Design, Implementation and Applications of PETSc-MUMPS Inteface

Hong Zhang

Computer Science, Illinois Institute of Technology Mathematics and Computer Science, Argonne National Laboratory

What is PETSc?

Portable, Extensible Toolkit for Scientific computation

- Sequential and parallel data structures
- Sequential and parallel algebraic solvers
- API for advanced methods
- Portable(?) to virtually all systems
- Funded largely by the US Dept. of Energy
- www.mcs.anl.gov/petsc (free)

Structure of PETSc

 Components

Nonlinear Solvers		
Newton-based Methods	Other	
Line Search		

Time Steppers			
Euler	Backward Euler	Pseudo Time Stepping	Other

Krylov Subspace Methods							
GMRES	CG	CGS	Bi-CG-STAB	TFQMR	Richardson	Chebychev	Other

Preconditioners							
Additive Schwartz	Block Jacobi	Jacobi	ILU	ICC	LU (Sequential only)	Others	

Matrices					
Compressed Sparse Row (AIJ)	Blocked Compressed Sparse Row (BAIJ)	Block Diagonal (BDIAG)	Dense	Matrix-free	Other

What is MUMPS?

MUItifrontal Massively Parallel sparse direct Solver

- Solution of large linear systems with spd and general matrices
- Iterative refinement and backward error analysis
- Partial factorization and Schur complement matrix
- Several orderings interfaced: AMD, AMF, PORD,METIS
- Written in F90 with C interface
- Parallel version requires BLACS and ScaLAPACK

What is MUMPS?

- Expoits both parallelism arising from sparsity in the matrix and from dense factorizations kernels.
- Partially funded by CEC ESPRIT IV long term research project
- www.enseeiht.fr/irit/apo/MUMPS/

MUMPS solves $A x=b$ in three main steps:

1. Analysis (Job=1):

- the host performs an ordering
- the host carries out symbolic factorization

2. Factorization $A=L U$ or $A=L D L^{\wedge} T$ (Job=2):

- A is distributed to processors
- the numerical factorization on each frontal matrix is conducted by a master and one or more slave processors

3. Solution (Job=3):

- b is broadcast from the host
$-x$ is computed using the distributed factors
$-x$ is either assembled on the host or kept distributed on the processors

MUMPS:

- Each of the phases can be called separately
- Asynchronous communication

Enable overlapping between communication and computation

- Dynamic scheduling

Algorithm can adapt itself at execution time to remap work and data to appropriate processors

PETSc-MUMPS Interface

Enable an easy use of

the MUMPS' parallel sparse direct solvers under the PETSc environment for

- algorithmic study
- solving computational-intensive problems

Installation of PETSc and MUMPS

1. Download PETSc
2. Configure PETSc with
./configure.py <petsc_config_opts>
--download-mumps=yes
--download-scalapack=yes
--download-blacs=yes
3. Build libraries:
./make all
Reference: ~petsc/python/PETSc/packages/MUMPS.py

Design of PETSc-MUMPS Interface

Design of PETSc-MUMPS Interface

PETSc Vector

- What are PETSc vectors?
- Fundamental objects for storing field solutions, right-hand sides, etc.
- Each process locally owns a subvector of contiguously numbered global indices
- Create vectors via
- VecCreate(MPI_Comm,Vec *)
- MPI_Comm - processes that share the vector
- VecSetSizes(Vec, int, int)
- number of elements local to this process
- or total number of elements
- VecSetFromOptions(Vec) lets you set the type
- VecSetType(Vec,VecType)
- Where VecType is
- VEC_SEQ, VEC_MPI, or VEC_SHARED at runtime
proc 2
proc 3
proc 4
proc 1

proc 0
proc
\square

PETSc Matrix Distribution

Each process locally owns a submatrix of contiguously numbered global rows.

MatGetOwnershipRange(Mat A, int *rstart, int *rend)

- rstart: first locally owned row of global matrix
- rend -1: last locally owned row of global matrix

MUMPS Matrix Input Structure

- Elemental format and input centrally on the host
- Assembled format:

1. Input centrally on the host processor
2. Structure is provided on the host (analysis), entries are distributed across the processors (numeric factorization)
3. Both structure and entries are provided as local triplets (ICNTL(18)=3)

Matrix Conversion -

MatLUFactorNumeric_AIJMUMPS():

PETSc
A_i, B_i:
local diagonal
and off-diagonal
matrices in row
compressed format

MUMPS
C_i: local matrices in triples

Vector Conversion MatSolve_AIJMUMPS():

Using PETSc-MUMPS Interface

mpirun -np <np> petsc-prog I
-ksp_type preonly -pc_type lu ।
-mat_type aijmumps <mumps_opts>
mpirun -np <np> petsc-prog
-ksp_type preonly -pc_type cholesky 1
-mat_type sbaijmumps <mumps_opts>

An application:

Modeling of Nanostructured Materials

- Goal: Characterisation/prediction of various nanoscale properties
- Approach: Determination and analysis of most stable atomic structure \rightarrow Minimisation of many-particle interaction energy

$$
E_{\mathrm{tot}}\left(\left\{\vec{R}_{\mathrm{at}}\right\}\right)=\underbrace{E_{\mathrm{el}}\left(\left\{\overrightarrow{\mathrm{r}}_{\mathrm{e}}\right\} ;\left\{\vec{R}_{\mathrm{at}}\right\}\right)}_{\text {hard }}+\underbrace{\left.E_{\mathrm{nuc}\left(\left\{\vec{R}_{\mathrm{at}}\right\}\right.}\right)}_{\text {"easy" }}
$$

- Methods:

1. molecular orbital theory (Schrodinger equation)
2. density functional theory (DFT)

* 3. tight-binding (TB, DFTB); semi-empirical

4. classical potentials (Lennard-Jones, Brenner, ...)

Density-Functional based Tight-Binding (DFTB)

- Physics: approximate solution of Schrdinger-like equation
- Input: atomic positions $\overrightarrow{\boldsymbol{R}}_{\boldsymbol{a}}$
- aux. data: pairwise interaction functions from higher-level theory

$$
\left\{h_{\mu \nu}, s_{\mu \nu}, \gamma_{\mu \nu}\right\}=f\left(\vec{R}_{a}, \vec{R}_{b}\right)
$$

- output: Energy E, atomic forces ($\vec{F}_{a}=\partial E / \partial \vec{R}_{a}$), wave functions Φ_{i}, atomic charges q_{a}, \ldots
- Mathematical core: real symmetric definite generalised eigenproblem

$$
\mathbf{A x}_{i}=\lambda_{i} \mathbf{B} x_{i}, \quad i=1 \ldots N
$$

$\lambda_{i} \quad$ eigenvalues (electronic energy levels ε_{i}) - need lower 60%
$\mathbf{x}_{i} \quad$ eigenvectors (wave function coefficients $\Phi_{i \mu}$)
A,B interaction matrices: $f(\mathbf{h}, \mathbf{s}, \boldsymbol{\gamma}, \mathbf{x}) \rightarrow$ self-consistent problem

Matrices are

- large: ultimate goal

50,000 atoms with electronic structure
~ N=200,000

- sparse:
non-zero density -> 0 as N increases
- dense solutions are requested: 60\% eigenvalues and eigenvectors

Dense solutions of large sparse problems!

DFTB-eigenvalue problem is distinguished by

- (A, B) is large and sparse

Iterative method

- A large number of eigensolutions (60\%) are requested

Iterative method + multiple shift-and-invert

- The spectrum has
- poor average eigenvalue separation $\mathrm{O}(1 / \mathrm{N})$,
- cluster with hundreds of tightly packed eigenvalues
- gap >> O(1/N)

Iterative method + multiple shift-and-invert + robusness

- The matrix factorization of $(\mathrm{A}-\sigma \mathrm{B})=\mathrm{LDL}^{\top}$:
not-very-sparse(7\%) <= nonzero density <= dense(50\%)
Iterative method + multiple shift-and-invert + robusness + efficiency
- $A x=\lambda B x$ is solved many times (possibly 1000 's)

Iterative method + multiple shift-and-invert + robusness + efficiency

+ initial approximation of eigensolutions

Lanczos shift-and-invert method for $\mathrm{Ax}=\lambda \mathrm{Bx}$:

$$
\begin{aligned}
A x= & \lambda B x \\
& \Longleftrightarrow(A-\sigma B) x=(\lambda-\sigma) B x, \text { shift } \sigma \neq \lambda \\
& \Longleftrightarrow \frac{1}{\lambda-\sigma} y=\underbrace{B(A-\sigma B)^{-1}}_{C} y, y=B x \\
& \Longleftrightarrow \tilde{\lambda} y=C y, \tilde{\lambda}=\frac{1}{\lambda-\sigma} \\
\mathrm{K}(\mathrm{C}, \mathrm{v}) & =\operatorname{span}\left\{\mathrm{v}, \mathrm{Cv}, \mathrm{C}^{2} \mathrm{v}, \ldots, \mathrm{C}^{k-1} \mathrm{v}\right\}
\end{aligned}
$$

Eigensolutions of $T_{k} \longrightarrow$ Eigenvalues of (A, B) close to σ and their eigenvectors

Lanczos shift-and-invert method for $A x=\lambda B x$:

- Cost:
- one matrix factorization:

$$
A-\sigma B=L D L^{T}
$$

- many triangular matrix solves:

$$
C v=L^{-T} D^{-1} L^{-1} v, C=B(A-\sigma B)^{-1}
$$

- Gain:
- fast convergence
- clustering eigenvalues are transformed to well-separated eigenvalues
- preferred in most practical cases

Multiple Shift-and-Invert Parallel Eigenvalue Algorithm

Idea: distributed spectral slicing
compute eigensolutions in distributed subintervals

Software Structure - SIPs

- Shift-and-Invert Parallel Spectral Transforms
- Parallelize by spectrum intervals (multiple shifts)
- Balance parallel jobs
- Ensure global orthogonality of eigenvectors
- Manage matrix storage
- Builds on existing packages for data and solvers

Software Structure

Shift-and-Invert Parallel Spectral Transforms (SIPs)

- Select shifts
- Bookkeep and validate eigensolutions
- Balance parallel jobs
- Ensure global orthogonality of eigenvectors
- Subgroup of communicators

Software Structure - Algebra packages

- SLEPc
- Scalable Library for Eigenvalue Problem Computations
- www.grycap.upv.es/slepc/
- ARPACK
- ARnoldi PACKage
- www.caam.rice.edu/software/ARPACKI
- MUMPS
- MUltifrontal Massively Parallel sparse direct Solver
- www.enseeiht.fr/lima/apo/MUMPS/

Distributed spectral slicing

- assign intervals to processors
- compute eigensolutions near shifts (the hard part)
- validate and tally (handle overlaps later)
- pick new shifts
- shrink assigned spectrum (communication)
- iterate

Domain decomposition: "Frequency and Space"

- When a single process cannot store replicated matrices
- Use more processes, distribute matrix storage
- introduce sub-communicators
- comb-like communication pattern

Numerical Experiments - Jazz

- Linux cluster at Argonne
- Compute:
- 350 nodes with 2.4 GHz Pentium Xeon
- Memory:
- 175 nodes with 2 GB of RAM
- 175 nodes with 1 GB of RAM
- Network:
- Myrinet 2000 (fast)
- 1 Gb Ethernet (slow)

Physical test systems

- Single-wall carbon nanotube $(10,10)$
- Diamond nanowire (25 at. cross sec.)
- Diamond (3D bulk)
- \quad 113, $\Sigma 29$ Grainboundaries
- Graphene
- $\mathrm{Si}, \mathrm{SiO}_{2}$
- ... all usually randomized

Test system 1 - single-wall carbon nanotube

 Sparsity pattern

$$
N=16000
$$

- sparse 1D-system
- randomized positions - limited degeneracies

- SIPs still competitive (time, scaling)
- better memory usage - larger systems accessible

Test system 3 - diamond crystal

$$
N=16 \quad 000
$$

- dense 3D-system

- SIPs can't compete on fast network
- Good on commodity network (GbE) - O (N^{3-x})

Summary

- SIPs: a new multiple Shift-and-Invert Parallel eigensolver.
- Competitive computational speed:
- matrices with sparse factorization:

SIPs: $\left(\mathrm{O}\left(\mathrm{N}^{2}\right)\right)$; ScaLAPACK: $\left(\mathrm{O}\left(\mathrm{N}^{3}\right)\right)$

- matrices with dense factorization:

SIPs outperforms ScaLAPCK on slower network (fast Ethernet) as the number of processors increases

- Efficient memory usage:

SIPs solves much larger eigenvalue problems than ScaLAPACK, e.g., nproc=64, SIPs: N>64k; ScaLAPACK: N=19k

- Object-oriented design:
- developed on top of PETSc and SLEPc.

PETSc provides sequential and parallel data structure;
SLEPc offers built-in support for eigensolver and spectral transformation.

- through the interfaces of PETSc and SLEPc, SIPs easily uses external eigenvalue package ARPACK and parallel sparse direct solver MUMPS. The packages can be upgraded or replaced without extra programming effort.

Request for Improvements:

- Distributed right-hand-side vector b?
- Efficient matrix conversion?
- Large number of processes,
e.g., np = 1k, .., 10k?
- Almost exact direct solver with reduced communications?
- Take advantage of a distribution of an initial problem into subdomains?
- ...

