Design, Implementation and Applications of PETSc-MUMPS Inteface

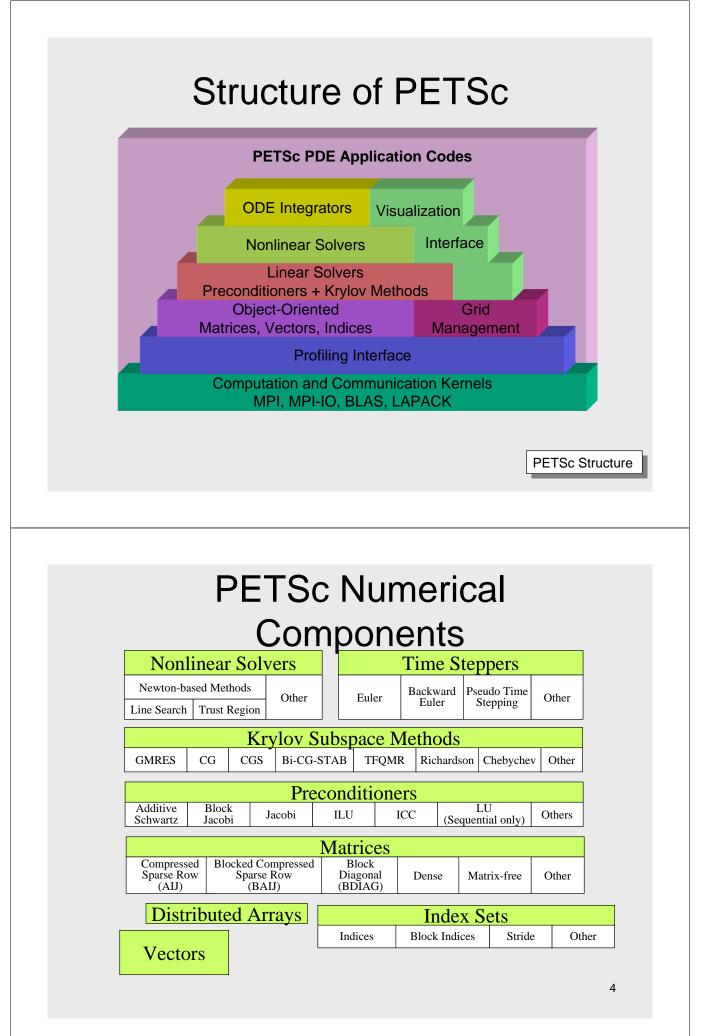
Hong Zhang

Computer Science, Illinois Institute of Technology Mathematics and Computer Science, Argonne National Laboratory

What is PETSc?

Portable, Extensible Toolkit for Scientific computation

- Sequential and parallel data structures
- Sequential and parallel algebraic solvers
- API for advanced methods
- Portable(?) to virtually all systems
- Funded largely by the US Dept. of Energy
- www.mcs.anl.gov/petsc (free)



What is MUMPS?

MUltifrontal Massively Parallel sparse direct Solver

- Solution of large linear systems with spd and general matrices
- Iterative refinement and backward error analysis
- Partial factorization and Schur complement matrix
- Several orderings interfaced: AMD, AMF, PORD, METIS
- Written in F90 with C interface
- Parallel version requires **BLACS** and **ScaLAPACK**

What is MUMPS?

- Expoits both parallelism arising from sparsity in the matrix and from dense factorizations kernels.
- Partially funded by CEC ESPRIT IV long term research project
- www.enseeiht.fr/irit/apo/MUMPS/

MUMPS solves *Ax=b* in three main steps:

1. Analysis (Job=1):

- the host performs an ordering
- the host carries out symbolic factorization
- 2. Factorization A=LU or A=LDL^T (Job=2):
 - A is distributed to processors
 - the numerical factorization on each frontal matrix is conducted by a *master* and one or more *slave* processors
- 3. Solution (Job=3):
 - b is broadcast from the host
 - x is computed using the distributed factors
 - x is either assembled on the host or kept distributed on the processors

MUMPS:

- Each of the phases can be called separately
- Asynchronous communication

Enable overlapping between communication and computation

Dynamic scheduling

Algorithm can adapt itself at execution time to remap work and data to appropriate processors

PETSc-MUMPS Interface

Enable an easy use of

the MUMPS' parallel sparse direct solvers under the PETSc environment for

- algorithmic study
- solving computational-intensive problems

Installation of PETSc and MUMPS

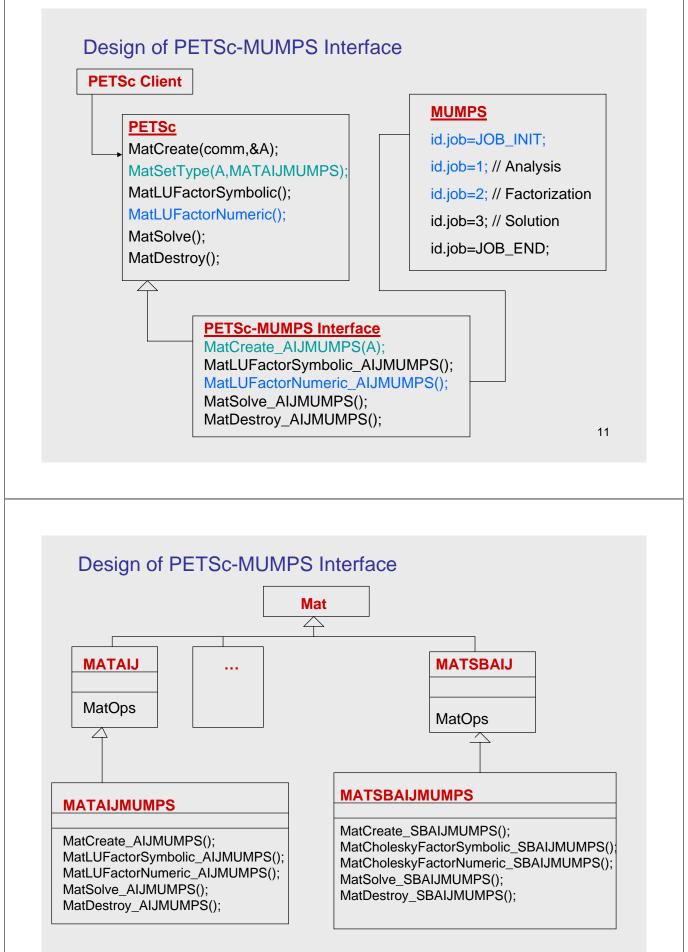
- 1. Download PETSc
- 2. Configure PETSc with

./configure.py <petsc_config_opts>

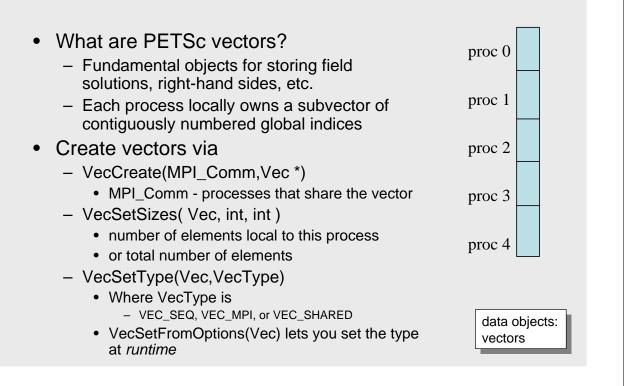
- --download-mumps=yes
- --download-scalapack=yes
- --download-blacs=yes
- 3. Build libraries:

./make all

Reference: ~petsc/python/PETSc/packages/MUMPS.py

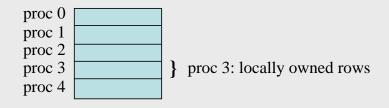


PETSc Vector



PETSc Matrix Distribution

Each process locally owns a submatrix of contiguously numbered global rows.



MatGetOwnershipRange(Mat A, int *rstart, int *rend)

- rstart: first locally owned row of global matrix
- rend -1: last locally owned row of global matrix

data objects: matrices

MUMPS Matrix Input Structure

- Elemental format and input centrally on the host
- Assembled format:
 - 1. Input centrally on the host processor
 - Structure is provided on the host (analysis), entries are distributed across the processors (numeric factorization)
 - 3. Both structure and entries are provided as local triplets (ICNTL(18)=3)

Matrix Conversion -

MatLUFactorNumeric_AIJMUMPS():

<u>PETSc</u>

A_i, B_i: local diagonal and off-diagonal matrices in row compressed format

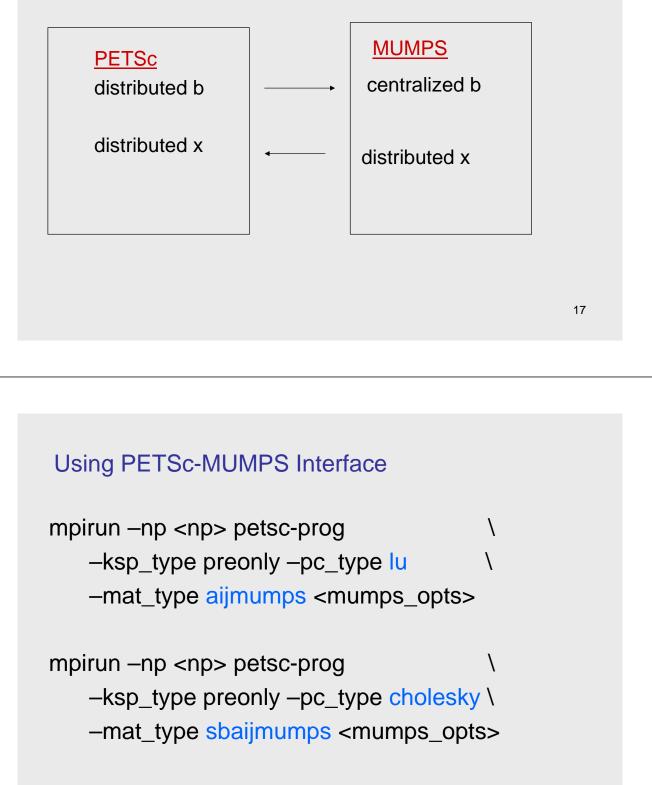
<u>MUMPS</u>

C_i:

local matrices in triples

Vector Conversion -

MatSolve_AIJMUMPS():



An application:

Modeling of Nanostructured Materials

- Goal: Characterisation/prediction of various nanoscale properties
- Approach: Determination and analysis of most stable atomic structure
 Minimisation of many-particle interaction energy

$$E_{\text{tot}}(\{\vec{R}_{\text{at}}\}) = \underbrace{E_{\text{el}}(\{\vec{r}_{\text{el}}\};\{\vec{R}_{\text{at}}\})}_{hard} + \underbrace{E_{\text{nuc}}(\{\vec{R}_{\text{at}}\})}_{\text{"easy"}}$$

System size

Accuracy

19

Methods:

- 1. molecular orbital theory (Schrodinger equation)
- 2. density functional theory (DFT)
- * 3. tight-binding (TB, DFTB); semi-empirical
 - 4. classical potentials (Lennard-Jones, Brenner, ...)

- Physics: approximate solution of Schrdinger-like equation
 - *input:* atomic positions \vec{R}_a
 - aux. data: pairwise interaction functions from higher-level theory

$$\{h_{\mu
u},s_{\mu
u},\gamma_{\mu
u}\}=f(ec{R}_a,ec{R}_b)$$

- output: Energy *E*, atomic forces $(\vec{F}_a = \partial E/\partial \vec{R}_a)$, wave functions Φ_i , atomic charges q_a , ...
- Mathematical core: real symmetric definite generalised eigenproblem

 $\mathbf{A}\mathbf{x}_i = \lambda_i \mathbf{B}\mathbf{x}_i, \quad i = 1 \dots N$

- λ_i eigenvalues (electronic energy levels ε_i) need lower <u>60 %</u>
- \mathbf{x}_i eigenvectors (wave function coefficients $\Phi_{i\mu}$)
- A, B interaction matrices: $f(\mathbf{h}, \mathbf{s}, \gamma, \mathbf{x}) \rightarrow self$ -consistent problem

Matrices are

- large: ultimate goal
 50,000 atoms with electronic structure
 ~ N=200,000
- sparse: non-zero density -> 0 as N increases
- dense solutions are requested:
 60% eigenvalues and eigenvectors

Dense solutions of large sparse problems!

DFTB-eigenvalue problem is distinguished by

- (A, B) is large and sparse Iterative method
- A large number of eigensolutions (60%) are requested Iterative method + multiple shift-and-invert

• The spectrum has

- poor average eigenvalue separation O(1/N),
- cluster with hundreds of tightly packed eigenvalues
- gap >> O(1/N)

Iterative method + multiple shift-and-invert + robusness

- The matrix factorization of (A-σB)=LDL^T: not-very-sparse(7%) <= nonzero density <= dense(50%) Iterative method + multiple shift-and-invert + robusness + efficiency
- Ax=λBx is solved many times (possibly 1000's) Iterative method + multiple shift-and-invert + robusness + efficiency + initial approximation of eigensolutions

Lanczos shift-and-invert method for $Ax = \lambda Bx$: $Ax = \lambda Bx$ $\Leftrightarrow (A - \sigma B)x = (\lambda - \sigma)Bx$, shift $\sigma \neq \lambda$ $\Leftrightarrow \frac{1}{\lambda - \sigma}y = \underbrace{B(A - \sigma B)^{-1}}_{C}y$, y = Bx $\Rightarrow \overline{\lambda}y = Cy$, $\overline{\lambda} = \frac{1}{\lambda - \sigma}$ $K(C, v) = \text{span}\{v, Cv, C^2v, ..., C^{k-1}v\}$ Eigensolutions of $T_k \longrightarrow$ Eigenvalues of (A,B) close to σ and their eigenvectors

Lanczos shift-and-invert method for $Ax = \lambda Bx$:

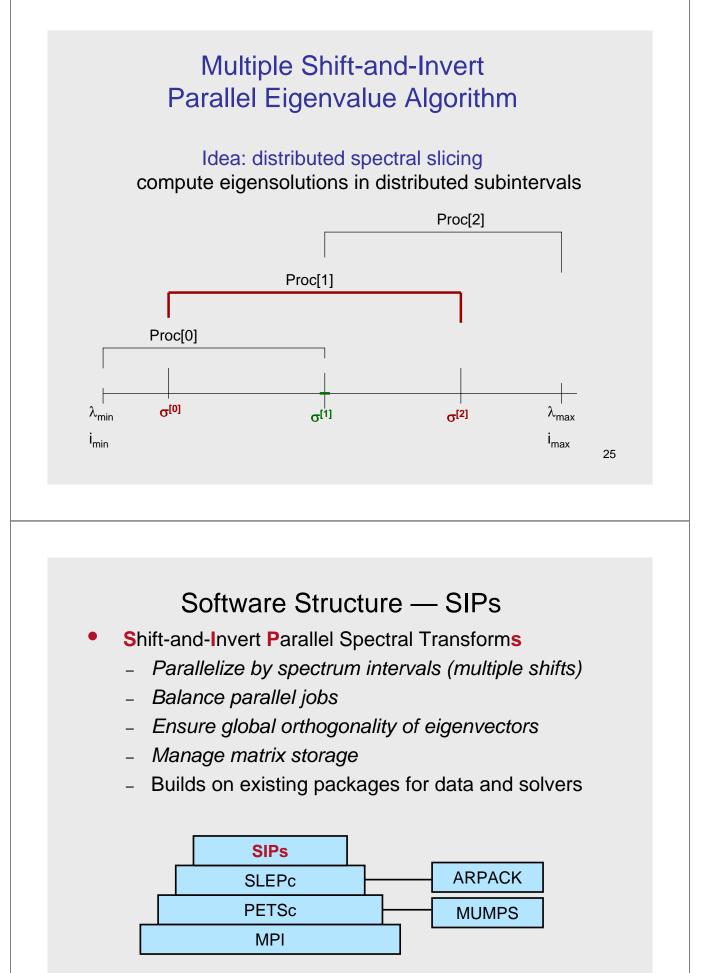
- Cost:
 - one matrix factorization:

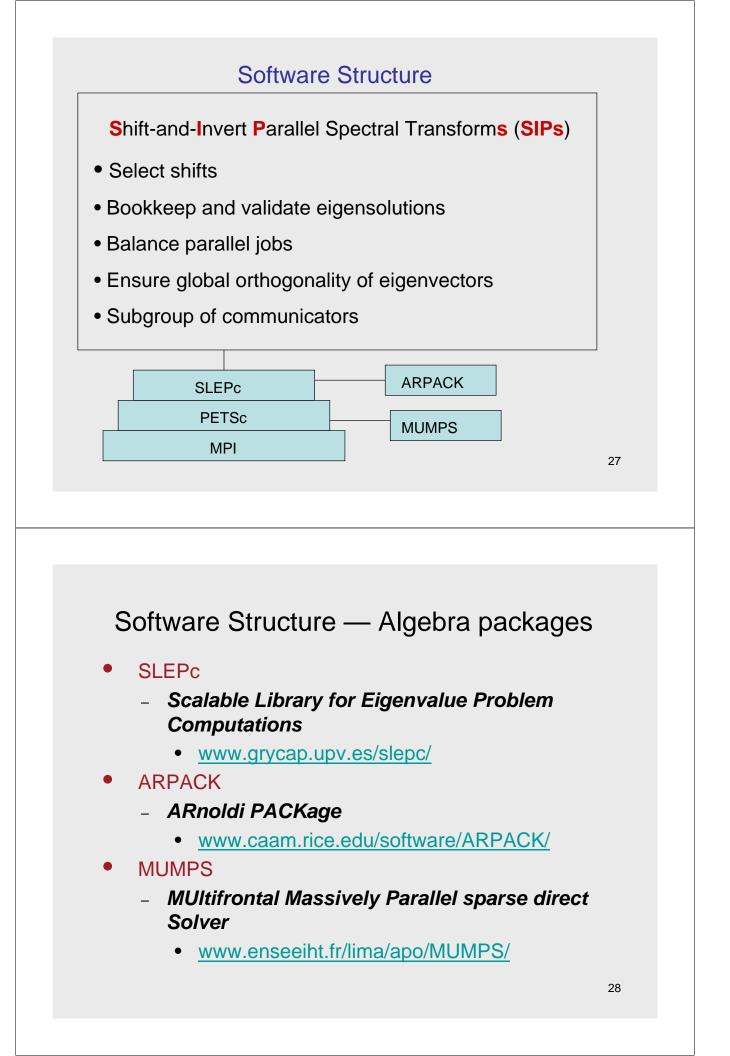
$$A - \sigma B = LDL^T$$

- many triangular matrix solves:

 $Cv = L^{-T}D^{-1}L^{-1}v, \ C = B(A - \sigma B)^{-1}$

- Gain:
 - fast convergence
 - clustering eigenvalues are transformed to well-separated eigenvalues
 - preferred in most practical cases

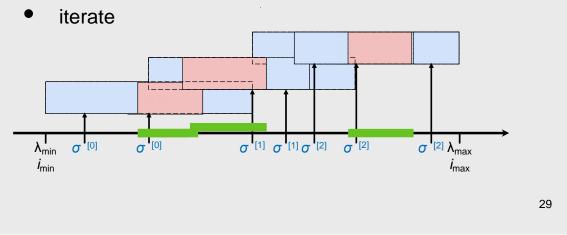




Distributed spectral slicing

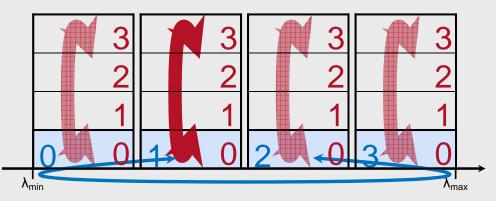
assign intervals to processors

- compute eigensolutions near shifts (the hard part)
- validate and tally (handle overlaps later)
- pick new shifts
- shrink assigned spectrum (communication)



Domain decomposition: "Frequency and Space"

- When a single process cannot store replicated matrices
 - Use more processes, distribute matrix storage
 - introduce sub-communicators
- comb-like communication pattern



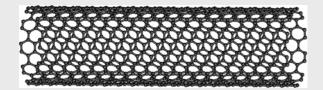
Numerical Experiments — Jazz

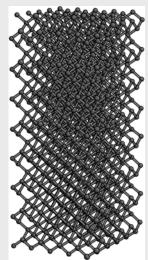
- Linux cluster at Argonne
- Compute:
 - 350 nodes with 2.4 GHz Pentium Xeon
- Memory:
 - 175 nodes with 2 GB of RAM
 - 175 nodes with 1 GB of RAM
- Network:
 - Myrinet 2000 (fast)
 - 1 Gb Ethernet (slow)

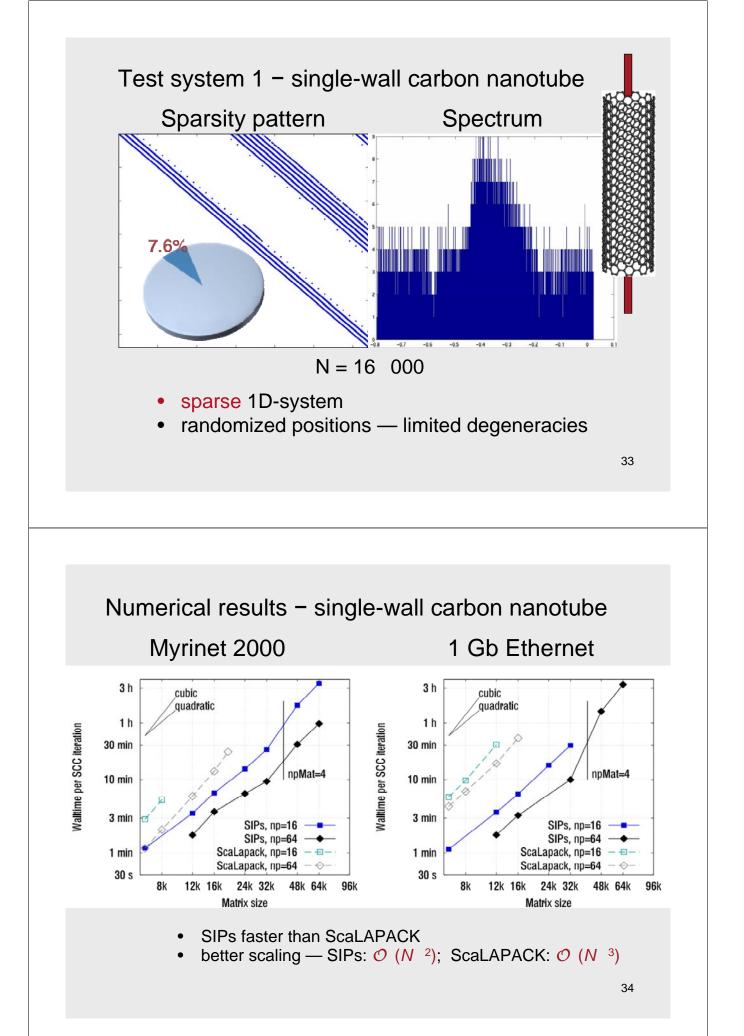
31

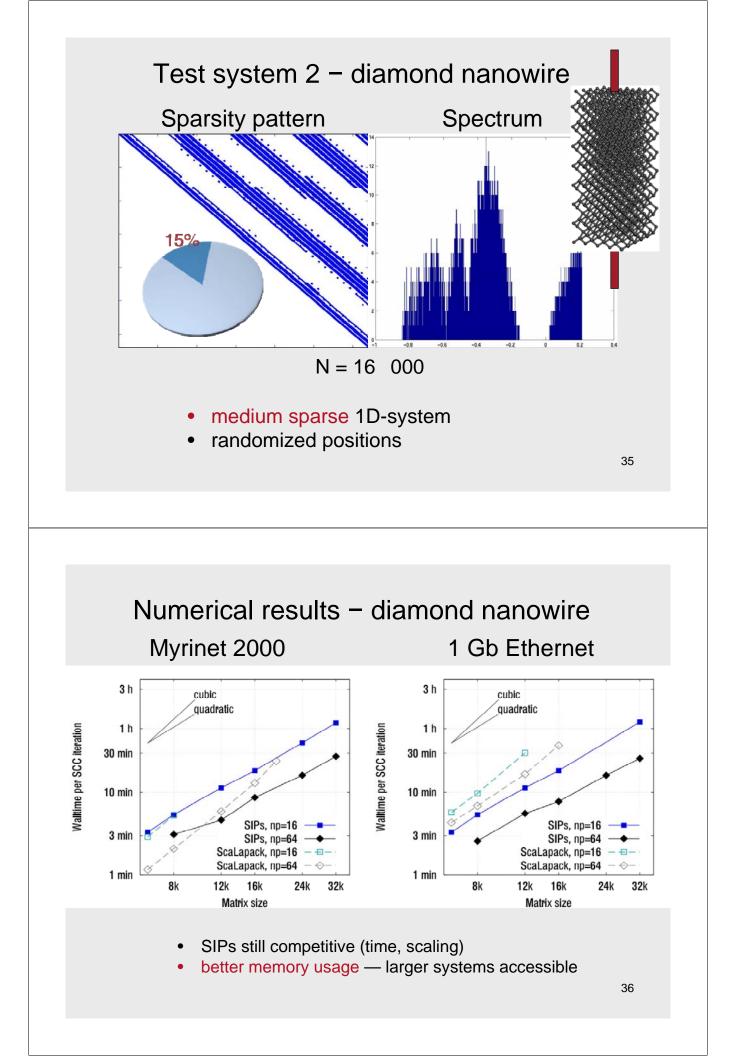
Physical test systems

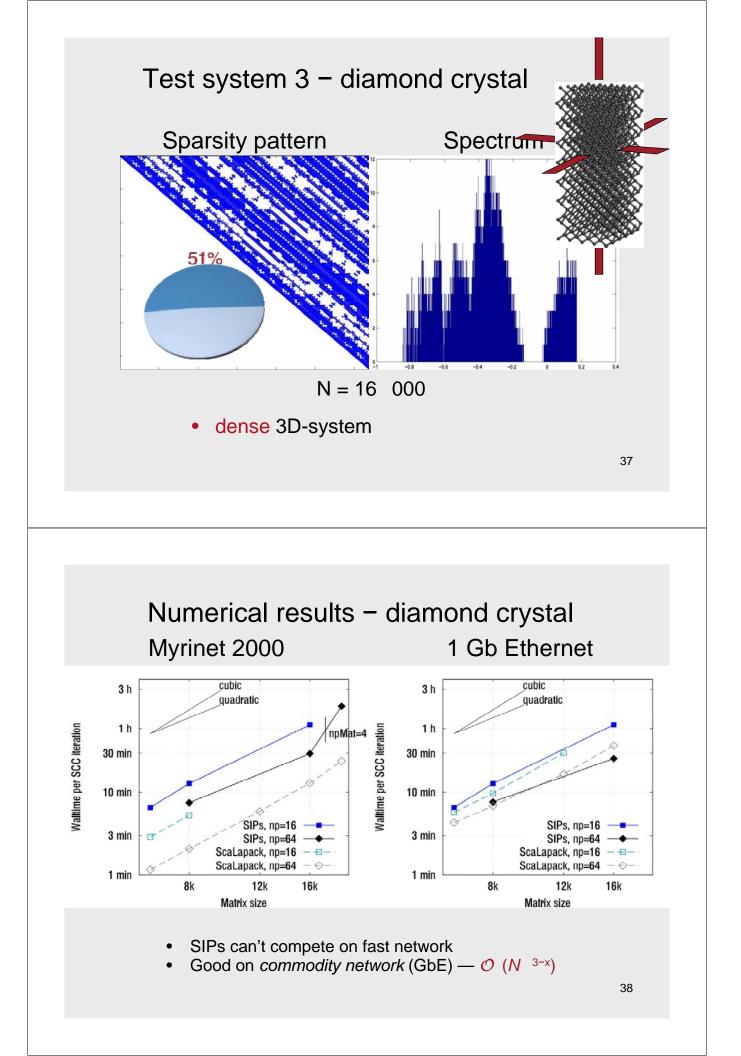
- Single-wall carbon nanotube (10,10)
- Diamond nanowire (25 at. cross sec.)
- Diamond (3D bulk)
- Σ13, Σ29 Grainboundaries
- Graphene
- Si, SiO₂
- … all usually randomized











Summary

• (SIPs: a new multiple Shift-and-Invert Parallel eigensolver.
-	Competitive computational speed: - matrices with sparse factorization: SIPs: (O(N ²)); ScaLAPACK: (O(N ³)) - matrices with dense factorization: SIPs outperforms ScaLAPCK on slower network (fast Ethernet) as the number of processors increases
	Efficient memory usage: SIPs solves much larger eigenvalue problems than ScaLAPACK, e.g., nproc=64, SIPs: N>64k; ScaLAPACK: N=19k
-	 Object-oriented design: developed on top of PETSc and SLEPc. PETSc provides sequential and parallel data structure; SLEPc offers built-in support for eigensolver and spectral transformation. through the interfaces of PETSc and SLEPc, SIPs easily uses external eigenvalue package ARPACK and parallel sparse direct solver MUMPS. The packages can be upgraded or replaced without extra programming effort.

Request for Improvements:

- Distributed right-hand-side vector b?
- Efficient matrix conversion?
- Large number of processes,

e.g., np = 1k,..., 10k?

- Almost exact direct solver with reduced communications?
- Take advantage of a distribution of an initial problem into subdomains?
- ...