
1

Design, Implementation and
Applications of

PETSc-MUMPS Inteface

Hong Zhang

Computer Science, Illinois Institute of Technology

Mathematics and Computer Science, Argonne National Laboratory

2

What is PETSc?

Portable, Extensible Toolkit for
Scientific computation

• Sequential and parallel data structures

• Sequential and parallel algebraic solvers

• API for advanced methods

• Portable(?) to virtually all systems

• Funded largely by the US Dept. of Energy

• www.mcs.anl.gov/petsc (free)

3

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers

ODE Integrators Visualization

Interface

Structure of PETSc

PETSc StructurePETSc Structure

4

Compressed
Sparse Row

(AIJ)

Blocked Compressed
Sparse Row

(BAIJ)

Block
Diagonal
(BDIAG)

Dense Other

Indices Block Indices Stride Other

Index Sets

Vectors

Line Search Trust Region

Newton-based Methods
Other

Nonlinear Solvers

Additive
Schwartz

Block
Jacobi Jacobi ILU ICC LU

(Sequential only) Others

Preconditioners

Euler
Backward

Euler
Pseudo Time

Stepping Other

Time Steppers

GMRES CG CGS Bi-CG-STAB TFQMR Richardson Chebychev Other

Krylov Subspace Methods

Matrices

PETSc Numerical
Components

Distributed Arrays

Matrix-free

5

What is MUMPS?

MUltifrontal Massively Parallel sparse direct
Solver

• Solution of large linear systems with spd and general
matrices

• Iterative refinement and backward error analysis

• Partial factorization and Schur complement matrix

• Several orderings interfaced: AMD, AMF, PORD,METIS

• Written in F90 with C interface

• Parallel version requires BLACS and ScaLAPACK

6

What is MUMPS?

• Expoits both parallelism arising from sparsity in
the matrix and from dense factorizations kernels.

• Partially funded by CEC ESPRIT IV long term
research project

• www.enseeiht.fr/irit/apo/MUMPS/

7

MUMPS solves Ax=b in three main steps:

1. Analysis (Job=1):
- the host performs an ordering
- the host carries out symbolic factorization

2. Factorization A=LU or A=LDL^T (Job=2):
- A is distributed to processors
- the numerical factorization on each frontal matrix is
conducted by a master and one or more slave
processors

3. Solution (Job=3):
- b is broadcast from the host
- x is computed using the distributed factors
- x is either assembled on the host or

kept distributed on the processors

8

MUMPS:

• Each of the phases can be called
separately

• Asynchronous communication

Enable overlapping between communication and
computation

• Dynamic scheduling

Algorithm can adapt itself at execution time to remap
work and data to appropriate processors

9

PETSc-MUMPS Interface

Enable an easy use of

the MUMPS’ parallel sparse direct solvers

under the PETSc environment for

• algorithmic study

• solving computational-intensive problems

10

Installation of PETSc and MUMPS

1. Download PETSc

2. Configure PETSc with

./configure.py <petsc_config_opts>

--download-mumps=yes

--download-scalapack=yes

--download-blacs=yes

3. Build libraries:

./make all

Reference: ~petsc/python/PETSc/packages/MUMPS.py

11

Design of PETSc-MUMPS Interface

PETSc

MatCreate(comm,&A);

MatSetType(A,MATAIJMUMPS);

MatLUFactorSymbolic();

MatLUFactorNumeric();

MatSolve();

MatDestroy();

PETSc-MUMPS Interface
MatCreate_AIJMUMPS(A);
MatLUFactorSymbolic_AIJMUMPS();
MatLUFactorNumeric_AIJMUMPS();
MatSolve_AIJMUMPS();
MatDestroy_AIJMUMPS();

MUMPS

id.job=JOB_INIT;

id.job=1; // Analysis

id.job=2; // Factorization

id.job=3; // Solution

id.job=JOB_END;

PETSc Client

12

Design of PETSc-MUMPS Interface

MATAIJ

MatOps

MATAIJMUMPS

MatCreate_AIJMUMPS();
MatLUFactorSymbolic_AIJMUMPS();
MatLUFactorNumeric_AIJMUMPS();
MatSolve_AIJMUMPS();
MatDestroy_AIJMUMPS();

Mat

MATSBAIJ

MatOps

…

MATSBAIJMUMPS

MatCreate_SBAIJMUMPS();
MatCholeskyFactorSymbolic_SBAIJMUMPS();
MatCholeskyFactorNumeric_SBAIJMUMPS();
MatSolve_SBAIJMUMPS();
MatDestroy_SBAIJMUMPS();

13

PETSc Vector

• What are PETSc vectors?
– Fundamental objects for storing field

solutions, right-hand sides, etc.
– Each process locally owns a subvector of

contiguously numbered global indices

• Create vectors via
– VecCreate(MPI_Comm,Vec *)

• MPI_Comm - processes that share the vector

– VecSetSizes(Vec, int, int)
• number of elements local to this process
• or total number of elements

– VecSetType(Vec,VecType)
• Where VecType is

– VEC_SEQ, VEC_MPI, or VEC_SHARED

• VecSetFromOptions(Vec) lets you set the type
at runtime

data objects:
vectors

data objects:
vectors

proc 3

proc 2

proc 0

proc 4

proc 1

14

PETSc Matrix Distribution

MatGetOwnershipRange(Mat A, int *rstart, int *rend)

– rstart: first locally owned row of global matrix

– rend -1: last locally owned row of global matrix

Each process locally owns a submatrix of contiguously
numbered global rows.

proc 0

} proc 3: locally owned rowsproc 3
proc 2
proc 1

proc 4

data objects:
matrices

data objects:
matrices

15

MUMPS Matrix Input Structure

• Elemental format and input centrally on the host

• Assembled format:
1. Input centrally on the host processor

2. Structure is provided on the host (analysis),

entries are distributed across the processors

(numeric factorization)

3. Both structure and entries are provided as local triplets

(ICNTL(18)=3)

16

Matrix Conversion -
MatLUFactorNumeric_AIJMUMPS():

PETSc

A_i, B_i:

local diagonal

and off-diagonal

matrices in row
compressed format

MUMPS

C_i:

local matrices in
triples

17

Vector Conversion -
MatSolve_AIJMUMPS():

PETSc

distributed b

distributed x

MUMPS

centralized b

distributed x

18

Using PETSc-MUMPS Interface

mpirun –np <np> petsc-prog \

–ksp_type preonly –pc_type lu \

–mat_type aijmumps <mumps_opts>

mpirun –np <np> petsc-prog \

–ksp_type preonly –pc_type cholesky \

–mat_type sbaijmumps <mumps_opts>

19

An application:
Modeling of Nanostructured Materials

*

S
ystem

 size

A
ccuracy

20

Density-Functional based Tight-Binding (DFTB)

21

Matrices are
• large: ultimate goal

50,000 atoms with electronic structure
~ N=200,000

• sparse:
non-zero density -> 0 as N increases

• dense solutions are requested:
60% eigenvalues and eigenvectors

Dense solutions of large sparse problems!

22

DFTB-eigenvalue problem is distinguished by

• (A, B) is large and sparse
Iterative method

• A large number of eigensolutions (60%) are requested
Iterative method + multiple shift-and-invert

• The spectrum has
- poor average eigenvalue separation O(1/N),
- cluster with hundreds of tightly packed eigenvalues
- gap >> O(1/N)
Iterative method + multiple shift-and-invert + robusness

• The matrix factorization of (A-σB)=LDLT :
not-very-sparse(7%) <= nonzero density <= dense(50%)
Iterative method + multiple shift-and-invert + robusness + efficiency

• Ax=λBx is solved many times (possibly 1000’s)
Iterative method + multiple shift-and-invert + robusness + efficiency

+ initial approximation of eigensolutions

23

Lanczos shift-and-invert method for Ax = λBx:

K(C, v) = span{ v, Cv, C2v, …., Ck-1v }

Eigensolutions of Tk Eigenvalues of (A,B) close to σ
and their eigenvectors

24

Lanczos shift-and-invert method for Ax = λBx:

• Cost:

- one matrix factorization:

- many triangular matrix solves:

• Gain:

- fast convergence

- clustering eigenvalues are transformed to

well-separated eigenvalues

- preferred in most practical cases

25

Multiple Shift-and-Invert
Parallel Eigenvalue Algorithm

Idea: distributed spectral slicing
compute eigensolutions in distributed subintervals

Proc[0]

Proc[1]

Proc[2]

λmin

imin

λmax

imax

σ[0] σ[1] σ[2]

26

• Shift-and-Invert Parallel Spectral Transforms

– Parallelize by spectrum intervals (multiple shifts)

– Balance parallel jobs

– Ensure global orthogonality of eigenvectors

– Manage matrix storage

– Builds on existing packages for data and solvers

Software Structure — SIPs

PETSc

SLEPc

MUMPS

ARPACK

MPI

SIPs

27

Software Structure

MPI

PETSc

SLEPc

MUMPS

ARPACK

Shift-and-Invert Parallel Spectral Transforms (SIPs)

• Select shifts

• Bookkeep and validate eigensolutions

• Balance parallel jobs

• Ensure global orthogonality of eigenvectors

• Subgroup of communicators

28

Software Structure — Algebra packages

• SLEPc

– Scalable Library for Eigenvalue Problem
Computations

• www.grycap.upv.es/slepc/

• ARPACK

– ARnoldi PACKage

• www.caam.rice.edu/software/ARPACK/

• MUMPS

– MUltifrontal Massively Parallel sparse direct
Solver

• www.enseeiht.fr/lima/apo/MUMPS/

29

• assign intervals to processors

– compute eigensolutions near shifts (the hard part)

– validate and tally (handle overlaps later)

– pick new shifts

– shrink assigned spectrum (communication)

• iterate

Distributed spectral slicing

Process 0

Process 1

Process 2

λmin

imin

λmax

imax

σ�[0] σ�[1] σ�[2]σ�[1]σ�[2]σ�[0] σ�[2]

30

• When a single process cannot store replicated
matrices

– Use more processes, distribute matrix storage

– introduce sub-communicators

• comb-like communication pattern

10 2 3

Domain decomposition: “Frequency and Space”

λmin λmax

3
2
1
0

3
2
1
0

3
2
1
0

3
2
1
0

31

• Linux cluster at Argonne

• Compute:

– 350 nodes with 2.4 GHz Pentium Xeon

• Memory:

– 175 nodes with 2 GB of RAM

– 175 nodes with 1 GB of RAM

• Network:

– Myrinet 2000 (fast)

– 1 Gb Ethernet (slow)

Numerical Experiments — Jazz

32

• Single-wall carbon nanotube (10,10)

• Diamond nanowire (25 at. cross sec.)

• Diamond (3D bulk)

• Σ13, Σ29 Grainboundaries

• Graphene

• Si, SiO2

• … all usually randomized

Physical test systems

33

Test system 1 − single-wall carbon nanotube

Sparsity pattern Spectrum

N = 16�000

• sparse 1D-system
• randomized positions — limited degeneracies

34

Numerical results − single-wall carbon nanotube

Myrinet 2000 1 Gb Ethernet

• SIPs faster than ScaLAPACK
• better scaling — SIPs: O�(N�2); ScaLAPACK: O�(N�3)

35

Sparsity pattern Spectrum

N = 16�000

Test system 2 − diamond nanowire

• medium sparse 1D-system
• randomized positions

36

Numerical results − diamond nanowire

• SIPs still competitive (time, scaling)
• better memory usage — larger systems accessible

Myrinet 2000 1 Gb Ethernet

37

Sparsity pattern Spectrum

N = 16�000

Test system 3 − diamond crystal

• dense 3D-system

38

Myrinet 2000 1 Gb Ethernet

Numerical results − diamond crystal

• SIPs can’t compete on fast network
• Good on commodity network (GbE) — O�(N�3−x)

39

Summary
• SIPs: a new multiple Shift-and-Invert Parallel eigensolver.

• Competitive computational speed:
- matrices with sparse factorization:

SIPs: (O(N2)); ScaLAPACK: (O(N3))
- matrices with dense factorization:

SIPs outperforms ScaLAPCK on slower network (fast Ethernet) as the
number of processors increases

• Efficient memory usage:
SIPs solves much larger eigenvalue problems than ScaLAPACK,

e.g., nproc=64, SIPs: N>64k; ScaLAPACK: N=19k

• Object-oriented design:
- developed on top of PETSc and SLEPc.

PETSc provides sequential and parallel data structure;
SLEPc offers built-in support for eigensolver and spectral transformation.

- through the interfaces of PETSc and SLEPc, SIPs easily uses external
eigenvalue package ARPACK and parallel sparse direct solver MUMPS.
The packages can be upgraded or replaced without extra programming effort.

40

Request for Improvements:

• Distributed right-hand-side vector b?

• Efficient matrix conversion?

• Large number of processes,

e.g., np = 1k,…, 10k?

• Almost exact direct solver with reduced
communications?

• Take advantage of a distribution of an initial problem into
subdomains?

• …

