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1 Introduction 
During the past decade, the scientific community has witnessed an unprecedented 
accumulation of gene sequence data and data related to the physiology and biochemistry 
of organisms. More than 178 genomes have been sequenced and 874 organisms are at 
various levels of completion [24]. In order to exploit the enormous scientific value of this 
information for understanding biological systems, the information must be integrated, 
analyzed, graphically displayed and ultimately modeled computationally [1]. The 
emerging systems biology approach requires the development of high-throughput 
computational environments that integrate (i) large amounts of genomic and experimental 
data and (ii) powerful tools and algorithms for knowledge discovery and data mining. 
Most of these tools and algorithms are CPU-intensive, requiring computational resources 
beyond those available to researchers at a single location. The aggregated and distributed 
computational and storage infrastructure of the Grid offers an ideal platform for mining 
biological information at this large scale. 

The efficiency and power of comparative analysis for obtaining scientific insights 
into functionality and evolutionary history of genes and protein families is well 
established [11]. The Grid will allow researchers to use and mix the resources of remote 
sites and supercomputer resources for the comparative analysis calculations, as well as 
for the protein’s functional analysis. Not only will the Grid provide added resources for 
computations, but also, the Grid can facilitate virtual collaborations that share distributed 
data and computational resources, as well as provide temporary additional storage 
capacity for protein-similarity results.  

The first and most crucial step in genome analysis is the assignment of function to 
genes. The efficiency and accuracy of such predictions is achieved by the use of a variety 
of bioinformatics tools and approaches (e.g. analysis of global similarities [3][4][5], 
domain and motif analysis [6][7][8], analysis of the relevant structural [9][10] and 
functional information). This process can be extremely tedious, time-consuming, and 
prone to human error if it were to be done by manually scheduled computations. 

To address this problem, we have developed GADU – the Genome Analysis and 
Database Update system – an automated, high-performance, scalable computational 
pipeline for the data acquisition and analysis of sequenced genomes. GADU allows 
efficient automation of the major steps of genome analysis: data acquisition and analysis 
by variety of tools and algorithms, as well as result storage and annotation. GADU can be 
used as a stand-alone server, or it can be incorporated into established frameworks of 
other systems and pipelines for analysis of large volumes of sequence data (e.g., WIT 
[11] in our case).  



GADU’s flexible architecture allows modifications to the user-defined genome 
analysis process according to individual needs and requirements. It can function in an 
automated mode as well as interactively through a web-based interface. 

In this paper we describe the implementation of GADU, our experiences using it on 
the Grid, our findings from this experience, and our plans for increasing the application’s 
computational power and speed through further Grid integration and enhancement. 

2 Implementation 
GADU consists of three conceptual modules (Figure 1). A Data acquisition module 
periodically searches for new data in a set of public genome databases: NCBI [12], JGI 
[13], TIGR [14], PDB [15], and Swiss-Prot [17]. It then updates the GADU server with 
genome data and annotations from these sources  

A data analysis module uses a scalable 
Grid technology-based backend for high-
throughput analysis of genomic data by 
multiple bioinformatics tools and analytical 
workflows. The use of scalable 
computational resources is essential for 
annotation of hypothetical genes in newly 
sequenced genomes. The analysis module is 
the most compute-intensive module of the 
three and requires the use of a Grid backend 
in order to scale the number of jobs 
requested by the user for computation of the 
genome analysis calculations in a time-
efficient manner. 

A data storage module stores the 
computed results into relational databases 
for easy access via user interfaces or by 
other sequence analysis algorithms.  

In order to perform genetic sequence 
analysis and assign potential functions to 
unknown genes, every sequence in a 
genome must be processed by a number of 
comparative-analysis tools and algorithms. 
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Figure 1: GADU workflow, showing the
three modules: acquisition, analysis and
Most of these tools and algorithms are 
omputationally intensive (e.g. BLAST [3], PFAM 7], BLOCKS [8], TMHMM [17]) and 
ypically take a sequence as an input and compare the sequence alignment with a dataset 

library of varied size. These tools can be combined to run in parallel or in series, and in 
various orders (Figure 2), forming complex workflows to acquire specific knowledge 
about the query protein sequences. In addition, one can run “result-parsers” on the 
outputs to mine specific results from the sequence comparison tools. 

 
 



The GADU environment comprises 
four elements:  

1. An integrated computational 
environment containing tools and 
algorithms for analysis of the 
biological data. 

2. Pre-defined as well as customized 
scientific pipelines for efficient 
analysis of biological data using 
the different tools and algorithms 
mentioned above.  

3. Grid infrastructure for performing 
CPU intensive tasks (composed by 
GADU), using distributed 
technologies like Condor, Globus, 
Chimera, and the Java CoG kit. 
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4. A Web portal interface to access 
the GNARE server and its 
components listed above using 
Jakarta – Jetspeed.  
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Figure 2: GADU-GNARE system environment

Sequence analysis is typically computationally intensive: analysis of a bacterial 
genome of 4000 sequences by three bioinformatics tools (BLAST, PFAM, and 
BLOCKS) requires 12,000 steps, each taking on the order of 30 seconds of run time. In 
some cases, depending on the size of the input sequence, dataset libraries and processor 
speed, a single step could easily take up to 3 minutes to complete. In a Grid environment, 
we can distribute these steps among a large number of resources and thus achieve 
dramatic speedups. 

In order to submit the user-defined workflow sequences into a Grid environment, the 
workflow must be turned into an executable form. To accomplish this, we use a “virtual 
data language” (VDL) implemented by the Chimera system [18]. VDL permits 
workflows to be specified as a graph of “transformation” invocations. Transformations 
are abstract interfaces that describe an application program such as BLAST, BLOCKS, 
result-parser, etc. Transformations are invoked by “derivations” – the “function calls” 
that specify inputs such as genome sequence files, output files from comparative analysis 
tools, and textual parameters. VDL provides simplified, abstract access to large-scale 
Grid computation and storage resources. It also provides: the ability to accurately track 
the provenance of results of the workflows results, describing how they were obtained 
from transformations of input data; the ability to discover data through tools that search 
for specific transformations; the ability to produce new analysis work based on 
previously executed work, which allows for the comparison of transformation patterns 
executed at different times; and the ability to audit and disseminate results. 

Figure 3 illustrates the visual display of provenance for a six-stage workflow for a 
simple comparative analysis of 100 protein sequences. The six stages include the data 
transfers to and from Grid storage servers, partitioning input data for the subsequent 
BLAST process, parsing of specific information the user wants to capture from protein 
sequences, and concatenation of final results. 



 

 

 inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR

inputfile.1

compbio::FileBreaker/ID001

jobNo_1_1.Block2

compbio::BLAST/ID006
out.jobNo_1_1.Block2

compbio::BlastParser/ID007

parse.out.jobNo_1_1.Block2

compbio::cat/ID012

outfile.jobNo_1_1.BLASTPIR

Figure 3: Left, a Six-step BLAST workflow with 5-way parallelism. At right, the center-path details. 

The VDL fragments shown below specify transformations FileBreaker and BLAST, 
and also a derivation of FileBreaker, which specifies the actual inputs to that 
transformation. In this case the inputs to each of the transformations would be the 
genome sequence file and the subsequent output files of each of the transformations. 

 
TR FileBreaker(input filename, none nodes, output sequences[], none species) { 
  argument = ${species}; 
  argument = ${filename}; 
  argument = ${nodes}; 
  profile globus.maxwalltime = "300"; 
} 
TR BLAST( none OutPre, none evalue, input query[], none type ) { 
  argument = ${OutPre}; 
  argument = ${evalue}; 
  profile globus.maxwalltime = "300"; 
}... 
DV jobNo_1_1separator->FileBreaker( 
  filename=@{input:"inputfile.1"|rt},  
  nodes="5",  
  sequences=[@{output:"job1.0":"tmp"}, 
             @{output:"job1.1":"tmp"}, 
             @{output:"job1.2":"tmp"}, 
             @{output:"job1.3":"tmp"}, 
             @{output:"job1.4":"tmp"} ], 
  species="Aeropyrum_Pernix" 
);... 

The VDL transformation definitions (“TR”, above) act as function definitions and 
specify the formal arguments to an application, and the details of how those arguments 
are passed to and from the application represented by the TR definition. Calls to a 
transformation are called “derivations,” and are defined by “DV” statements, which 
specify the actual arguments to be passed to a transformation. File names used as 



arguments in DV statements are “logical names”, mapped to physical file names at run 
time. 

Data transfer for VDL is performed automatically and transparently for the user. For 
example, the physical file for the logical filename “inputfile.1” will be transferred 
automatically to the site selected for execution of the FileBreaker transformation via 
GridFTP [2], which provides secure, efficient data movement in Grid environments. 
Input files to transformations are automatically located in the Grid by searching for 
physical copies of a logical file in a replica location service such as RLS [29]. Output 
files are automatically cataloged in the same location service for use in subsequent 
transformations and workflows. In the transformation “BLAST”, above, we use the 
“profile” feature of VDL to specify the run-time limit for that process. VDL profiles 
permit parameters to be passed to components of the run-time environment. 

Figure 3 shows the six-stage process divided into five concurrently executable 
segments and submitted in parallel to five different processors at a remote Grid site. All 
these steps – selecting the degree of parallelism, generating the VDL, and choosing 
which site to submit the jobs to – are performed transparently for the user by the GADU 
system, generating the workflow and managing Grid site interaction as shown in figure 4.  
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and intuitive commands are appropriate for use directly by end-users, as well as for 
interfacing with higher-level task brokers and web portals.  

The current Grid execution environment for GADU consists of Grid2003 resources 
[20], including Argonne’s LCRC cluster [21], a DOE Science Grid facility [29]. These 
resources make available over 2700 CPUs. Currently, we are in the process of 
inco
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rporating more Grid2003 sites into the GADU execution environment, as well as 
adding other resources from the TeraGrid [22] and DOE Science-Grid. Via GridFTP and 
Condor-G, sequence data can be transferred and comparatively analyzed by running 
several executables such as BLAST, PFAM, BLOCKS, etc. on each of the sequences, 
and by running numerous sets of sequences concurrently on a large number of processors 
in the Grid environment. 
 

3 Performance 
The automated GADU pi
group at Argonne Natio
as Protein Information as Protein Information 
Genomes (FIG). We have developed and continue to develop automated analytical 
pipelines for these organizations so that they can manage and submit their computer-
intensive jobs to the Grid. Currently, we can support the static versions of their pipelines. 
In the future we plan to allow users to define their workflows interactively, via a web 
interface. 

Genomes (FIG). We have developed and continue to develop automated analytical 
pipelines for these organizations so that they can manage and submit their computer-
intensive jobs to the Grid. Currently, we can support the static versions of their pipelines. 
In the future we plan to allow users to define their workflows interactively, via a web 
interface. 
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parisons of a database of 1.8 million protein sequences against itself. To analyze this 
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file was processed in an 84 hour run. A single blast process for one sequence on a local 
500 MHz desktop against a large database of about 0.5 GB may take up to 3 minutes. If 
the 1.8 million sequences were to be done in one such CPU, this process could take over 
90,000 hours. This is equivalent to 3750 days or 10.3 years. Figure 5 shows graphically 
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processors used for each job against a time scale. The figure is a graph provided by 
kickstart, the Chimera transformation invocation and execution monitor [25], which 
automatically logs the run-time statistics of all work performed on the remote Grids. (For 
convenience, only a portion of the complete graphs are illustrated.) The figure shows two 
runs on the same microorganism (Mycoplasma Genitalium). Run A, which was done on 
35 CPUs, took proportionally less time than run B, which was performed on 25 CPUs. 
The traces show three major phases of execution: the stage-in process at the very 
beginning, the blast executables performed in parallel on the assigned processors and the 
stage-out process, which corresponds to the end of the job. 

There is also some overhead in the time to process these workflows, due to data 
transfer and reformatting of data and presentation of the final output. These are 
acceptable in virtually all cases, as the increasing returns from the availability of greater 
amounts of computing resources outweighs the overhead time added to the calculation 
due to file transfers and file setup. However, one obstacle to utilizing more processing 
nodes is the competition with users from other projects for the resources. In our case, 
each transformation call through a derivation constitutes a job requesting one processor. 
As soon as one job is finished, it gives up the processing node to the next job in the local 
scheduler’s queue, even if it is not a process in our DAG. Thus, we are in constant 
competition for processors to fulfill our needs. This competition in turn increases idle 
time within the workflow: the amount of time in which our comparative analysis jobs sit 
idle because there are no resources available. In a similar example to the one described 
above, we took 1600 sequences instead of 100 and submitted it to 50 processing nodes in 
a GRID3 site. The table below shows the performance results of a 1600 sequence run. 
Note that about one fourth of the time was spent idle. Reducing this idle time while 
retaining the desired fine-grain job size is discussed further in the next section. 

 

Sequences in the genome 1618 
Number of CPUs requested 50 
Idle CPU time  267 minutes (5.5 minutes per node) 
Active CPU time  646 minutes 
Actual time for completion 31 minutes 

 

A  analysis w that we have run on the Grid through 
GADU to date is as follows. The first GADU BLAST runs were done in March 2003, 
processing a peak of 59 Genomes in 24 hou ays of processing time were 
delivered, generating 50 GB of data, using a  10,000 Grid jobs performing 
ove

ly updates of about 80,000 sequences per month. 

 summary of the genomics ork 

rs. 67 CPU-d
pproximately

r 200,000 BLAST executions. (Note that we batched multiple executions into one job 
to reduce scheduling overhead). This run demonstrated a greater than five-fold 
improvement in turnaround time: less than one hour per genome, compared to a previous 
average of about five hours/genome. 

GADU production runs began in August 2003, and in the first quarter of production 
processed 3.2 million sequences with BLAST. The first big run (for FIG) consisted of 
1.8 million sequences (approximately 900MB) processed by BLAST and the result-
parser, followed by subsequent month

The first production run for PIR was in November 2003, using the same process as 
for FIG, but on 1.2 million sequences. This was repeated in January 2004. In February 
2004 we started running workflows of the BLOCKS application and the result-parser on 



the Grid. The initial run processed 100,000 sequences. From January-March 2004 we 
processed 1.3 million sequences with BLAST and 100,000 with BLOCKS. 

4 Experiences, Problems and Solutions 
We describe in this section various experiences encountered in mapping GADU work 
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to the Grid, and the future improvements suggested
o install the genomics application codes on r

ur executables, which was extracted and installed at each remote site through globus-
job-run commands. To further automate this process, we intend to p

hive as a Pacman [26] package, and to integrate it with the site-environment 
description standards of Grid3, disseminated to Grid clients through the MDS directory 
service [27]. The final stage of this automation will involve the automatic installation of 
the application packages on sites through virtual data dependencies and the job planners 
that select sites for execution. 

Currently, large runs are manually load-balanced across a set of candidate execution 
sites. This approach is labor-intensive, as it requires manual progress monitoring of large 
runs and manual recovery. M

ct sites based on available resources and that skip past inaccessible Grid sites are now 
being tested, and will make this process more automatic while providing significant 
throughput improvements. 

Currently, it is desirable to break large runs into program executions of fairly fine 
grain, each running on the order of 15 to 30 minutes. At this job size, our large runs 
currently put significant loa

ecially when we try to make significant utilization of larger Grid sites, on the order of 
200 or more CPUs. Additionally, some sites that we would like to use at have scheduling 
policies that are heavily biased towards running small numbers of large parallel multi-
CPU jobs. For both of these reasons, once a site is selected for processing, we would like 
to optimize the mechanisms used to send a steady stream of small jobs to a site for 
processing. To meet all these requirements, we plan to explore the use of Condor “glide-
ins” [19] to “tunnel” into a site, allocate a quantity of CPUs, and rapidly schedule a large 
number of small jobs on those resources without the repeated overhead of Grid 
authentication, job monitoring, and input/output transfer. 

While our workflows are long-running, we have not yet integrated into our workflow 
executor the ability to renew an expired proxy transparently to the overall workflow. The 
facilities to support this now exist in the Grid compo

grating this capability into our workflow execution would add robustness and remove 
yet another need for manual involvement in long-running workflows. 

In the near future, we expect to be running single workflows across at least three Grid 
“domains”: Grid2003, DOE Science Grid, and TeraGrid. This environment will require 
harmonization across these grids of the data returned by the Grid i

S), and of file system access and layout conventions (in terms of shared filesystem 
access vs. private per-node access, and in terms of how applications locate their private 
data, Grid data, temporary storage, application code, and other directories needed for grid 
job operations). These conventions have been codified differently in each of Grid2003, 
the European Data Grid, the LHC Computing Grid, and Teragrid, and either 
harmonization of these conventions across these different Grids will be required, or, 



more likely in the near-term, the workflow executor will need to perform the necessary 
multi-grid adaptations. 

One problem that we have dealt with successfully in GADU processing, albeit in an 
ad-hoc manner, is the balancing of physical data files across directories within large 
wor

ill 
req

kstart” job invocation/execution monitor 
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a cale distributed Grid infrastructure, it is also 
tive environment where scientists and researchers 

er groups and ANL for analysis of the biological data. 

.  

kflows, of which many segments may run on the same site and hence hit the same 
shared data file directory. This concurrent access to large numbers of files was a severe 
problem in our early work on the LCRC cluster, whose shared file system was heavily 
optimized for high data rates to large files, but which suffered severe, system-crippling 
performance degradation with high creation rates of large numbers of relatively small 
files within a single directory. Every file system has a “breaking point” with respect to 
the processing of large directories, and we need to integrate into our workflow executors 
a scalable convention for dynamic load balancing of physical files across directories. 

Somewhat related to this problem, in order to permit many users to concurrently 
schedule jobs through GADU from a single submission site, we anticipate that we w

uire a Grid service layer that imparts a multi-user directory structure within the 
logical-file namespace of the replica location service. (We currently use a single RLS for 
all of the files from a single GADU job submission host.) The opportunity exists to 
obtain further workflow speedup from the ability to batch multiple small file transfers in 
a single invocation of our GridFTP data transfer client, globus-url-copy. Experimental 
versions of this capability have been created, and need to be integrated into our concrete 
workflow planner for performance evaluation. 

Finally, we have only limited experience within the GADU system for the capture of 
virtual data “invocation” records from the “kic

vided with Chimera [25]. We have had at least one situation in which an enhanced 
version of kickstart would have proven extremely valuable. In one run, on a particular 
Grid site, a large number of BLAST outputs were mysteriously corrupted. The suspected 
cause of this corruption was an incompatible shared library on some or all of the hosts at 
this site. Reliable kickstart records, enhanced to provide the signature of all shared 
libraries within the executable’s library path, would have been an indispensable 
debugging tool, and should become standard part of all captured provenance. 

5 Next Steps and Future Plans 
In ddition to harnessing the large-s
necessary to provide a secure collabora
can discuss, share, and analyze data. In order to provide such an environment for 
research in genome analysis, we are developing GNARE (Genome Analysis Research 
Environment). GNARE (Figure 2) is a public genome analysis server that includes 
following components: 

1. An Integrated Computational Environment containing tools and algorithms 
developed by oth

2. Pre-defined as well as customized scientific pipelines for efficient analysis of 
biological data using the different tools and algorithms mentioned above

3. Grid infrastructure for performing CPU intensive tasks (via GADU), using 
distributed technologies (Condor, Globus, Chimera, Java CoG kit). 

4. A Web portal as an interface to access the GNARE server and its components 
listed above using Jakarta and Jetspeed.  



5. Managing workflows that run transparently across multiple heterogeneous 
execution environments, in particular across mixed IA32-IA64 platforms. 

6 
tomated GADU system can decrease substantially the time and the 
ction required for genome analysis. Its modular architecture permits 
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6. Utilization of VDL to capture the provenance of the all data captured and stored 
by GADU, including the final relational database of sequence data. 

Conclusion 
The use of the au

amount of user intera
erent genome analysis steps to be performed efficiently. This feature is especially 

useful for simultaneous analysis of multiple genomes. Availability of new experimental 
results concerning functions of proteins, previously annotated as hypothetical, as well as 
improvements in the sensitivity and accuracy of bioinformatics tools, requires periodic 
revisiting of previously annotated genomes and reassignment of functions using this 
newly acquired knowledge. The increased efficiency of genome analysis offered by the 
GADU system and the Grid considerably simplifies the analysis of newly sequenced 
genomes as well as previously annotated genomes. GNARE can be an interface to 
leverage Grid resources for all biologists interested in performing such complex 
computations. It can hide the complex technologies involved in using distributed Grid 
resources and help users perform faster and better analyses. 
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