Time Data Reordering

Matrix9 78.92% 14.06%
Matrix12 71.89% 13.42%
Sphere150K 67.64% 16.53%
PipeOT15mill 81.42% 9.73%
Wing903K 83.58% 9.95%

Table 4. Break down of the overhead time. Around 80% to 90% of the overhead is due to partitioning
the matrix graph plus reordering the unknown vector, right-hand side, and sparse matrix.

Owner-computes parallelization methods for sparse matri-
ces also require a partitioner and data reordering is neces-
sary for parallelizing Gauss-Seidel.

It is possible to reduce the overhead by using faster
matrix graph partitioners and by reducing the size of
the matrix graph. The results in this paper use the
Metis PartGraphRecursive function for the matrix graph
partitioning. Preliminary experiments show that the
Metis PartGraphKway function is much faster, and the re-
sulting raw speedups decrease only slightly. We are also
experimenting with the GPART partitioner [16].

Previous sparse tiling work [33, 12] performed full
sparse tiling and cache block sparse tiling on the input mesh,
instead of the resulting matrix graph. Since there are often
multiple unknowns per mesh node in a finite element prob-
lem, the resulting matrix graph will have multiple rows with
the same non-zero structure. In such cases, the mesh will be
d2 times smaller than the resulting sparse matrix, whered is
the number of unknowns per mesh node. Future work will
consider compressing general matrix graphs by discovering
rows with the same non-zero structure.

3.3 Increasing Parallelism with Graph Coloring

The degree of parallelism within sparse tiled Gauss-
Seidel is a function of the tile dependence graph. Specif-

ically, the height of the tile dependence graph indicates the
critical path of the computation. A more useful metric in
determining the amount of parallelism available is the total
number of tiles divided by the height of the tile dependence
graph, which we refer to as the average parallelism.

For example, figure 5 gives two sparse tilings of the
same iteration space graph. The tile dependence graphs for
those sparse tilings are shown in figure 8. The first tile de-
pendence graph, which exhibits no parallelism, has height
equal to 6 and average parallelism equal to 1. The second
tile dependence graph has height 3 and average parallelism
2. Therefore, the second sparse tiling has enough paral-
lelism to keep two processors busy, assuming that each tile
requires roughly the same amount of computation time.

Potentially we can execute the second sparse tiling twice
as fast. The two sparse tilings differ in their original num-
bering of the cells of the seed partition. The tile growth
algorithms use that numbering to indicate the execution or-
der for adjacent tiles, thus the partition numbering affects
the data dependence direction between tiles.

We compared the partition numbering provided by
Metis, a random numbering, and a numbering based on a
coloring of the partition graph. The partition graph is an
undirected graph with a node for each cell of the matrix
graph partitioning. When cellsA andB share an edge or
multiple edges in the matrix graph, there is an edge(A,B)

7

1

6

4

3

2

5

1

6

2

5

3 4

Figure 8. Tile dependence graphs for the
sparse tilings shown in figure 5. Each circle
represents a tile, and arrows represent data
flow dependences. For example, in the first
tile dependence graph, tile 1 must execute be-
fore tile 2.

in the partition graph. We color the nodes of the partition
graph, and then assign consecutive numbers to the cells of
the partitioning which correspond to nodes of a given color.
This way, the tiles grown from the cells of a given color
will probably not be data dependent. After tile growth, the
data dependences between tiles must be calculated to insure
correctness, since even though two partition cells are not
adjacent, the tiles grown from the cells may be dependent.
In our experiments, we use the greedy heuristic provided
in the Graph Coloring Programs [10] to color the partition
graph.

The graph in figure 9 shows the average parallelism for
four different matrices with full sparse tiling using cells that
fit into one eighth of an 8 MB L2 cache. Using graph color-
ing on the partition graph uniformly improves the degree of
parallelism.

The importance of the average parallelism in the tile
dependence graph can be seen when we examine the raw
speedup of full sparse tiled Gauss-Seidel using the three dif-
ferent partition numberings. In figure 10, notice that the top
two lines with speedups for the Pipe matrix show nearly
linear speedup, corresponding to the fact that average paral-
lelism for the Pipe matrix is over 16 for a random partition
numbering and a graph coloring based partition numbering.
However, the speedup is much less than linear when the
number of processors is larger than the average parallelism
in the tile dependence graph, as illustrated by the other four
lines of figure 10.

2D Bar
R=74,926
NZ=1,037,676

3D Bar
R=122,061
NZ=4,828,779

Sphere
R=154,938
NZ=11,508,390

Pipe
R=381,120
NZ=15,300,288

0

5

10

15

20

25

30

35

A
ve

ra
ge

 P
ar

al
le

lis
m

Metis Partition Numbering
Random Partition Numbering
Graph Coloring Partition Numbering

0

5

10

15

20

25

30

35

Figure 9. The average parallelism in the tile
dependence graph for full sparse tiled Gauss-
Seidel with 2 convergence iterations.

0 1 2 3 4 5 6 7 8 9 10

Number of Threads

0

1

2

3

4

5

6

7

8

9

10

R
aw

 S
pe

ed
up

Pipe: Graph Coloring
Pipe: Random
Pipe: Metis
Sphere: Graph Coloring
Sphere: Random
Sphere: Metis

Figure 10. The effect that average parallelism
has on speedup for full sparse tiled Gauss-
Seidel with 2 convergence iterations.

4 Comparison with other Gauss-Seidel Par-
allelization Techniques

Sparse tiling techniques differ from other Gauss-Seidel
parallelization techniques, specifically multicoloring and
owner-computes methods, in their focus on improving intra-
and inter-iteration locality. Since in all these parallelization
methods each processor is given an approximately equal

8

Intra- Inter-
Parallel iteration iteration

Efficiency locality locality

Multi-coloring yes no no
Owner-computes yes yes no
Sparse tiling yes yes yes

Table 5. Summary of how the various Gauss-
Seidel parallelization techniques compare in
how they handle the three performance as-
pects.

amount of work, less than linear speedup may be due to
parallel inefficiencies and/or poor data locality. In this sec-
tion we compare the parallel efficiency, intra-iteration lo-
cality, and inter-iteration locality of multi-coloring, owner-
computes methods, and sparse tiling techniques.

4.1 Parallel Efficiency

In shared memory parallel processing, the synchroniza-
tion time is the amount of time that processors are waiting
for data dependent results that are generated by other pro-
cessors. Parallel efficiency occurs when the synchronization
time is minimized. For owner-computes parallelized Gauss-
Seidel there is intra-iteration synchronization because adja-
cent cells of the matrix graph partitioning will depend on
each other. Nodal Gauss-Seidel reorders the unknowns so
that intra-iteration synchronization is hidden and therefore
parallel efficiency is maintained.

For multi-coloring and owner-computes methods, as
long as each processor is given approximately the same
number of unknowns and associated matrix rows, the syn-
chronization barrier between convergence iterations will not
cause much parallel inefficiency.

Because they group multiple convergence iterations to-
gether, sparse tiling techniques only have synchronization
issues between tiles, instead of intra-iteration and inter-
iteration synchronization. As long as the tile dependence
graph has enough parallelism to feed the available proces-
sors, full sparse tiled Gauss-Seidel should have good paral-
lel efficiency.

4.2 Intra-iteration locality

Multi-coloring techniques have poor intra-iteration lo-
cality because in order for iteration point< iter, v > to be
executed in parallel with other iteration points,<iter, v >
must not be a neighbor of the other iteration points. How-
ever, neighboring iteration points reuse the same data.

When executing many iteration points that are not neigh-
bors, data reuse is not local.

Owner-computes methods like nodal Gauss-Seidel can
easily improve their intra-iteration locality by further par-
titioning the sub-matrix on each processor, and reordering
the unknowns based on that partitioning [16].

The partitions used to grow sparse tiles are selected to be
small enough to fit into (some level of) cache. Therefore the
data reordering will result in intra-iteration locality.

4.3 Inter-iteration locality

Both multicolored and owner-computes Gauss-Seidel
execute all the iteration points within one convergence it-
eration before continuing to the next convergence iteration.
If the subset of unknowns (and their associated sparse ma-
trix rows) assigned to a processor do not fit into a level of
cache then no inter-iteration locality occurs.

Sparse tiling techniques subdivide the iteration space so
that multiple convergence iterations over a subset of the un-
knowns occur atomically, thus improving the inter-iteration
locality.

4.4 Experimental Comparison

Since owner-computes methods differ from sparse tiling
methods only by their lack of inter-iteration locality, we
compare the two by simulating an owner-computes method.
We refer to the experiment as a simulation because the
Gauss-Seidel dependences are violated in order to give
the owner-computes method perfect intra-iteration paral-
lel efficiency. This simulates the performance of a com-
plete Nodal Gauss-Seidel implementation which has good
intra-iteration parallel efficiency. Inter-iteration parallel ef-
ficiency within the owner-computes simulation is achieved
by giving each processor the same number of unknowns. Fi-
nally, intra-iteration locality is provided by partitioning the
sub-matrix graph on each processor and then reordering the
unknowns accordingly.

The Sphere, Pipe, and Wing problems are the only data
sets that do not fit into L2 cache once the data is partitioned
for parallelism. The Sphere matrix has an average num-
ber of non-zeros per row of 74.28 (as shown in table 2).
This causes sparse tiles to grow rapidly and therefore results
in poor parallelism in the tile dependence graph. Recall
in figure 9 that the maximum average parallelism was 7.5
for 2 convergence iterations when tiled for the Blue Hori-
zon’s L2 caches. This average parallelism worsens to 3.2
for 4 convergence iterations. The lack of parallelism causes
poor performance in the full sparse tiled Gauss-Seidel on
the Blue Horizon for the Sphere dataset (figure 11). How-
ever, with the Pipe and Wing matrices the average number

9

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381,120
NZ=15,300,288

 Wing
 R=924,672
NZ=38,360,266

0

1

2

3

4

5

6

7

8

9

10

R
aw

 S
pe

ed
up

owner-computes sim, n=2
owner-computes sim, n=4
owner-computes sim, n=8

Blue Horizon, GS numiter=2

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381,120
NZ=15,300,288

full sparse tiling, n=2
full sparse tiling, n=4
full sparse tiling, n=8

GS numiter = 4

Figure 11. Full sparse tiled Gauss-Seidel with
2 and 4 convergence iterations compared
with the owner-computes simulation. These
experiments were run on one node of the IBM
Blue Horizon at SDSC.

of non-zeros per row is much lower at 40.15 and 41.49. Cor-
respondingly, the average parallelism when tiling for one-
eighth of the Blue Horizon L2 cache is 30.5 and 56.6 for 2
convergence iterations. Therefore for 2, 4, or 8 processors
there is plenty of parallelism for the Pipe and Wing prob-
lems on the Blue Horizon.

On the Ultra (results shown in figure 12), the L2 cache
is smaller so more tiles were used to fit into one-eighth of
the L2 cache. This increased the average parallelism for
the Sphere problem to 9.3 for Gauss-Seidel with 2 conver-
gence iterations. The speedup on the Ultra for the Sphere
problem is maximized around 6 even though there is more
parallelism available. When sparse tiling Sphere Gauss-
Seidel for 3 convergence iterations the average parallelism
for Sphere reduces to 4.66, and the full sparse tiled speedup
never hits 3. The owner-computes simulation outperforms
full sparse tiling in this instance, because in this one case
full sparse tiling doesn’t generate enough parallelism.

The Wing results on the Ultra are curious. The tile de-
pendence graph for 2 convergence iterations has 90.5 av-
erage parallelism and for 3 convergence iterations has 82.3
average parallelism. However, even though the Wing prob-
lem has been rescheduled for parallelism, inter-iteration lo-
cality, and intra-iteration locality, the speedup never breaks
4. We conjecture that this is due to the size of the problem
and possible limits on the Ultra.

Our experiments show that as long as the tile dependence
graph generated by full sparse tiling has enough parallelism,
full sparse tiled Gauss-Seidel out performs owner-computes
methods on shared memory architectures. Our owner-

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381,120
NZ=15,300,288

 Wing
 R=924,672
NZ=38,360,266

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

R
aw

 S
pe

ed
up

owner-computes sim, n=2
owner-computes sim, n=4
owner-computes sim, n=8
owner-computes sim, n=16
owner-computes sim, n=32

Ultra, GS numiter = 2

 Sphere
 R=154,938
NZ=11,508,390

 Pipe
 R=381120
NZ=15,300,288

 Wing
 R=924,672
NZ=38,360,266

full sparse tiling, n=2
full sparse tiling, n=4
full sparse tiling, n=8
full sparse tiling, n=16
full sparse tiling, n=32

GS numiter = 3

Figure 12. Full sparse tiled Gauss-Seidel with
2 and 3 convergence iterations compared
with the owner-computes simulation. These
experiments were run on the SUN HPC10000
at SDSC.

computes simulation made idealized assumptions about the
intra-iteration parallel efficiency and added intra-iteration
locality. These results show that inter-iteration locality is an
important performance aspect that owner-computes meth-
ods are missing.

5 Future Work

Automating the use of sparse tiling techniques is an im-
portant next step to increase the usefulness of such tech-
niques. Sparse tiling techniques use domain-specific infor-
mation in order to reschedule Gauss-Seidel for parallelism,
intra-iteration locality, and inter-iteration locality. Currently
a number of research projects are exploring ways of opti-
mizing the use of domain-specific libraries. Sparse tiling is
most applicable to libraries which contain a large amount of
sparse matrix iterative computations.

ROSE [28] is a system which generates domain-specific
preprocessors. Their framework supports translating the
general abstract syntax tree (AST) to a higher-level domain-
specific AST, on which transformations for performance
optimizations can then be performed. Interface compila-
tion [13] and telescoping languages [9] also look at ways of
optimizing uses of library interfaces. Others have looked at
the specific example of compiler transformations for Mat-
lab which is a domain-specific language [4]. Being able
to attach domain-specific semantics to the library interface
would allow us to construct a preprocessor which recog-
nizes that the unknown vector being passed to a Gauss-
Seidel function may bea priori reordered.

10

The Broadway compiler [7] allows the library expert
to specify annotations for domain-specific, higher-level
dataflow analysis. We can apply these ideas to determine
what other data structures will be affected by doing ana
priori reordering of the unknown vector in a Gauss-Seidel
invocation.

Another important step for sparse tiling techniques will
be the ability to run on distributed memory machines. This
will require calculating the data footprint of all the tiles and
creating an allocation of tiles to processors which results in
parallel efficiency.

Finally, sparse matrices with a large ratio of non-zeros to
rows result in tiles with many more dependences than the
original cells of the seed partitioning. It might be possi-
ble to add edges to the partition graph before coloring it, so
that the final tile dependence graph will have fewer depen-
dences.

6 Related Work

Both iteration space slicing [27] and data shackling [23]
are techniques which divide up the iteration space based
on an initial data partition. This is exactly what sparse
tiling does, but sparse tiling handles irregular iteration space
graphs, whereas iteration space slicing and data shackling
are applicable in loops with affine loop bounds and array
references.

Since the smoother dominates the computation time in
multigrid methods, much work revolves around paralleliz-
ing the smoother. This paper focuses on parallelizing an ex-
isting iterative algorithm with good convergence properties,
Gauss-Seidel. Another approach is to use smoothers which
are easily parallelizable like domain decomposition [31],
blocked Jacobi, or blocked Gauss-Seidel [17]. Relative to
Gauss-Seidel these approaches have less favorable conver-
gence properties. For example, the convergence rate de-
pends on the number of processors and degrades as this
number increases [15].

There has also been work on run-time techniques for im-
proving the intra-iteration locality for irregular grids which
applies a data reordering and computation rescheduling
within a single convergence iteration [25, 26, 11, 19, 16].
Some of these techniques do not apply to Gauss-Seidel be-
cause it has data dependences within the convergence itera-
tion. We use graph partitioning of the sub-matrices to give
our owner-computes simulation better intra-iteration local-
ity.

Work which looks at inter-iteration locality on regular
grids includes [6], [32], [29], [21], and [36]. The only other
technique to our knowledge which handles inter-iteration
locality for irregular meshes is unstructured cache-blocking
by Douglas et al.[12]. We have implemented this technique
in our experimental framework and refer to it as cache block

sparse tiling in this paper.

7 Conclusion

Sparse tiling explicitly creates intra-iteration locality,
inter-iteration locality, and parallelism for irregular Gauss-
Seidel. The combination of these three performance as-
pects results in high performance. This paper describes how
full sparse tiling can be used to parallelize Gauss-Seidel by
creating a tile dependence graph. Full sparse-tiled Gauss-
Seidel is compared with an owner-computes based paral-
lelization, and when all aspects of performance are avail-
able, sparse tiled Gauss-Seidel has better speedups, due to
the lack of inter-iteration locality in owner-computes based
methods.

8 Acknowledgments

This work was supported by an AT&T Labs Graduate
Research Fellowship, a Lawrence Livermore National Labs
LLNL grant, and in part by NSF Grant CCR-9808946.
Equipment used in this research was supported in part by
the UCSD Active Web Project, NSF Research Infrastruc-
ture Grant Number 9802219 and also by the National Part-
nership for Computational Infrastructure (NPACI). We used
Rational PurifyPlus as part of the SEED program.

We would like to thank Professor Mike Holst for his as-
sistance with the FEtk software package and general infor-
mation about Finite Element Analysis. We would also like
to thank the reviewers for comments which helped improve
the paper.

References

[1] Mark F. Adams. Finite element market.
http://www.cs.berkeley.edu/˜madams/femar-
ket/index.html.

[2] Mark F. Adams. A distributed memory unstructured
Gauss-Seidel algorithm for multigrid smoothers. In
ACM, editor,SC2001: High Performance Networking
and Computing. Denver, CO, 2001.

[3] Mark F. Adams. Evaluation of three unstructured
multigrid methods on 3D finite element problems in
solid mechanics.International Journal for Numerical
Methods in Engineering, To Appear.

[4] George Alm̀si and David Padua. Majic: Compiling
matlab for speed and responsiveness. InPLDI 2002,
2002.

[5] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Do-
nato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine,

11

and H. Van der Vorst.Templates for the Solution of
Linear Systems: Building Blocks for Iterative Meth-
ods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[6] Frederico Bassetti, Kei Davis, and Dan Quinlan. Op-
timizing transformations of stencil operations for par-
allel object-oriented scientific frameworks on cache-
based architectures.Lecture Notes in Computer Sci-
ence, 1505, 1998.

[7] Emergy Berger, Calvin Lin, and Samuel Z. Guyer.
Customizing software libraries for performance porta-
bility. In 10th SIAM Conference on Parallel Process-
ing for Scientific Computing, March 2001.

[8] Steve Carr and Ken Kennedy. Compiler blockability
of numerical algorithms.The Journal of Supercom-
puting, pages 114–124, November 1992.

[9] Arun Chauhan and Ken Kennedy. Optimizing strate-
gies for telescoping languages: Procedure strength re-
duction and procedure vectorization. InProceedings
of the 15th ACM International Conference on Super-
computing, pages 92–102, New York, 2001.

[10] Joseph Culberson. Graph coloring pro-
grams. http://www.cs.ualberta.ca/˜joe/Color-
ing/Colorsrc/index.html.

[11] Chen Ding and Ken Kennedy. Improving cache per-
formance in dynamic applications through data and
computation reorganization at run time. InPro-
ceedings of the ACM SIGPLAN ’99 Conference on
Programming Language Design and Implementation,
pages 229–241, Atlanta, Georgia, May 1–4, 1999.

[12] Craig C. Douglas, Jonathan Hu, Markus Kowarschik,
Ulrich Rüde, and Christian Weiß. Cache Optimiza-
tion for Structured and Unstructured Grid Multigrid.
Electronic Transaction on Numerical Analysis, pages
21–40, February 2000.

[13] Dawson R. Engler. Interface compilation: Steps
toward compiling program interfaces as languages.
IEEE Transactions on Software Engineering,
25(3):387–400, May/June 1999.

[14] Dennis Gannon, William Jalby, and Kyle Gallivan.
Strategies for cache and local memory management
by global program transformation.Journal of Paral-
lel and Distributed Computing, 5(5):587–616, Octo-
ber 1988.

[15] M.J. Hagger. Automatic domain decomposition on un-
structured grids (doug).Advances in Computational
Mathematics, (9):281–310, 1998.

[16] Hwansoo Han and Chau-Wen Tseng. A compari-
son of locality transformations for irregular codes. In
5th International Workshop on Languages, Compil-
ers, and Run-time Systems for Scalable Computers
(LCR’2000). Springer, 2000.

[17] Van Emden Henson and Ulrike Meier Yang. Boomer-
AMG: A parallel algebraic multigrid solver and pre-
conditioner.Applied Numerical Mathematics: Trans-
actions of IMACS, 41(1):155–177, 2002.

[18] Michael Holst. Fetk - the finite element tool kit.
http://www.fetk.org.

[19] Eun-Jin Im. Optimizing the Performance of Sparse
Matrix-Vector Multiply. Ph.d. thesis, University of
California, Berkeley, May 2000.

[20] F. Irigoin and R. Triolet. Supernode partitioning. In
Proceedings of the 15th Annual ACM SIGPLAN Sym-
posium on Priniciples of Programming Languages,
pages 319–329, 1988.

[21] Guohua Jin, John Mellor-Crummey, and Robert
Fowler. Increasing temporal locality with skew-
ing and recursive blocking. InSC2001: High Per-
formance Networking and Computing, Denver, Col-
orodo, November 2001. ACM Press and IEEE Com-
puter Society Press.

[22] George Karypis and Vipin Kumar. Multilevelk-way
partitioning scheme for irregular graphs.Journal of
Parallel and Distributed Computing, 48(1):96–129,
10 January 1998.

[23] Induprakas Kodukula, Nawaaz Ahmed, and Keshav
Pingali. Data-centric multi-level blocking. In
Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI-97), volume 32, 5 ofACM SIGPLAN Notices,
pages 346–357, New York, June 15–18 1997. ACM
Press.

[24] Kathryn S. McKinley, Steve Carr, and Chau-Wen
Tseng. Improving data locality with loop transforma-
tions.ACM Transactions on Programming Languages
and Systems, 18(4):424–453, July 1996.

[25] John Mellor-Crummey, David Whalley, and Ken
Kennedy. Improving memory hierarchy performance
for irregular applications. InProceedings of the 1999
Conference on Supercomputing, ACM SIGARCH,
pages 425–433, June 1999.

[26] Nicholas Mitchell, Larry Carter, and Jeanne Ferrante.
Localizing non-affine array references. InProceed-
ings of the 1999 International Conference on Paral-
lel Architectures and Compilation Techniques (PACT

12

’99), pages 192–202, Newport Beach, California, Oc-
tober 12–16, 1999. IEEE Computer Society Press.

[27] William Pugh and Evan Rosser. Iteration space slicing
for locality. In LCPC Workshop, La Jolla, California,
August 1999. LCPC99 website.

[28] Dan Quinlan. Rose: Compiler support for object-
oriented frameworks. InProceedings of Conference
on Parallel Compilers (CPC2000), Aussois, France,
January 2000. Also published in a special issue of
Parallel Processing Letters, Vol.10.

[29] Sriram Sellappa and Siddhartha Chatterjee. Cache-
efficient multigrid algorithms. In V.N.Alexandrov, J.J.
Dongarra, and C.J.K.Tan, editors,Proceedings of the
2001 International Conference on Computational Sci-
ence, Lecture Notes in Computer Science, San Fran-
cisco, CA, USA, May 28-30, 2001. Springer.

[30] Shamik D. Sharma, Ravi Ponnusamy, Bongki Moon,
Yuan-Shin Hwang, Raja Das, and Joel Saltz. Run-time
and compile-time support for adaptive irregular prob-
lems. InSupercomputing ‘94. IEEE Computer Soci-
ety, 1994.

[31] Barry F. Smith, Petter E. Bjørstad, and William Gropp.
Domain Decomposition: Parallel Multilevel Methods
for Elliptic Partial Differential Equations. Cambridge
University Press, 1996.

[32] Yonghong Song and Zhiyuan Li. New tiling tech-
niques to improve cache temporal locality.ACM SIG-
PLAN Notices, 34(5):215–228, May 1999.

[33] Michelle Mills Strout, Larry Carter, and Jeanne Fer-
rante. Rescheduling for locality in sparse matrix com-
putations. In V.N.Alexandrov, J.J. Dongarra, and
C.J.K.Tan, editors,Proceedings of the 2001 Interna-
tional Conference on Computational Science, Lecture
Notes in Computer Science, New Haven, Connecticut,
May 28-30, 2001. Springer.

[34] Michael E. Wolf and Monica S. Lam. A data local-
ity optimizing algorithm. InProgramming Language
Design and Implementation, 1991.

[35] Michael J. Wolfe. Iteration space tiling for memory
hierarchies. InThird SIAM Conference on Parallel
Processing for Scientific Computing, pages 357–361,
1987.

[36] David Wonnacott. Achieving scalable locality with
time skewing. International Journal of Parallel Pro-
gramming, 30(3):181–221, 2002.

13

