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Abstract

This paper demonstrates how interior-point methods can use multiple processors efficiently to solve
large semidefinite programs that arise in VLSI design, control theory, and graph coloring. Previous
implementations of these methods have been restricted to a single processor. By computing and solving
the Schur complement matrix in parallel, multiple processors enable the faster solution of medium and
large problems. The dual-scaling algorithm for semidefinite programming was adapted to a distributed-
memory environment and used to solve medium and large problems than faster than could previously be
solved by interior-point algorithms. Three criteria that influence the parallel scalability of the solver are
identified. Numerical results show that on problems of appropriate size and structure, the implementation
of an interior-point method exhibits good scalability on parallel architectures.

Key words. Semidefinite programming, numerical optimization, parallel computing, high-performance
computing.



1 Introduction

Semidefinite programming (SDP) has been an actively studied area of numerical optimization. One reason
for the high level of interest is that applications of this class of optimization problem have been found
in fields as diverse as structural design, control theory, and combinatorial optimization. A second reason
is that although interior-point methods adopted from linear programming have proven reliable on small
and medium-sized semidefinite programs, the computational and storage demands of these methods have
exhausted the resources of most computers and limited the size of problems that can be solved. Much of
the research in this field focuses on solving medium-scale problems more quickly and on solving large-scale
problems by any means possible.

The positive semidefinite program in standard form is
(SDP) inf CeX subjectto A, ¢ X =b;, i=1,....m, XeK

where C, A; € R™*™ are given symmetric matrices, b € R™ is a given vector, and K = K1 Ko ® - - - ® K. is
the cone where the variable X resides. Furthermore, K;, j =1,..., is the set of n; X n; symmetric positive
semidefinite matrices such that n; > 0 and Z;Zl n; = n. The notation X = 0 means that X is positive
semidefinite. We use the notation A > (>=)B to denote that A — B is positive (semi)definite. The operation
CeX =trCTX = ij CjrXjr. We assume the matrices A; are linearly independent. Matrices X that
satisfy the constraints are called feasible, while the others are called infeasible.

The dual of (SDP) can be written:

(DSP)  sup b"y  subject to » yidi+S=C, SEK.

i=1

Variables (y,S) that satisfy the constraints are called feasible. It is well known that if both SDP or DSP
have feasible points such that the variable matrices are positive definite, the optimal objective values of these
two problems are equal.

Various approaches have been tried to solve these positive semidefinite programs. These approaches
include primal-dual interior-point methods (see Todd [23] for a survey) and a dual-scaling interior-point
method of Benson, Ye, and Zhang [7]. Other approaches include the partial Lagrangian approach of Helmberg
and Rendl [17] that uses a spectral bundle method to solve the nondifferentiable convex program, a penalty
approach by Koc¢vara and Stingl [19], low-rank factorizations of Burer and Monteiro [10], and transformation
to a constrained nonlinear program proposed by Burer and Monteiro [9] and Burer, Monteiro, and Zhang
[11]. A discussion and comparison of these methods can be found in [24].

Some of these methods are particularly well suited for large-scale problems [21]. In particular, the spec-
tral bundle method and low rank factorizations have solved solved some large instances of SDP. However,
these methods lack polynomial convergence in theory and sometimes exhibit slow convergence in practice.
Toh and Kojima [25] solved some very large semidefinite programs with a primal-dual method. The use of
an iterative linear solver enabled Toh and Kojima to compute a step direction without storing the Schur
complement matrix in memory. The examples used to test their implementation will also be used in this
work to demonstrate the success of the dual-scaling method in parallel. Others who have used iterative
solvers and preconditioners for SDP include Choi and Ye [12] and Lin and Saigal [20]. None of the methods



mentioned above have considered the use of parallel processors when implementing methods to solve semidef-
inite programs. (After the initial submission of this paper, Yamashita, Fujisawa, and Kojima[28] presented
a parallel implementation of a primal-dual interior point method.)

This paper addresses issues that arise in the parallel implementation and performance of interior-point
methods for positive semidefinite programming. Section 2 briefly describes the dual-scaling algorithm. Sec-
tion 3 shows how the algorithm can be implemented in parallel using either an iterative or direct linear solver.
Section 4 presents numerical results that show the implementation exhibit good parallel efficiency on a set of
large instances of SDP. Section 5 presents results on a modification of the implementation that reduces the
memory requirements by solving a linear system without storing the entire matrix. The discussion focuses
on the dual-scaling algorithm, but many of the issues also apply to primal-dual methods.

2 Dual-Scaling Algorithm

Fundamental to interior-point methods is the concept of the central path. This path consists of feasible
points X and (y,S) such that XS = 4l for ji > 0. Feasible points such that XS = 0 constitute a solution
to the semidefinite program. Following conventional notations, let

AX:[Al.X Am.X ]T and ATy:ZAzyz

=1

Given a dual point (y, S) such that ATy +S —C = R (R is the residual matrix), S > 0, a feasible matrix
X, and a barrier parameter i > 0, each iteration of the dual-scaling algorithm linearizes the equations

AX =1, Aly 4+ 5 =C, AS™t =X,

and solves the Schur complement of

A(AX) =b— AX, AT (Ay) + AS = —R, ASTIASST 4+ AX = pST! - X,
given by
S71A S Ted; - ST1AS e A, ,
: : Ay=—-b—A(S™') — A(ST'RS™). (1)
S71A,S 1 eA; - STIA,SleA, K

The solution Ay is used to compute AS = —ATAy — R and
X(S, 1) = pS™' — pSTtASST?

that satisfies the constraints AX (S, i) = b. Since the X variable does not appear in (1), it does not have
to be given to begin the algorithm and it does not have to be computed at each iteration. For notational
convenience, we denote M to be matrix on the left-hand side of (1). A more detailed explanation and
derivation of the algorithm can be found in [7] and [29].



Computing the matrix M in (1) and solving the equations are the two most computationally expensive
parts of the algorithm. For arbitrary matrices 4; and C, (1) can be computed by using O(n3m + n?m?)
operations and solved by using O(m?) operations, although sparsity in the data may reduce the cost of the
former part. The remaining operations include computing AS, the step length, and S, which are relatively
inexpensive, and the factorization of S. This algorithm does not require the computation of X (S, i) at each
iteration. Primal-dual methods use a symmetric linearization of the equation XS = il and form a Schur
complement system with a similar form and complexity as (1).

With a feasible dual starting point and appropriate choices for fi and step length, convergence results in
[5, 7, 29] show that either the new dual point (y,S) or the new primal point X is feasible and reduces the
Tanabe-Todd-Ye primal-dual potential function

U(X,S)=pln(X eS)—Indet X —Indet S

enough to achieve linear convergence.

3 PDSDP

The DSDP4 [5, 6] software package served as the basis for a parallel implementation of the dual-scaling
algorithm. The parallel implementation of the dual-scaling method, called PDSDP, reads the problem data
and stores it on each processor in an MPI [16] communicator. With the data, each processor computes and
factors its own copy of the dual matrix S. The matrix and vectors in (1) are distributed over the processors.
The matrix M and linear solver associated with it in DSDP4 were replaced by distributed matrix structures
and parallel linear solvers. A parallel implementation of both the preconditioned conjugate gradient method
and the Cholesky factorization was used. Collectively, each of the processors in the communicator computes
(1) and solves the equations in parallel using one of these two linear solvers. After replacing these data
structures, only a few changes in the software were needed to solve semidefinite programs in parallel. Figure
1 shows what data structures in PDSDP were allocated on each processor in a communicator of size 4.

The iterative solver came from PETSc [2][3][4]. Among the tools in PETSc are distributed vectors,
distributed matrix structures, and the preconditioned conjugate gradient method for linear equations. For
dense matrices, the preconditioner is simply the diagonal of the matrix. Scalability in the solver is achieved by
applying the matrix-vector product, vectors sums, and vector inner products in parallel over the distributed
vector and matrix objects. The vector Ay in Figure 1 has a darker shade because the solution to the linear
system is computed collectively by all processors used by the linear solver. PETSc assumes a distributed-
memory parallel environment and uses MPI for all message passing between processors.

The rows of the PETSc matrix are distributed over the processors as shown in Figure 1. There is no
interleaving of rows among processors, and there is no distinction between the lower and upper triangular
portions of matrices to identify symmetry. Since the matrix M is symmetric, only half of the nondiagonal
elements need be explicitly computed, but these elements need to be assembled into two places in the
matrix. Figure 1 also shows which elements of M are computed by each processor: each processor computes
the shaded elements of its rows of the matrix M. This pattern was chosen to evenly distribute the number
of elements of M computed on each row and each processor. These elements are inserted in the appropriate
places in the matrix, a process that may require sending this information to another processor. In PDSDP,



Proc. 1

Proc. 2 L =

Proc. 3

Proc. 4

M Ay ASH  C A

Figure 1: Distribution of data structures and computations over multiple processors

each processor computes the designated elements of one row in the matrix, sends relevant information to
other processors, and assembles the data into the matrix. This procedure repeats until the entire matrix has
been assembled.

Since each element of M has the form M; ; = (S71A;S7') e A;, all elements of M; ; (j =1,...,m) in
the ith row (or column) share a common matrix S~!A4;S~1. This matrix product can be a significant cost,
especially when repeated for each A;. In some applications, this cost exceeds the cost of computing the
inner product of it with the data matrices 4;. The vectors AS~! and A(ST1RS™!) are also distributed
over the processors, and ith element of these vectors is a byproduct of computing (S~*A4;S~!) e 4;. PDSDP
distributes this cost over all the processors, and it is very efficient and scalable when the rows are well
distributed over the processor and the work to compute each row of the matrix is nearly identical.

These conditions are satisfied for the semidefinite relaxation of the maximum cut problem [15], which
can be stated as follows:

maximize C e X subject to X;;=1,¢=1,...,n, X >=0.

In this problem, each constraint matrix A; has one nonzero element. This structure significantly reduces the
effort in computing M and distributes the computations among the processors evenly.

These conditions are not as well satisfied for the Lovdsz 6 problem [18]. Given an undirected graph
G = (V, E), the Lovdsz number is the optimal objective value to the semidefinite program

maximize 1e X subject to X;; = X;,;, =0 V(v;,v;) € E, trace(X)=1, X >0.

In this application, one constraint matrix is the identity matrix, which has n nonzeros and full rank. The
other constraints have only two nonzeros. The row of M corresponding to the identity constraint matrix
requires more floating point operations than do the other rows, hence reducing the scalability of computing
M. While one can customize the calculation of M for each application to improve load balancing, this
procedure applies in a more general context.



Another class of applications of SDP arise from control theory [13, 27]. One application in this class
considers matrices A, B,C € R"*", possibly unsymmetric, and asks for a symmetric matrix P € R"*" and
diagonal matrix D € R"*" that solves the following problem:

maximize ¢
—PA—-ATP_-CTDC -tI -PB

~BTP p-u =% P-I=0

subject to
To put this problem into standard form (DSP), we set the left-hand side of the two inequality constraints
equal to the positive semidefinite variable matrices S; and S» and let the vector y € R7("+1/2+7+1 represent
the variables [Py 1,..., Py, Po2,.o.sPay, ... Pry, Di1,..., Dy, #]T. In this formulation, there are two
blocks in the constraint and variable matrices such that ny = 2r and ny = r.

In the first block of these problems, the constraint matrices corresponding to D;; have r? + 1 nonzeros
and a rank of r 4 1; constraint matrices corresponding to P j, ¢ # j, have 8r — 4 nonzeros and rank 4;
constraint matrices corresponding to F;; have 4r — 1 nonzeros and rank two; and the constraint matrix
corresponding to t has 2r nonzeros and rank 2r. In the second block, constraint matrices corresponding to
P; ; have one nonzero and rank one; constraint matrices corresponding to P; ;, i # j, have two nonzeros and
rank two; and the other constraint matrices have no nonzeros. Balancing constraints of such varied form is
very difficult. Although constraints of each type could be distributed over each processor in an equitable
manner, no attempt was made to alter the ordering used in the SDPA files that contain these examples [8].

The three step directions associated with the right-hand sides of (1) are computed separately by using
the conjugate gradient method, a diagonal preconditioner, and a relative convergence tolerance of 10710, A
topic for continued research is whether an adaptive convergence criterion for this algorithm may be effective.

The parallel Cholesky solver is from PLAPACK [1][26]. As shown in Figure 2(b), this implementation
operates on only half of the matrix and partitions it over the processors using a two-dimensional block cyclic
structure. The blocking parameter in PLAPACK determines how many rows and columns are in each block.
Larger block sizes can be faster and reduce the overhead of passing messages, but smaller block sizes balance
the work among the processors more equitably. In Figure 2(b), the blocking parameter is 2, but PDSDP
used a blocking parameter of 32 after experimenting with several choices.

When using the PLAPACK Cholesky solver, the elements of M were computed and assembled into the
matrix using a pattern consistent with its block cyclic structure. For efficiency reasons discussed earlier, the
elements of one row are computed by the same processor. Figure 2(a) shows a 12 x 12 matrix and labels the
rows that each processor computed. The elements of each row are then inserted into the matrix, a process
that may require passing messages. To reduce the size and complexity of these messages, these elements are
computed by one of the processors on which the row resides. In Figure 2(a), rows 1, 2, 5, 6, 9, and 10 reside
on processors 1 and 3. The elements of these rows will also be computed by processors 1 and 3. These six
rows are assigned to the two processors in a cyclic manner to improve the load distribution. The remaining
rows are assigned to processors 2 and 4 in a similar fashion. The elements A; ¢ S~! and A; ¢ (S*RS™1) in
the vectors on the right-hand side of (1) were computed by the same processor that computed the diagonal
element M, ;.

One advantage of the row cyclic structure used in PLAPACK over the noncyclic structure is that it can
improve the load distribution an the processors. There is a natural tendency on the part of application
developers to cluster related sets of variables and constraints. In the problem from control theory, for



example, the data files ordered the constraints corresponding to P; ; together and constraints corresponding
to D;; together. To balance the load among the processors, each group of constraints should also be well
balanced among the processors. The row cyclic distribution accomplished this task automatically.
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Figure 2: Parallel distribution using PLAPACK on a 12 x 12 matrix and four processors

After (1) is solved by using one of the two parallel solvers, the step directions Ay are broadcast to
the other processors in the communicator, so each processor has access to each element in vector. With
these solutions, each processor calculates a suitable step-length, updates the dual matrix .S, factors it, and
computes an appropriate barrier parameter fi for the next iteration. These operations are performed serially
on each processor for several reasons. First, as shown in the following sections, these operations do not
consume a large portion of the overall computation time. The Lovész € and control problems, for instance,
n < m and the cost of computing S and factoring it is relatively inexpensive compared to the cost of
computing M and solving (1). In the case of the maximum cut problem, sparsity in the dual matrix may
drastically reduce the time needed to factor it. A second reason for not distributing these computations
among the processors is that the factored form of S is needed on each processor to compute M. The cost
of broadcasting a distributed factorization of S to each processor would undermine much of the benefit of
parallelizing this operation. Nonetheless, the cost of these operations, relative to the other parts of the
algorithm, significantly affects on the overall scalability of PDSDP.

4 Numerical Results

The performance of the PDSDP software package was tested on eleven medium and large problems from
three applications. The three applications — maximum cut relaxation, Lovész 6, and control theory — were



chosen because large instances of them can be found in the standard test suites and they have different
structures that affect the performance of the solver. These applications and their structure were described
in the preceding section. The problems maxG51, maxG55, and maxG60 are the three largest instances of the
maximum cut problem in the SDPLIB test suite [8] and are formulated from graphs with 1000, 5000, and
7000 vertices, respectively. The problems control10 and controlll are the largest two control problems in
the SDPLIB test suite. Two of the six instances of the Lovasz 6 problem are from the SDPLIB test suite,
while the others were generated by Toh and Kojima [25].

The data in Tables 1 and 2 show the seconds required to solve the test problems on 1, 2, 4, 8, 16, and
32 processors. For each problem, the first row shows the seconds required to compute (1) and assemble the
matrix, given a dual matrix S in factored form. The second row in Table 1 indicates the seconds spent solving
(1) using the conjugate gradient method, and the second row in Table 2 indicates the time spent factoring
the matrix M and solving (1) directly. The third row indicates the total seconds required by PDSDP to solve
the problem. Tables 1 and 2 also list the dimensions of each problem and number of optimization iterations
required to solve it. Problem instances that created memory requirements exceeding the resources of the
machine are denoted by mm. The dual solutions are feasible and C ¢ X — b7y < 1076 x (|pTy| +1). Although
not part of the termination criteria, ||[AX — b|| < 10~® in most solutions. The software has been compiled
and tested on a cluster of 2.4 GHz Pentium Xeon processors. Each processor has at least 1 GB of RAM, and
they are connected by a Myrinet 2000 network. The operating system is Linux, and the code was compiled
using the GNU Version 2.96. In this section, the parallel efficiency on p processors is defined to be the ratio
of the wall clock time using a single processor and p times the wall clock time using p processors.

The data in Tables 1 and 2 indicate that the direct solver was much more effective than the iterative
solver on the control and 6 problems. The time required to solve the matrices using the direct method was
often an order of magnitude less that the time needed by the iterative solver. In the case of theta6, PDSPD
with the iterative solver needed 4,944 seconds on one processor and 303 seconds on 32 processors. Using a
direct solver, PDSDP needed only 455 and 51 seconds to find a solution. The efficiency of iterative solvers
often depends on good conditioning in the matrix. As noted by many others [12, 22, 25], the matrices are
not well conditioned in later iterations and require better preconditioners.

Nonetheless, the performance of PDSDP with the iterative solver was competitive on the maximum cut
problems. In fact, when more than one processor was used, the iterative solver was faster than the direct
solver. On one processor, when only moderate precision was required, the iterative solver also performed
better. Figure 3 shows the wall clock time of PDSDP using a single processor to solve maxG51. The vertical
bars indicate the duality gap at selected iterations. If the application requires a solution whose objective is
within only one of the solution, the iterative solver is a good choice. In the context of a branch-and-bound
algorithm where the edges of a graph have integer values, this precision may be sufficient. On the control
and 6 problems, the initial iterations of PDSDP were also cheaper using the iterative solver, but the direct
solver began to perform better very early in the optimization process.

The parallel efficiency of both linear solvers was influenced most significantly by the number of constraints,
m, in the problem. The dense structure of M can be found in each problem, and as expected, the linear
solver scaled better on larger problems than on smaller problems. On 32 processors, the parallel efficiency of
the Cholesky ranged from 6.1% on maxG11 to 58% on theta62, while the parallel efficiency of the iterative
solver ranged from 17% on maxG11 to 86% on thetas.

A second factor that affected the parallel scalability of PDSDP was the structure of the constraint



Table 1: Performance and scalability of PDSDP when computing the elements of M, solving M using the
conjugate gradient method, and solving the SDP

Problem Iter. Number of Processors and Seconds
Name n m 1 2 4 8 16 32
maxG51 1000 1000| 26 |Elements| 19.3 12.7 6.86 3.48 2.32 1.22
CG 29.2 14.0 126 854 6.31 5.44
Total 53.7 31.7 246 169 13.6 11.6
maxG55 5000 5000| 27 |Elements| 2275 1200 610 309 157 107
CG 2568 1127 558 289 206 140
Total 5062 2539 1378 809 572 455
maxG60 7000 7000| 30 |Elements| 4745 2514 1280 644 327 169
CG 6028 2271 1166 586 367 281
Total 11270 5277 2921 1715 1203 954
controll0 150 1326| 73 |Elements| 1143 720 414 222 118  58.6
CG 758 396 278 199 144 124
Total 1988 1202 778 451 350 215
controlll 165 1596| 79 |Elements| 1913 1283 737 381 207 111
CcG 1402 779 440 323 232 188
Total 3451 2194 1310 838 568 429
thetad 200 1949| 19 |Elements| 20.5 199 13.1 6.86 4.36 3.26
CcG 480 189 105 87.0 60.1 50.5
Total 503 211 120 95.7 66.3 56.2
thetad?2 200 5986 | 18 |Elements| 182 156 104 59.1 30.8 20.9
CcG 9443 4132 2370 1103 623 484
Total 9638 4297 2482 1170 659 511
theta6 300 4375| 21 |Elements| 142 131 76.4 424 255 174
CcG 4791 2201 943 490 376 278
Total 4944 2341 1028 549 408 303
theta62 300 23390 | 19 | Elements 527 319 160 94.0
CcG 14091 9766 4686 2275
Total mm mm 14650 10110 4866 2386
theta8 400 7904 | 20 |Elements| 508 424 250 140 79 52
CG 27082 9433 5363 2613 1171 985
Total 27620 99390 5632 2770 1266 1053
theta82 400 23872 | 20 | Elements 13861 318
CcG 25425 10792
Total mm mm mm mm 39360 11170




Table 2: Performance and scalability of PDSDP when computing the elements of M, solving M using a
Cholesky factorization, and solving the SDP

Problem Tter. Number of Processors and Seconds
Name n m 1 2 4 8 16 32
maxG51 1000 1000| 28 |[Elements| 22.2 11.2 7.1 3.8 22 14
Cholesky | 10.9 7.4 5.4 4.8 4.6 5.2
Total 37.7 231 169 13.1 11.2 11.6
maxG55 5000 5000| 28 |Elements| 2562 1253 923 464 221 124
Cholesky | 623 387 219 140 87.2 65.9
Total 3607 2011 1515 983 681 565
maxG60 7000 7000| 30 |Elements| 5051 2499 1965 971 621 365
Cholesky | 1864 1022 563 338 214 148
Total 7609 4237 3253 2140 1529 1226
controll0 150 1326 | 63 |Elements| 1026 521 313 186 95.6 52.5
Cholesky | 47.6 31.5 20.2 17.5 16.4 16.5
Total 1140 601 376 235 144 99.6
controlll 165 1596 | 72 |Elements| 1924 973 585 339 163 94.0
Cholesky | 89.3 58.2 34.6 29.5 24.5 24.8
Total 2139 1116 682 419 230 158
thetad 200 1949 | 19 |Elements| 20.3 10.2 &8.38 5.01 3.41 2.28
Cholesky | 39.1 25.1 14.8 10.8 8.66 8.48
Total 60.6 36.5 24.3 17.1 13.3 12.0
thetad2 200 5986 | 19 |Elements| 124 62.2 63.4 35.8 21.4 12.7
Cholesky | 738 426 239 145 89.9 63.5
Total 865 491 307 185 114 794
theta6 300 4375| 20 |Elements| 121 59.4 51.5 29.2 18.3 11.3
Cholesky | 328 197 113 72.6 45.9 35.0
Total 455 261 170 106 70.6 51.4
theta62 300 13390| 20 |Elements| 3142 347 366 200 116 62.7
Cholesky | 7829 4058 2104 1178 664 422
Total 11018 4425 2489 1397 798 503
theta8 400 7904 | 21 |Elements| 432 225 216 110 66.1 37.5
Cholesky | 1756 994 561 318 190 133

Total 2204 1236 795 444 271 186
theta82 400 23872 | 20 |Elements 1224 679 399 209
Cholesky 11383 5767 3178 1810
Total mm mm 12655 6493 3614 2066
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Iterative

Figure 3: Wall clock time at each iteration of PDSDP to solve maxG51 using one processor. The times for
both versions are shown, and the vertical bars indicate the duality gap at selected iterations.

matrices. Since the constraint matrices in the maximum cut and 6 problems have a simple structure, the
elements of M in these applications are very cheap to compute. This cost was distributed over the processors,
but inserting these elements into M incurred the overhead of passing messages between processors. This
overhead had less impact on the control problems because the constraint matrices in this application are
more dense. The increased cost of computing each element of M reduced the percentage of time spent
passing messages. Using the data in Table 2, the computation and assembly of M for control1ll, which has
only 1526 constraints in standard form, had a parallel efficiency of 64% on 32 processors. This efficiency was
much higher than the 28% achieved on theta4, which is a larger SDP. The parallel efficiency on maxG55 was
also 64%, despite having three times more constraints than the controlll and a structure that allows for
excellent load-balancing. Similar efficiency numbers concerning the compuation and assembly of the PETSc
matrix can be found in Table 1.

A third issue that affected the scalability of the solver was the ratio of n and m. The computation and
factorization of S was computed in serial by each processor. When n < m, the cost of these operations was
very low. On the control and theta problems, the factorizations used only 1% of the overall time PDSDP
needed to solve the problem on one processor. On the maximum cut problem, however, this percentage
increased to as much as 15% and severely limited the overall scalability of PDSDP. Using the data in Table
2, the overall parallel scalability of PDSDP maxG55 was 20%. The parallel scalability of theta6, which
has fewer constraints and worse load balancing, the overall parallel efficiency was 28%. The overall parallel
scalability of PDSDP on controlll was over 42% despite being much smaller in size. The overall efficiencies
were even better on fewer processors and would improve for larger instances of these applications.

The parallel linear solver not only efficiently reduced the time needed to solve medium and large instances
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of SDP, but it also allowed the interior-point solver to compute solutions to larger problems. The biggest
memory requirement of interior-point methods for semidefinite programs usually arises from (1), which can
be distributed over multiple processors. The linear system in theta82 can be distributed and solved on four
processors, but not on a single processor because of excessive memory requirements.

5 Matrix-Free Conjugate Gradient Method

The time needed to solve large instances of SDP may frustrate some application developers, but it is the
high memory requirements of interior-point methods that have actually restricted the size of problems that
can be solved. Distributing M across processors allows larger problems to be solved, but even this technique
may not be sufficient for problems with tens of thousands or hundred of thousands of constraints. Several
techniques mentioned in the introduction have been developed to address large problems.

Since iterative linear solvers require only the product of the matrix with a vector, the entire matrix M
does not have to be stored. Efficient routines that evaluate the matrix-vector product can be implemented
without having to recompute the matrix at each iteration. For any vector v € R™, Mv = A(S™1WS1),
where W = ATv. The cost of this product is up to an order of magnitude less than the cost of computing the
entire matrix M. Choi and Ye have used this approach on maximum cut problems[12] and Toh and Kojima
[25] have explored similar ideas for primal-dual methods in conjunction with a reduced space preconditioner.

In this implementation, the elements of the matrix-vector product are distributed over the processors.
Each processor computes the product of the vector and a set of rows. Balancing the constraints across rows
to distribute the work evenly is very important here because the routine is repeated at every conjugate
gradient iteration. There can be thousands of these iterations in every iteration of PDSDP, so custom
routines that compute this product were written for the maximum cut and 6 problems. The implementation
of these routines was similar to one described in [14], but they were customized for these problems and the
data structures in PDSDP. The constraints in the maximum cut problem are identical, which made the task
easy. The 6 problems have only one odd constraint, and the cost of computing the product of the vector
with the corresponding row exceeds the cost of its product with other rows. Since the number of constraints
cannot always be divided evenly over the processors, this constraint was placed on one of the processors
with the fewest number of constraints to partially compensate for the extra work. The simplicity of these
constraints means that the cost of computing the matrix-vector product will not be much more expensive
than multiplying a previously computed matrix by a vector.

Table 3 shows the performance of PDSDP using the matrix-free conjugate gradient method on several
maximum cut and theta problems. The times indicate the number of seconds required during the entire
optimization process. Solutions satisfied the feasibility constraints and C e X — by < 1076 x (|bTy| + 1).

Several observations can be made by contrasting the data in Tables 1 and 3. First, its performance on
the maximum cut problem was very competitive with the version of PDSDP that stored the matrix. The
difference in times is less than a factor of two and indicates that this technique may also be effective for larger
instances of the maximum cut problem. The differences in the two versions on the # problem are much more
significant. The matrix-free version was slower by about an order of magnitude on these problems. These
cost of these problems is dominated by the the iterative solver. While early iterations of the PDSDP on
the maximum cut problems needed only a few conjugate gradient iterations, the 6 problems required many
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of these iterations very early in the process. Nakata, Fujisawa, and Kojima [22] improved the performance
of the conjugate gradient method in primal-dual methods using preconditioners and inexact solutions, and
until these techniques can be utilized in dual step direction, its use on these problems probably will not be
competitive with other solvers.

Nonetheless, the scalability of PDSDP using this technique was better than its scalability using when
storing the entire matrix. On maxG60 for instance, the DPSDP used 11270 seconds to solve the problem on
one processor by storing the matrix and 20420 seconds without storing it. On 32 processors, there was less
difference; PDSDP needed 954 seconds when it stored the matrix and 1250 seconds when it did not store
the matrix. The linear solver dominated the overall computation time, and good parallel efficiency of the
matrix-vector product improved the scalability of the PDSDP. Future work on preconditioners and inexact
solutions should also apply on parallel architectures.

Table 3: Performance and scalability of PDSDP when computing a step direction using the conjugate gradient
method without the matrix M

Problem Tter. Number of Processors and Seconds
Name n m 1 2 4 8 16 32
maxG5b5 5000 5000 | 28 |10530 6106 3181 1737 971 602
maxG51 1000 1000 | 26 123 63.8 35.6 21.5 149 11.3
maxG60 7000 7000 | 30 |20420 10460 5493 3025 1763 1240
thetad 200 1949 | 21 979 491 281 158 105 81.1
thetad2 200 5986 | 18 |45927 27925 11951 6608 4248 2508
theta6 300 4375| 21 | 7853 3722 1995 1127 725 488

6 Conclusion

This paper demonstrates that multiple processors can be used to efficiently solve medium and large semidef-
inite programs. The computations needed to compute the linear systems associated with these problems can
be distributed across the processors very efficiently. Three factors that affected the scalability of the solver
are the number of constraints, the complexity of the constraints, and the ratio of the number of constraints
to the size of the variable matrices. An Increase in any of these three criteria usually improves the scalability
of the solver. Either iterative or direct methods can be used to solve the linear system in parallel. Although
both methods scale very well, the direct method usually performs better and is recommended when the
entire linear system can be stored on the processors. The iterative solver is appropriate for instances where
the linear system is simply too large to store on the available processors, only low or moderate precision
is needed in the solution, or certain classes of SDP like the maximum cut problem. Multiple processors
significantly reduced the time needed to compute solutions, and in the case of very large applications, they
enabled an interior-point algorithm to find solutions that cannot be found using a single processor.
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