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1 Introduction and Motivation

We review and extend to the compressible regime an earlier parallelization of an
implicit incompressible unstructured Euler code [9], and solve for 
ow over an
M6 wing in subsonic, transonic, and supersonic regimes. While the paralleliza-
tion philosophy of the compressible case is identical to the incompressible, we
focus here on the nonlinear and linear convergence rates, which vary in di�er-
ent physical regimes, and on comparing the performance of currently important
computational platforms.

Multiple-scale problems should be marched out at desired accuracy limits,
and not held hostage to often more stringent explicit stability limits. In the
context of inviscid aerodynamics, this means evolving transient computations
on the scale of the convective transit time, rather than the acoustic transit
time, or solving steady-state problems with local CFL numbers approaching
in�nity. Whether time-accurate or steady, we employ Newton's method on
each (pseudo-)timestep. The coupling of analysis with design in aerodynamic
practice is another motivation for implicitness. Design processes that make use
of sensitivity derivatives and the Hessian matrix require operations with the
Jacobian matrix of the state constraints (i.e., of the governing PDE system); if
the Jacobian is available for design, it may be employed with advantage in a
nonlinearly implicit analysis, as well.

Implicit methods tend to contain global operations, which makes them chal-
lenging to parallelize. Nevertheless, the increasing resolution requirements of
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PDE analyses require access to the large memories provided by parallelism.

2 Parallel 	NKS Solvers and Software

Our framework for an implicit PDE solution algorithm, with pseudo-timestepping
to advance towards an assumed steady state, has the form: ( 1

�t`
)u` + f(u`) =

( 1

�t`
)u`�1; where �t` ! 1 as ` ! 1; where u represents the fully coupled

vector of unknowns, and the steady-state solution satis�es f(u) = 0.
Each member of the sequence of nonlinear problems, ` = 1; 2; : : :, is solved

with an inexact Newton method. The resulting Jacobian systems for the Newton
corrections are solved with a Krylov method, relying directly only on matrix-
free operations. The Krylov method needs to be preconditioned for acceptable
inner iteration convergence rates, and the preconditioning can be the \make-or-
break" feature of an implicit code. A good preconditioner saves time and space
by permitting fewer iterations in the Krylov loop and smaller storage for the
Krylov subspace. An additive Schwarz preconditioner [4] accomplishes this in a
concurrent, localized manner, with an approximate solve in each subdomain of
a partitioning of the global PDE domain. Applying any preconditioner in an ad-
ditive Schwarz manner tends to increase 
op rates over the same preconditioner
applied globally, since the smaller subdomain blocks maintain better cache res-
idency, even apart from concurrency considerations. Combining a Schwarz pre-
conditioner with a Krylov iteration method inside an inexact Newton method
leads to a synergistic parallelizable nonlinear boundary value problem solver
with a classical name: Newton-Krylov-Schwarz (NKS) [5, 7]. Combined with
pseudo-timestepping, we write 	NKS.

The basic philosophy of any e�cient distributed computation is \owner com-
putes", together with message merging and overlapping communication with
computation where possible with split transactions. To minimize communica-
tion, each processor \ghosts" its stencil dependences on its neighbors' data.
Grid functions are mapped from a global (user) ordering into contiguous local
orderings (which, in unstructured cases are designed to maximize spatial local-
ity for cache line reuse). Scatter/gather operations are created between local
sequential vectors and global distributed vectors, based on connectivity patterns
determined at runtime. Global NKS operations are thus translated into local
tasks and communication tasks.

We employ the PETSc package [3], which features distributed data struc-
tures | index sets, vectors, and matrices | as fundamental objects. Iterative
linear and nonlinear solvers, implemented in as data structure-neutral a man-
ner as possible, are combinable modularly, recursively, and extensibly through
a uniform application programmer interface. Portability is achieved through
MPI, but message-passing detail is not required in user code. We use MeTiS [8]
to partition the unstructured grid.
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3 Incompressible and Compressible Flows

Our discretization routines are adapted from FUN3D, a tetrahedral unstruc-
tured grid code developed by W. K. Anderson and co-workers at NASA Langley
for compressible [1] and incompressible [2] Euler and Navier-Stokes equations.
It is used in aeronautical and automotive external 
ow applications for analysis
and (recently) design optimization. Unknown �elds are de�ned at the vertices of
tetrahedra, with a typical edge-connectivity to other vertices of approximately
15, when a control volume discretization is carried out on the polyhedral control
volumes that are dual to the tetrahedra. The discrete f(u) is constructed in a
conservative manner by looping over the edges of the tetrahedral grid, evalu-
ating 
uxes across the dual cell face pierced by the edge, and allocating the
identical 
ux with opposite sign to the two control volumes on either side.

The incompressible version of the code employs four unknowns (pressure
and three momenta) at each vertex and Chorin's arti�cial compressibility tech-
nique [6]. The compressible version uses �ve unknowns (density, momenta, and
internal energy) at each vertex. Roe's 
ux-di�erence splitting is used to dis-
cretize the convective terms. This requires a local eigendecomposition of the

ux Jacobian to determine the characteristic directions and speeds of the waves
passing through each control volume face element | an operation that is sig-
ni�cantly more complex, computationally, for the compressible case than for
the incompressible. Either �rst- or second-order 
uxes can be computed, a fea-
ture that we exploit in di�erent ways in the pseudo-transient NKS technique.
We never employ higher than �rst-order 
uxes in the preconditioner, since the
preconditioner matrix is incompletely factored without pivoting, which is sta-
bilized by the arti�cial viscosity of the upwinded �rst-order discretization. We
always employ second-order 
uxes in the residual evaluation as steady state is
approached, and thereby obtain close to second-order discretization accuracy in
the converged solution. We switch from �rst-order to second-order 
uxes in the
residual evaluation as a \continuation" device in compressible 
ow problems,
in which rapid Newton convergence is di�cult to achieve from a second-order
discretization alone.

Besides the discretization-order switch, we employ the traditional continua-
tion device of false timestepping when pursuing steady states, as in this paper.
(False timestepping may also be employed as a subiteration, if necessary, in
transient problems.) The timestep is advanced towards in�nity by a power-law
variation of the switched evolution/relaxation (SER) heuristic of Van Leer &
Mulder [11]. To be speci�c, within each of the �rst-order and second-order
phases of computation, we adjust the timestep according to

N `
CFL = N0

CFL

�
kf(u0)k

kf(u`�1)k

�p

;

where p is normally unity, but damped down to 0.75 for robustness in cases in
which shocks are expected to appear.

The overall solution process for nonlinear steady states has been found to
be competitive with FAS multigrid in execution time when compared in speci�c
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two-dimensional external Euler 
ow contexts on vector computers [10]. We have
not yet compared 	NKS to FAS multigrid in the parallel three-dimensional
context, but we know that, at a minimum, nonlinear grid sequencing is required
for pseudo-transient NKS to scale acceptably as the mesh is re�ned.

4 Comparisons

In this paper, we present three sets of comparisons: (1) the parallel scalability
of a transonic compressible 
ow problem on three di�erent parallel machines
(Cray T3E, SGI Origin, IBM SP), (2) the parallel scalability of four di�erent

ow problems on an Origin, and (3) the cache e�ciency of two di�erent 
ow
problems on �ve common sequential processors. The �rst set of experiments
exposes relative performance advantages of important machines. The second
set exposes the relative di�culties of solving di�erent regimes of 
ow. We con-
sider incompressible, compressible subsonic, transonic, and mildly supersonic

ows. The grid and geometry are held �xed. (This is somewhat unrealistic,
since no special care is given to adaptively resolve shocks when they appear,
but we are primarily interested in the algebraic aspects of the problem, not the
discretization aspects.) The third set of experiments illustrates the sensitiv-
ity of per-processor 
oating-point performance to cache organization, and the
organization of the \busy" data structures in the 
ow code.

Incompressible (Mach zero) 
ow is relevant to low velocity portions of 
ight
envelope (and to automotive speeds), where the incompressible formulation of-
fers considerable savings in storage and execution time over the compressible
formulation while capturing the physics accurately for Mach numbers up to
approximately 0.3. Our transonic (Mach 0.839) 
ow is a classical � = 3:06�

\lambda shock" test case. This is relevant to airliner cruise conditions. Runs at
Mach 0.3 verify the adequacy of the incompressible model and help interpolate
trends. Runs at Mach 1.2 explore changing nonlinear and linear character of
the discretized system.

4.1 Scalability Across Platforms

Cross-platform performance comparisons of a medium-size wing problem, closed
with a symmetry plane inboard, are given in Table 1. The 16-processor run
has approximately 22,369 vertices per processor; the 80-processor run has ap-
proximately 4,473. Decreasing volume-to-surface ratios in the subdomains and
increasing depth of the global reduction spanning tree of the processors lead to
gradually decaying e�ciency. The convergence rate, in terms of pseudo-time
steps to achieve a relative reduction of steady-state residual norm of 10�12, is
not much a�ected by increased partitioning. Exactly one Newton iteration is
performed on each pseudo-time step, and the Krylov space restart size is 30, with
a maximum of one restart. The slight di�erences in the numbers of timesteps
arise from slightly di�erent 
oating point arithmetic and/or noncommutative
summation of global inner products, which lead to slightly di�erent trajectories
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Table 1: Transonic 
ow over M6 wing; �xed-size grid of 357,900 vertices.

No. Cray T3E IBM SP SGI Origin
Procs. Steps Time E�. Steps Time E�. Steps Time E�.

16 55 2406s | 55 1920s | 55 1616s |
32 57 1331s .90 57 1100s .87 56 862s .94
48 57 912s .88 57 771s .83 56 618s .87
64 57 700s .86 56 587s .82 57 493s .82
80 57 577s .83 59 548s .70 57 420s .77

to the same steady state. The Origin is the fastest per processor (achieving
the highest percentage of peak sequentially). The T3E has the best scalability,
due to its torus network, which is fast compared to sequential processor perfor-
mance. The full problem �ts on smaller numbers of processors on the Origin,
but \false" superunitary parallel scalability results due to cache-thrashing when
too many vertices are assigned to a processor; 5K to 20K vertices per processor
is reasonable for this code.

4.2 Scalability Across Flow Regimes

Trans-Mach convergence comparisons of the same problem are given in Table 2.
Here e�ciencies are normalized by the number of timesteps, to factor conver-
gence degradation out of the performance picture and measure implementation
factors alone (though convergence degradation with increasing granularity is
modest). The number of steps increases dramatically with the nonlinearity of
the 
ow, as Mach rises; however, the linear work per step decreases on aver-
age. Reasons for this include: more steps spent in the cheaper, �rst-order dis-
cretization phase of the continuation process, smaller CFL in early steps, and
the increased hyperbolicity of the 
ow. The compressible Jacobian is far more
complex to evaluate, but it also concentrates locality, achieving much higher
computational rates than the corresponding incompressible Jacobian.

4.3 Memory Hierarchy Aspects

As observed in [9] for the same unstructured 
ow code, data structure storage
patterns for primary and auxiliary �elds should adapt to hierarchical memory
through: (1) interlacing, (2) blocking of degrees of freedom (DOFs) that are
de�ned at the same point in point-block operations, and reordering (3) of edges
for reuse of vertex data. Blocking allows e�cient use of registers by reducing
integer overhead and permitting hardwired unrolling of dense inner loops. Inter-
lacing allows e�cient reuse of cached operands, since components at the same
point interact more intensely with each other than do the same �elds at other
points. Similarly, edge-reordering for vertex reuse re
ects the fact that nearby
points interact more intensely than distant points.
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Table 2: Flow over M6 wing on SGI Origin; �xed-size grid of 357,900 vertices
(1,431,600 DOFs incompressible, 1,789,500 DOFs compressible).

No. Time per Per-Step Impl. FcnEval JacEval
Procs. Steps Step Speedup E�. M
op/s M
op/s

Incompressible (4� 4 blocks)

16 19 41.6s | | 2,630 359
32 19 20.3s 2.05 1.02 5,366 736
48 21 14.1s 2.95 0.98 7,938 1,080
64 21 11.2s 3.71 0.93 10,545 1,398
80 21 10.1s 4.13 0.83 11,661 1,592

Subsonic (Mach 0.30) (5� 5 blocks)

16 17 55.4s | | 2,002 2,698
32 19 29.8s 1.86 0.93 3,921 5,214
48 19 20.5s 2.71 0.90 5,879 7,770
64 20 14.3s 3.88 0.97 8,180 10,743
80 20 12.7s 4.36 0.87 9,452 12,485

Transonic (Mach 0.84) (5� 5 blocks)

16 55 29.4s | | 2,009 2,736
32 56 15.4s 1.91 0.95 4,145 5,437
48 56 11.0s 2.66 0.89 5,942 7,961
64 57 8.7s 3.39 0.85 8,103 10,531
80 57 7.4s 3.99 0.80 9,856 12,774

Supersonic (Mach 1.20) (5� 5 blocks)

16 80 19.2s | | 2,025 2,679
32 81 10.6s 1.81 0.90 3,906 5,275
48 81 7.1s 2.72 0.91 6,140 7,961
64 82 5.8s 3.31 0.83 7,957 10,398
80 80 4.6s 4.20 0.84 9,940 12,889

Table 3 illustrates these three e�ects on �ve processors with di�erent cache
(and processor) parameters. The original ordering is the native FUN3D order-
ing, which is based on vector register-oriented multicoloring. The combination
of the three e�ects can enhance overall execution time by a factor of 2.5 on the
Pentium to as much as 7.5 on the Power2. We are currently studying hardware
counter pro�les of similar runs to build more detailed causal explanations.

5 Conclusions and Future Directions

Unstructured implicit CFD solvers are amenable to scalable implementation,
but careful tuning is needed to obtain the best product of per-processor e�-
ciency and parallel e�ciency. We [9] and others have already solved problems
of millions of vertices on hundreds of processors at rates in the tens of giga
op/s,
and we believe such performance is extensible, with further e�ort, to the ter-
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a
op/s regime. In the future, we hope to enhance per-processor performance
through improved spatial and temporal locality. We also hope to enhance par-
allel e�ciency through algorithms that synchronize less frequently, and through
multiobjective partitioning, which equidistributes communication work as well
as computational work.
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Table 3: Flow over M6 wing; �xed-size grid of 22,677 vertices (90,708 DOFs in-
compressible; 113,385 DOFs compressible). Activation of a layout enhancement
is indicated by a \�" in the corresponding column. Improvement ratios are
averages over the entire code; di�erent subroutines bene�t to di�erent degrees.
The F77 and C compilers are the vendor's in each case, except for the Pentium,
where versions 5.0 of Visual Fortran and C++ are used.

Enhancements Results

Field Structural Edge Incompressible Compressible
Interlacing Blocking Reordering Time/Step Ratio Time/Step Ratio

Alpha 21164, 450MHz, cache: 8KB data / 8KB instr/ 96KB L2

153.2s | 216.8s |

� 67.8s 2.26 93.8s 2.31

� � 56.0s 2.74 72.1s 3.00

� 55.7s 2.75 91.0s 2.38

� � 38.9s 3.94 58.3s 3.72

� � � 29.2s 5.24 40.8s 5.31

IBM P2SC (\thin"), 120MHz, cache: 128KB data / 32 KB instr

165.7s | 237.6s |

� 62.1s 2.67 85.8s 2.77

� � 50.0s 3.31 65.7s 3.62

� 43.3s 3.82 67.5s 3.52

� � 33.5s 4.95 50.8s 4.68

� � � 22.1s 7.51 32.2s 7.37

MIPS R10000, 250MHz, cache: 32KB data / 32KB instr / 4MB L2

83.6s | 140.0s |

� 36.1s 2.31 57.5s 2.44

� � 29.0s 2.88 43.1s 3.25

� 29.2s 2.86 59.1s 2.37

� � 23.4s 3.57 35.7s 3.92

� � � 16.9s 4.96 24.5s 5.71

Intel Pentium II (NT), 400MHz, cache: 16KB data / 16KB instr / 512KB L2

70.3s | 108.5s |

� 44.1s 1.59 70.1s 1.55

� � 37.4s 1.88 57.3s 1.89

� 43.8s 1.61 72.4s 1.50

� � 34.0s 2.07 54.5s 1.99

� � � 27.6s 2.55 43.2s 2.51

Sun UltraSPARC II, 300MHz, cache: 2MB external

120.5s | 185.0s |

� 61.6s 1.96 86.3s 2.14

� � 50.8s 2.37 70.9s 2.61

� 51.0s 2.36 103.1s 1.79

� � 37.8s 3.19 55.7s 3.32

� � � 28.5s 4.22 42.1s 4.39
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