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Abstract

This paper studies the relationship between storage require-
ments and performance. Storage-related dependences in-
hibit optimizations for locality and parallelism. Techniques
such as renaming and array expansion can eliminate all
storage-related dependences, but do so at the expense of
increased storage. This paper introduces the universal occu-
pancy vector (UOV) for loops with a regular stencil of depen-
dences. The UOV provides a schedule-independent storage
reuse pattern that introduces no further dependences (other
than those implied by true 
ow dependences). OV-mapped
code requires less storage than full array expansion and only
slightly more storage than schedule-dependent minimal stor-
age.

We show that determine if a vector is a UOV is NP-
complete. However, an easily constructed but possibly non-
minimal UOV can be used. We also present a branch and
bound algorithm which �nds the minimal UOV, while still
maintaining a legal UOV at all times.

Our experimental results show that the use of OV-mapped
storage, coupled with tiling for locality, achieves better per-
formance than tiling after array expansion, and accommo-
dates larger problem sizes than untilable, storage-optimized
code. Furthermore, storage mapping based on the UOV in-
troduces negligible runtime overhead.

1 Introduction

This paper gives a method for space-e�cient storage map-
ping which allows for 
exible loop scheduling. The method
is applicable to regular loops (perfectly nested loops with
a regular stencil of data dependences) which produce tem-
porary values that are not used outside the loop. We can
determine whether our assumptions are valid for a given loop
nest by applying array region analysis [11] and value-based
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dependence analysis.
Consider the simple example loop shown in Figure 1.

Assume that the zero-th row of the array A, A[0; �], is ini-
tialized prior to loop entry, and that the zero-th column
contains the same constant value in each entry. Further as-
sume that only the nth row of A is used subsequently in the
program. A's two-dimensional storage of temporary values
requires nm storage locations. Our aim is to reduce the
amount of storage used, but in a way that does not inhibit
other optimizations.

We can graphically represent our simple example with
an iteration space graph (ISG) [27]. A loop nest of depth
k is represented by a k-dimensional ISG, where the indices
in the jth dimension are the values taken on by the jth in-
nermost index variable. Additional iteration points (circles
in Figure 1(a)) are added to the ISG to represent the initial
values used in the loop. Directed edges represent value de-
pendences from an assignment in one iteration to a use in
another iteration.

In the ISG in Figure 1(a) we note that once iteration
(i; j) has computed the new value for A[i; j], all uses of A[i�
1; j � 1], the value produced in iteration (i� 1; j � 1), have
already been consumed in any legally scheduled execution.
Therefore, we can store the value produced by iteration (i; j)
in the same storage location used by iteration (i � 1; j �
1). We call the relationship between (i; j) and (i � 1; j �
1) an occupancy vector (OV). If, as in this case, the OV
can be used with any legal schedule, it is called a universal
occupancy vector (UOV). Once we have chosen a UOV, we
can reduce the amount of storage in our simple example
from mn to n+m+ 1, as shown in Figure 1(b).

It is possible to reduce the storage requirements for this
program tom+2. For example, we could rewrite it as shown
in Figure 1(c). For simplicity the �gure shows only some of
the storage-related dependences1. Actually because of the
assignment to temp2 there are storage-related dependences
between all iterations. Because of these storage-related de-
pendences, the schedule of the loop is severely restricted.
Consequently, data locality optimizations like tiling [15, 26]
and loop interchange [27] are not possible without intro-
ducing more storage, because they alter the loop sched-
ule. These optimizations are important for achieving good
performance[27]. In this paper, we focus on the applica-
bility of tiling, and we give performance results using our
techniques in Section 5.

So far we've illustrated how using the UOV reduces stor-
age compared to the use of two-dimensional arrays, and

1also known as anti- and output dependences [27]
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allows more 
exibility for optimization than the storage-
optimized version. There is a second scenario where the
UOV can help. Suppose we had started with the code in
Figure 1(c). We could �rst perform array and scalar expan-
sion [12, 3] or �nd the natural subspaces [16] of the vari-
ables in the loop in order to remove the storage-related de-
pendences that inhibit optimizations. For instance, in our
example, natural subspace expansion would require 3mn
storage locations. Not only would we be storing all tem-
porary results, we would also be storing each result in three
di�erent locations. However, if we next perform forward
substitution [3], each value is stored in one location, and we
obtain the original code in Figure 1(a). Thus we see that us-
ing storage expansion techniques on storage-optimized code
presents an opportunity to apply our techniques, by re-
moving storage-related dependences. The �nal result uses
m+ n+ 1 storage | more than the storage-optimized code
| but enables later optimizations.

In this paper we de�ne and show how to compute uni-
versal occupancy vectors which allow data locality transfor-
mations while keeping temporary storage requirements min-
imal. In Section 2 we discuss the program analysis and stor-
age transformations that we use. In Section 3 we describe
how to �nd the universal occupancy vector for a regular loop
of any dimensionality. Section 4 discusses the implementa-
tion of an OV-based storage mapping in the two dimensional
case. In Section 5 we give experimental results that show
the OV-based storage mappings introduce negligible over-
head, and when used in conjunction with the tiling trans-
formation, can help improve performance. In Section 6 we
describe related work, and in Section 7 we draw conclusions.

2 Background

We handle loops whose ISGs contain data dependences with
constant distances. We assume that each ISG node (except
for the input and output nodes) has the same pattern of
dependences, which is called a stencil [23]. Also, this tech-
nique is only applicable in loops which generate temporary
values.

Value-based dependence analysis is fundamental to our
work, as it allows us to summarize which iteration produced
the values used by each iteration in the ISG. Precise value-
based dependence analysis was �rst developed in [13] over
a restricted domain of structured programs, and extended
in [20] to obtain the same precision in common cases with
greater e�ciency. This work uses Last Write Trees to repre-
sent a mapping from a node in the ISG where a read occurs
to another node where the last instance of the value used by
the read is written. The work in [21] uses the Omega sys-
tem to obtain value-based dependence analysis, again with
greater e�ciency than [13].

The array region analysis of [11] allows us to determine
which elements in an array are being imported to the loop
and which elements are being exported. Using this informa-
tion we can determine what storage is used for input and
output versus temporary results.

Data locality loop transformations [25, 6] such as tiling
change the schedule of a loop to improve the data local-
ity within the loop which in turn can increase performance.
Such data locality loop transformations use data depen-
dence information to determine legality. The presence of
storage-related data dependences restrict their applicabil-
ity. Therefore, we use techniques to remove storage-related
dependences[12, 3, 16, 5]. Later, when we map storage for
reuse, storage-related dependences are reintroduced. How-

for i=1 to n
  for j=1 to m
    A[i,j] = f( A[i-1,j], A[i,j-1], 
                A[i-1,j-1] )

storage 
requirements: nm

(n,1)

(1,1)

(a) Original Code, ISG, and Storage Require-
ments: If the input to the loop is the �rst row
of array A and the output is the last row then
the values stored in the rest of the array are
temporary values. We can tile such a loop.

storage 
requirements: n+m+1

UOV = (1,1)

for i=1 to n
  for j=1 to m
    A[n-i+j] = f( A[n-(i-1)+j], 
                  A[n-i+(j-1)],
                  A[n-(i-1)+(j-1)] )

(n,1)

(1,1)

(b) OV-Mapped Code, ISG, and Storage Require-
ments: We can still tile this code and the storage
requirements are less than those needed for the orig-
inal code.

for i=1 to n
  temp2 = A[0]
  for j=1 to m
      temp1 = A[j]
      A[j] = f( A[j], A[j-1], temp2 )
      temp2 = temp1

storage 
requirements: m+2

(n,1)

(1,1)
storage related 
dependence

(c) Storage-Optimized Code, ISG, and Storage Re-
quirements: The storage-optimized code requires less
storage than both the original code and the UOV-
mapped code, but we can't tile this code.

Figure 1: Simple Example
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ever, we choose a UOV that only introduces dependences
that are in the transitive closure of the stencil of true data
dependences, and consequently does not restrict the set of
legal schedules.

In this paper we focus on the use of the UOV in tandem
with tiling. Tiling [15, 26] is an optimization that partitions
the ISG into atomic units of execution called tiles. Tiling
changes the execution order of a loop to take better advan-
tage of data locality. It can also be used as a technique to
implement parallelism in a loop nest.

Storage mappings based on a universal occupancy vec-
tor are especially useful for tiling because of the type of
schedules that tiling generates. In tiling, atomic units of
the ISG are executed in some order. If there are storage-
related dependences between two tiles, then the output of
the producer tile has to be saved so that the consumer tile
can use it as input. By determining the UOV independent
of the schedule we increase the applicability of tiling without
doing array expansion.

3 Storage Reuse via the Occupancy Vector

Our technique focuses on one assignment at a time. If the
loop has multiple assignments, we would treat each sepa-
rately, resulting in disjoint storage for the loop-carried val-
ues produced by the di�erent assignment statements. We
restrict the edges in the ISG to just the edges that corre-
spond to values produced by the assignment under consid-
eration. We call this the reduced ISG. Hereafter, we assume
that each point in the reduced ISG has the same stencil of
data dependences.

We are now ready to determine how the given array
or scalar assignment can reuse storage in an e�cient but
schedule-independent manner. After all iterations that con-
sume the value produced by the assignment in an arbitrary
iteration ~p = (p1; p2; :::pd) have executed, we no longer need
to store that value. Therefore, a later iteration ~q can reuse
the space formerly used by iteration ~q. When we reuse stor-
age in this manner, the vector di�erence ~p� ~q is called the
occupancy vector (OV), because the data produced by ~p and
~q will occupy the same storage location.

3.1 Universal Occupancy Vectors

Since iteration ~q now stores a value in the same storage lo-
cation used by iteration ~p, a def-def storage-related depen-
dence between those two iterations has been created. Fur-
thermore, if ~k is an iteration that uses the value de�ned
in ~p, then there is a use-def storage-related dependence be-

tween ~k and ~p. In order to keep these dependences from
restricting the set of schedules for the loop, we will pick an

OV, ~ov = ~q � ~p, such that ~p, and also any iteration ~k that
uses the values produced at ~p, is guaranteed to have been
executed before ~q in any legal schedule. We will call ~ov a
universal occupancy vector (UOV).

To develop intuition on how to �nd a universal occu-
pancy vector, we de�ne two sets for a given iteration point
~q with a given stencil V = f~v1; :::; ~vmg. The DONE(V; ~q)
set contains iteration points that must be executed before ~q
because of value dependences. In the example shown in Fig-
ure 2, the iteration points in the DONE set for the circled
point are black.

DONE(V; ~q) = f~p j 9ai � 0; ~p+
X

ai~vi = ~qg

DONE(V,q) DEAD(V,q)

V={v1,v2,v3}q 
Stencil

Figure 2: DONE andDEAD set { The DONE set contains
points that must be executed before arbitrary point ~q. The
DEAD set contains points whose produced values are no
longer needed once ~q consumes its inputs. Notice that points
in the DEAD set have all three dependences satis�ed once
~q is executing.

The setDEAD(V; ~q) contains iteration points whose pro-
duced values are no longer needed once the iteration ~q has
consumed its values. Figure 2 denote points in the DEAD
set with squares.

DEAD(V; ~q) = f~p j 8~vi 2 V; ~p+ ~vi 2 DONE(V; ~q)g

Note that DEAD(V; ~q) � DONE(V; ~q). For any point
~p 2 DEAD(V; ~q), the value produced in iteration ~q can be
mapped to the same storage as the value produced in ~p.
Thus, the set of legal universal occupancy vectors is

UOV (V ) = f~q � ~p j ~p 2 DEAD(V; ~q)g

Given our assumption that the stencil of dependences is
the same at each point, the set UOV (V ) does not depend
on the choice of ~q.

From the de�nition of the DEAD and DONE sets, we
know that for any universal occupancy vector ~ov, the follow-
ing equations must have a solution with each coe�cient aij
being a non-negative integer, and the diagonal coe�cients
aii being positive integers:

~ov = a11 ~v1 + ::: + a1m ~vm
...
~ov = am1 ~v1 + ::: + amm ~vm

Unfortunately, determining whether a given vector ~w is
in UOV (V ) is NP-complete. In particular:
Theorem Given a set V of dependences and an arbitrary
vector ~w, determining whether ~w is in UOV (V ) is NP-
complete.
Proof: The proof is via a reduction of the partition prob-
lem [14]. Suppose we are given an instance of the partition
problem, expressed as a sequence a0; a1; :::an�1 of positive
integers.2 Let h =

P
ai=2. The partition problem is to de-

termine if there is a subsequence that has sum h. We con-
struct an instance of the UOV membership problem. The
stencil V will be a set of two-dimensional vectors. For each

2We use sequences instead of sets to allow duplicate values, con-
forming with [14].
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ai, V will include the vectors ~ri = (0; (n + 1)i + (n + 1)n)

and ~si = (ai; (n+ 1)i + (n+ 1)n). Let ~w = (h; n(n+ 1)n +
((n + 1)n � 1)=n). It can be shown that ~w 2 UOV (V )
if and only if the instance of the partition problem has a
solution.3 Furthermore, determining if ~w 2 UOV (V ) is in
NP since a solution to the set of equations shown above can
be \guessed" and veri�ed in polynomial time. Thus, the
UOV-membership problem is NP-complete. 2

Fortunately, there is a trivially-computed initial UOV
which can be calculated by summing the vectors in the set
V . Also, we believe our algorithm for �nding the best UOV
will be e�cient for realistic problem instances.

3.2 Finding the Optimal Universal Occupancy Vector

An occupancy vector partitions the iteration points in the
reduced ISG into storage-equivalent classes. Any two points
are storage-equivalent if they di�er by an integral multiple
of the OV. The iteration points in each class can use the
same locations to store the values they produce for the ar-
ray or scalar in question. The storage determined by an
OV is therefore the number of such classes times the storage
needed for the defs of the array or scalar. An optimal univer-
sal occupancy vector is one that requires the least amount
of storage while still allowing for any legal loop schedule.

Given ~ov, the number of storage-equivalent classes is the
number of integer points in the volume described by ~ov and
the projection of the ISG on the hyperplane perpendicular
to ~ov. Typically the bounds of an ISG are not known until
runtime because they are expressed as variables. In this case
the best way to reduce the storage requirements is to �nd the
shortest OV. In general however, a longer OV can require
less storage depending upon the projection of the ISG. For
example, in Figure 3 of the two OVs, ~ov1 = (3; 1) and ~ov2 =
(3; 0), ~ov2 is obviously shorter; however, because of the angle
and size of the ISG ~ov1 requires less storage. Speci�cally the
projection of the ISG on the hyperplane perpendicular to ~ov1
is small enough to o�set the di�erence in length between ~ov1
and ~ov2. Therefore, if the bounds of the ISG are known at
compile time, their projection must be considered in order
to �nd the best OV.

Using the volume described by ~ov and the projection of
the ISG on the perpendicular hyperplane, we can compare
di�erent UOVs by the amount of storage they require. We
will describe an exhaustive search procedure that should ef-
�ciently �nd the optimal UOV in practice.

3.2.1 Bounding the Search Area

An initial UOV can be trivially computed by summing the
value dependences in the stencil, ~ovo =

Pm

i=1
~vi. This allows

us to bound the area in which to search for the optimal UOV.
We need only search the subset of DEAD that could give
us an occupancy vector that requires less storage than the
initial estimate ~ovo.

Assume the dimensions of the ISG are unknown, so our
goal is to �nd the shortest OV. Therefore, we only need to
check the points of the ISG inside a sphere to see if they are
in DEAD, where the starting bound on the sphere's radius
is the length of the initial occupancy vector ~ovo. To do so, it
is necessary to examine points in a larger area to see if they
are members of DONE { those that may be single stencil

3The magic numbers in the second coordinates of the vectors en-
sures that if ~w is expressed as a sum of elements of V , then there
must be exactly n vectors in the sum and they must include exactly
one of ~ri and ~si for each i. The ai's corresponding to the ~si terms
provide a solution to the partition problem.

(10,9)

(1,6)(1,1)

ov1 ov2

Figure 3: ISG with constant bounds { If the ISG for the
stencil in Figure 2 was the size shown above the shortest
possible OV requires more storage than a slightly longer OV.
~ov2 requires 27 storage locations while ~ov1 only requires 16
storage locations.

dependence away from candidate points in the sphere. In
Figure 4 we show how the search would be bound in a two-
dimensional ISG. We use the extreme vectors [22] from the
stencil to create a parallelepiped for the search for points in
DONE. This parallelopiped contains all points that are a
single stencil dependence away from candidate points in the
sphere.

At any point during the traversal if we �nd an iteration
point in the DEAD set which gives an occupancy vector
with length less than the bound, we reset the bound to this
new value.

In the case where we know the size of the ISG at com-
pile time, we must take the projection of the ISG on the
hyperplane perpendicular to the UOV into account when
determining which UOV requires the least amount of stor-
age. Let PM denote the minimum projection of the ISG on
any hyperplane.4 Let ~ovo =

Pm

i=1
~vi again be our initial oc-

cupancy vector, and let P ~ovo be the projection of the ISG on
the hyperplane perpendicular to ~ovo. The amount of stor-
age needed if the initial UOV ~ovo is chosen is the number
of integer points in the volume P ~ovo j ~ovj. Therefore the best
occupancy vector ~ovbest would satisfy the following inequal-
ity Povo j ~ovoj � PM j ~ovbestj. The search bound put on the
length of the best occupancy vector is P ~ovo j ~ovoj=PM .

3.2.2 Branch and Bound Search

Given an initial bound we can do a branch and bound search.
Since the initial bound is based on a legal UOV, from the
very start of the algorithm we have a possible solution. How-
ever, this solution might be far worse than the best solution.

4For example, in the case of a rectangle, this corresponds to the
side with the shortest length.
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ovo|ovo| |ovo|

Stencil
V={v1,v2,v3}

Figure 4: Bounding the Search { ~ovo is our initial occupancy
vector determined by summing all of the dependences in
the stencil. If j ~ovoj is the bound, our search space is the
parallelogram shown.

A compiler could limit the amount of time the algorithm
runs and just take the best answer found so far.

The search starts at an arbitrary point in the reduced
ISG, ~q. A breadth-�rst like search of the reversed value de-
pendences allows us to discover which iterations are in the
DONE(V; ~q) set. The search begins by inserting an arbi-
trary starting point ~q into a priority queue. The priority is
based either on the point's distance from ~q or the calculation
of the storage required if the size of the ISG is known. The
best UOV will have a lower priority than other candidates
so by using a priority queue we insure that the best candi-
dates are examined �rst. Consequently, we expect the best
answer to be found quickly.

Each time an iteration point ~p is visited (i.e. extracted
from the priority queue) it is examined to see if it is a better
UOV than the one currently bounding the search space. A
point is in UOV (V ) if all of the value dependences in V
have been traversed at least once to reach this point from
~q. To keep track of which dependences have been traversed
each point has a PATHSET . Anytime PATHSET = V
the point is a legal UOV and determines a new bound if
it is smaller than the current bound. Also while visiting a
point, the point's children (i.e. points which can be reached
by traversing the backward value dependences) are inserted
into the priority queue with their PATHSET s updated. We
summarize the algorithm here.

Algorithm Visit(~p)

1. Check that point ~p is within boundaries, if not then
return.

2. For each childk (the child reached by following value
dependence ~vk 2 V ), if the parent's PATHSET con-
tains more dependences than the child's PATHSET
or if ~vk is not already in the child's PATHSET , then
update the child's PATHSET with these dependences
and put the child into the priority queue.

3. If (~q � ~p) 2 UOV (V ) then check whether the derived
UOV gives a better bound than the current bound.

The worst-case running time of the overall algorithm is
the number of iteration points within the initial bounds.

4 Determining Storage Mappings

After selecting an occupancy vector, universal or otherwise,
we must determine a storage mapping in order to generate
code. In this section we describe some general requirements
for OV-based storage mapping and give the details in the
two-dimensional case.

A storage mapping is a function which, given an itera-
tion ~q, returns an integer index into one-dimensional mem-
ory. Typically a d-dimensional array is mapped into one-
dimensional memory in either column-major order

(q1; q2; :::qd)! q1 + (s1)q2 + (s1s2)q3 + ::: + (s1:::sd�1)qd

or row-major order

(q1; q2; :::qd)! q1(s2:::sd) + q2(s3:::sd) + :::+ qd

where s1; s2; :::; sd represent the sizes of each array dimen-
sion. Both of these mappings are equivalent to taking the
dot product of the iteration point with a vector of constants

(q1; q2; :::; qd) � (1; (s1); (s1s2); :::; (s1:::sd�1))

(q1; q2; :::; qd) � ((s2s3:::sd); (s3s4:::sd); :::; (sd); 1)

The amount of work done to map a d-dimensional array is
(d � 1) multiplies and (d � 1) additions. Optimally, OV-
based storage mappings should have no more overhead than
standard array mappings. Therefore, we derive a mapping
vector ~mv which will result in an integer index into one-
dimensional storage when the dot product with an iteration
is taken, ~q � ~mv.

The storage mapping is of the form:

SMov(~q) = ~mv � ~q + shift+modterm

Here, shift is simply a constant term that ensures that
the result returned by the function is always non-negative.
The mapping vector maps the iterations into relative loca-
tions in one-dimensional storage. The modterm deals with
non-prime5 OVs. The storage mapping requires up to dmul-
tiplies and (d + 1) additions where d is the dimensionality
of the ISG. In the worst case it requires one more multiply
and two more adds than usual array indexing. However,
the number of multiplies required depends upon the actu-
ally value of the elements in ~mv and whether there is a
shift and/or modterm. In the simple example shown in
Figure 1(b) we use the storage mapping

SMov(~q) = (�1; 1) � ~q + n

The mapping requires only one subtraction and one addition
instead of the two multiplies and four additions which might
be required in the general two-dimensional case.

Note that since we are taking complete control of tem-
porary storage allocation, it would not be di�cult to in-
corporate data layout techniques such as array padding [3]
to improve performance. In addition, the techniques of [2]
may be of further use in improving our storage mapping.
That work �rst parallelizes sequential programs to minimize
communication, then changes the data layout (using strip-
mining and permutation) to ensure contiguous storage and
take advantage of locality on each processor. We could use
their techniques to improve data layout once we have chosen
an occupancy vector.

Next we will discuss the details of calculating the map-
ping vector ~mv, the modterm, and the amount of storage to
allocate.

5
~ov is non-prime if it passes through points in the ISG other than

the head and tail.
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4.1 Mapping Vector

The mapping vector must satisfy the following requirements
given an occupancy vector ~ov:

1. If ~q � ~p = ~ov then ~q and ~p must map to the same
storage location.

2. Each iteration must map to an integer location.

3. To e�ciently use storage, consecutive storage locations
should be used.

In two-dimensions, �rst suppose that ~ov = (i; j) is prime,
meaning that GCD(i,j)=1. In this case, the mapping vector
~mv can simply be chosen as (�j; i). The �rst requirement is
satis�ed because if two vectors are ~ov apart in the ISG their
storage locations will be (i; j) � (�j; i) = 0 apart. Secondly,
since ~ov has integer elements, the calculated mapping vector
will also have integer elements. Finally, by the Euclidean
algorithm there exists integers a and b such that ai+ bj =
GCD(i; j). Therefore, storage locations will be consecutive.

4.2 Non-Prime Occupancy Vectors

modterm deals with the case that ~ov passes through multi-
ple points in the ISG. The ~ov semantics demand that the
same storage location be used for any ISG points that are
~ov apart. However, because of our mapping method, any
ISG points that lie along ~ov will be mapped to the same
storage location. In two dimensions, the number of di�erent
storage-equivalent classes within a single ~ov = (i; j) is the
greatest common denominator, GCD(i; j). We can use the
modterm to determine which of the GCD(i; j) classes a ISG
point falls into.

ov = (2,0)

Figure 5: The UOV for our 5-point stencil code intersections
two integer points. This code is discussed in Section 5. Here
we depict interleaved storage.

There are two di�erent ways we can lay out storage un-
der these circumstances. Either we can layout all of the
storage for one modclass followed by all of the storage for
the next modclass, etc. or we can interleave the storage for
the various modclasses. If the storage is interleaved then
the mapping vector ~mv is chosen as described above. For
the example in Figure 5 ~mv = (0; 2). All three conditions of
the mapping vector are still met except that now the points
being mapped to are GCD(i; j) apart. Themodterm will be
used to �ll in these extra positions. For example, in Figure 5
our storage mapping would be as follows:

SMov(~q) = (0; 2) � ~q + (q1 mod 2)

If the storage not interleaved then the mapping vector must
be divided by GCD(i; j) so that consecutive memory loca-
tions are used. The modterm will then be used to select
a consecutive group of storage for the iteration point being
considered. In this case, in Figure 5 the storage mapping
would be

SMov(~q) = (0; 1) � ~q + (q1 mod 2) � L

where L is the length of the ISG projection on the line per-
pendicular to ~ov. In generating code, we remove the over-
head introduced by the mod operations by applying loop
unrolling [3].

4.3 Storage Allocation

We will compute the number of storage-equivalent classes as
follows. We �rst compute a mapping vector ~mv, as described
in Section 4.1, which ensures that the iteration points pro-
jected along ~ov map to integer points. Once we have com-
puted the mapping vector, we apply it to the extreme points
of the ISG6, ~xp

1
and ~xp

2
, obtaining the number of integer

points in this projection. If the OV is non-prime the number
of storage-equivalent classes which lie along the OV must be
taken into account. See Figure 6 for an example of storage
allocation computation.

(n,m)

(0,m)

(n,0)

ov = (1,1)

Figure 6: Calculating storage requirements | number of
storage locations = j ~mv � ~xp

1
� ~mv � ~xp

2
j + 1 = j(�1; 1) �

(0; n)� (�1; 1) � (m; 0)j+ 1 = jn+mj+ 1

5 Experimental Results

We examined the performance of two codes over a range
of problem sizes. For each code, we implemented natural,
OV-mapped, and storage optimized versions, and also made
tiled versions of these codes whenever possible. The natural
versions of the algorithms use array expansion. We refer to
such code as natural because it is the most natural way for a
programmer to write code for the given algorithm (i.e. not
worrying about storage issues). The OV-mapped versions
use a universal occupancy vector to determine the storage
mapping. Finally, the storage optimized versions use the
least amount of storage possible given a speci�c schedule.

6The ISG is the set of integer solutions to a system of linear in-
equalities de�ned by the loop bounds, Ai � b. The extreme points
are the vertices of this convex polyhedron.
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First we compare the performance on problem sizes which
�t in cache. This gives us a basis to judge when performance
degrades due to memory hierarchy e�ects. These experi-
ments also allow us to compare the relative overhead costs.
We then look at a large range of problem sizes observing
when the various versions of the code fall out of memory
and also observing whether tiled OV-mapped code provides
scaling for very large problem sizes.

Our two codes are implementations of a 5-point one-
dimensional stencil and a protein string matching algorithm
in C. We ran it on a Pentium Pro running at 200MHz, a
200MHz Sun Ultra 2, and a 500MHz DEC Alpha 21164.
The gcc compiler was used on each machine with optimiza-
tion level 2.

In the 5-point stencil code the values of a 1-D array of
length L change over T time steps by taking a weighted
average of an element's neighbors. In the natural code ver-
sion, a two-dimensional array of size TL is used to store all
intermediate values in the loop (see Table 1). Both this ver-
sion and the OV-mapped version use the 1-D input array
when calculating the �rst row of temporary values, and put
the last row of results into the output array. This makes
it possible to use temporary storage for a loop computation
while not having to change code outside the loop. The stor-
age optimized version of 5-point stencil takes advantage of
the fact that the output of the loop is just the transformed
input; that is, none of the intermediate values are needed
upon exit of the loop. The input and output are a 1-D ar-
ray. The loop uses three temporary scalars to satisfy the
data dependences.

The 5-point stencil has the UOV shown in Figure 5. The
amount of storage needed to implement this UOV is equiv-
alent to two one-dimensional arrays of size L. The two dif-
ferent OV-mapped versions store the two rows of storage
consecutively in memory or interleave the storage. Experi-
ments were done on both storage layouts to compare their
performance. Theoretically the interleaved storage will not
have associativity problems, but since the references are not
consecutive hardware prefetching may not occur.

Temporary Storage
Natural TL
OV-Mapped 2L
Storage Optimized L+ 3

Table 1: 5-point stencil { L is the length of the array being
transformed and T is the number of time steps.

The protein string matching code compares two strings
of length n0 and n1 for similarity. The strings consist of
characters representing amino acids. There is storage for
the strings themselves and a 23x23 table which holds com-
parison weights for the 23 possible string characters. The
computation compares each character of one string with all
of the characters in the other string. The storage optimized
version was taken from [1]. See Table 2, for the storage
requirements of the di�erent versions.

Temporary Storage
Natural n0n1 + n1 + n0
OV-Mapped 2n0 + 2n1 + 1
Storage Optimized 2n0 + 3

Table 2: Protein String Matching { This algorithm evaluates
the similarity of two strings with lengths n0 and n1.

5.1 Overhead

As discussed in Section 4, OV-based storage-mappings like
regular array references require a certain amount of array
indexing overhead. The storage optimized version of the
code has less array indexing overhead because it uses arrays
with fewer dimensions; however unlike the other versions,
it has overhead in the form of copies between temporary
scalars. We show the relative overheads by comparing the
performance of small problem sizes.
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Figure 7: Overhead in 5-point stencil { With problem sizes
which �t into L1 cache the various versions of the code have
similiar performance.

Figure 7 shows the average number of cycles per iteration
on problem sizes which �t in cache for the 5-point stencil
code. On the Ultra 2 and the Alpha, the di�erent versions
of the code perform similiarly. On the Pentium Pro there
is more variance. The Pentium Pro is a more complicated
architecture, and we conjecture that gcc did not consistently
take advantage of its microarchitecture.

Figure 8 shows the average number of cycles per iteration
for protein string matching. Notice that the OV-mapped
codes have relatively less overhead than the natural version
of this code. However, the storage optimized version has the
lowest relative overhead.

5.2 Scaling to Large Sizes

We now explore how each version of the two codes scales to
larger problems sizes. Because the storage-optimized ver-
sions of the code use much less storage, they will fall out of
cache, TLB, and eventually memory on larger problem sizes.
In the performance results, the number of cycles per itera-
tion skyrockets when a version of the code falls out of mem-
ory. OV-mapped codes fall out of memory at smaller prob-
lem sizes than storage mapped codes, but at much larger
problem sizes than natural codes. The natural code and
OV-mapped code have the advantage that they can be tiled
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Figure 8: Overhead in Protein String Matching { The per-
formance di�ers more in the PSM example, OV-Mapped
code still does better than the natural version.

for data locality. In all of the following experiments we tiled
for L1 cache.

In the 5-point stencil algorithm, tiling in conjunction
with an OV-based storage mapping did maintain better per-
formance for very large problem sizes; see Figures 9, 10, and
11. However, tiling the natural codes did not help maintain
performance. This is probably due to the fact that the nat-
ural version only references each storage location at most
twice within a tile, whereas the OV-mapped code references
a storage location up to H times, where H is the height of
the tile.

Figures 12, 13, and 14 show the performance results for
protein string matching. The tiled, OV-mapped protein
string matching code had better performance than all other
versions of the code on the Pentium Pro, but did not help
the scalability of the algorithm on the Ultra 2 and the Al-
pha. The inner loop of protein string matching has many
branches so we conjecture that on the Ultra 2 and the Alpha
pipeline stalls due to braches are the bottleneck instead of
memory latency.

From these results we conclude that in codes where the
memory latency is the bottleneck, OV-mapped codes help
performance by allowing tiling while at the same time keep-
ing the storage minimal.

6 Related Work

The most closely related work to ours is [18], which also
determines storage reuse for a loop. Their work takes as
input a given parallel schedule, but allows direction vectors.
In contrast, our UOV-based approach can be used for any
legal schedule in the context of a loop with constant distance
vectors. This allows the 
exibility of performing tiling after
storage mapping.

Other related work is in storage expansion and optimiza-
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Figure 9: 5-point stencil on the Pentium Pro
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Figure 10: 5-point stencil on the Ultra 2

tion. Array privatization [24, 20] creates separate, per pro-
cessor storage in a parallel context. In our work, storage
expansion is performed on a per iteration basis for better
locality. The work in [4] creates a maximal expansion of
storage that does not require �-functions, trading o� par-
allelism for memory usage. The goal of our work is data
locality. The work in [17] introduces an Array SSA form
that keeps track of values on an element-wise basis. Both of
these latter works may be useful as we extend our work to
more general program structures.

In [9, 10], a uni�ed framework and heuristics that con-
sider the combined e�ect of array layout and loop transfor-
mations (described by integer, non-singular matrices [19]) on
locality are developed. More speci�cally, they seek a legal
data and control transformation that will result in a stride
vector with larger strides at outer loops, and smallest strides
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Figure 11: 5-point stencil on the Alpha

at inner loops. The control transformations considered do
not include tiling or scheduling.

7 Conclusions and Future Work

This paper presents the universal occupancy vector as a
method for reducing the storage requirements of a program
without introducing any data dependences which are not
already implied by the value dependences. We show that
the UOV-membership problem is NP-complete, where the
problem size is the number of dependences in the stencil.
An algorithm for determining the best UOV is presented.
Since the number of dependences is small in practice, our
branch and bound algorithm is practical. We give evidence
that basing storage reuse on the occupancy vector helps im-
prove performance while reducing storage requirements.

An interesting potential bene�t of having the compiler
select a UOV for the code is that programmers are encour-
aged to write more natural codes, and let the compiler deal
with determining storage reuse. This allows for code which
is easier to write, read and maintain.

Future work will extend the UOV approach to multiple
loop nests. We might want to select our occupancy vector
in a way that allows two loops to use the same OV-mapping
for a given array.

In this paper we gave evidence showing one level of tiling
along with use of the occupancy vector improves perfor-
mance. We plan to study which characteristics of the entire
memory hierarchy should be taken into account when doing
multiple-level optimizations like hierarchical tiling[7, 8].
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