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min f(x)
At pointsx* at which the quadratic growth (QG) condition holds
f(z) > f(z*) +ol|lz 2*||* @€ B(a",r)
o Steepest descent{x) — f(x*) Q-linearly.

e Newton method: — x* Q quadratically.
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it f(z)

satisfied?
f(x) > f(z™) + o||x (:)a:*||2, Vee DN B(xz*,r)

may result in more robust algorithms for large-scale programmiing.

analysis assumptions are only marginally satisfied.

o

Do the same good algorithmic properties hold when feasible quadratic growth

. The study of convergence properties under very general conditions

The ability of maintaining a good local rate of convergence when the traditione
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e ¥ — z* R-linearly iflimsup {/||z*F ©z*|| — ¢ < 1.

ot

o I —>:z;”‘QIlnearlylfhmsup”|| F 2] y ¢ < 1.
linearly if l=" " —atll — g,
o 2 — 2* superlinearly iflim sup T2k

o

—z||




o

[

minimize

subject to

flz
hj(x)
g5 ()

N——

x €R", f, g, h are sufficiently smooth.
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L(z,p, )

F@)+ > pihi(z) + ) XNgi()
1=1 =1
= f(z) +p"h(z) + A g(z)
of NLP : A pointx for which there exist € R", u € R" such that
VaoLl(z, A\, pn) =0, h(z)=0, g¢(z)<0, Ng(z)=0

. under certain constraint qualification conditions, the solutidiof

the NLP is a stationary point of the NLP.

o

of a feasibler € R":

A(z) = {j|1 <j <m, g;(z) =0}
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d=<Vf(x) = arg min{%de + Vf(z)td}

. d Is the solution of the Quadratic Program (QP) with
linearized constraints:

minimize Vi(z)Td+ 3d'd
subjectto  h;(z) + Vh;(z)ld =0 i=1,...,r
gj(z) + Vg;(z)''d <0, j=1,...,m.
The QP is feasible whenevens feasible, regardless of the satisfiability of

first-order conditionsd is unique (if QP is feasible) andl= 0 iff x Is a stationary
point of the NLP.
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min f(x) = %

subjectto h(z) = 2°®sin 2
o I = ﬁ k € IN, k # 0 are stationary points accumulating to zero.

e The direction of steepest descent 0. Thus QG alone will not induce
z* — z* = 0, even when started arbitrarily close:td.

e The feasible set needs to satisfy a constraint qualification.

e For steepest descent, the issue of isolated stationary points is fundamental.

o v




-

[

e Linear Independence CQ (LICQ):
Vhi(z*), i=1,...,r andVg,(z*),j € A(z™)
are linearly independend* satisfying KKT is unique.

e Linear Constraint CQA(xz) andg(x) are linear.

e NLP not satisfying LICQ are called
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e Mangasarian Fromowitz CQ (MFCQY h,(z*),1 < j < r are linearly
iIndependent and

Jdp € R* suchthat V h;(z*)'p=0,j=1,...m
Vogi(z*)p <0, i€ Alz*).

e MFCQ holds< The setM (z*) of the multipliers satisfying KKT is bounded.
e The

C = {weR'|Vhi(z") u=01<i<r,
Vgi(z*)'u <0, i € A(z*), Vf(z)lu =0}
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o (second-Order Sufficient Conditions) thét be a strict local
minimum: LICQ and

' Vo L(z*, N, p*)u > 0,Vu € C.
o (in Fiacco): MFCQ and
I(p*, \*) € M(z*), such thatu’ V. L(z*, \*, p*)u > 0, Yu € C.
o : MFCQ and

Yu e C, I(u*, \*) € M(zx"),such that
uTvmﬁ(az*, A ) u > 0.

e |offe SOSC« Quadratic Growth and MFCQ !
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e Traditional SOSC ensures it via implicit function theoreMj{(w*) > () (strict
complementarity).

o : MFCQ and
V(p*, \*) € M(x*), Yu € C ul Vo L(x*, X, p*)u > 0.

The L, penalty function using the steepest descent direction induces Q-linear
convergence ta* (M).

e Quadratic growth + MFCQ=> x* is an isolated stationary point (M)! The
steepest descent direction will not be zerdsifx*, ). Thus linear convergence
may be achievable even in these very general conditions.
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AssumeA(z*) = {1,... ,m}. LICQ and strict complementarity ensure that the
Newton step for the KKT

VL(z,A) =0, g(x)=0

Is well defined neaz*, \*.
Ve L(zF, R Vg(zF) Az | &V L(zF, \F) D
Vg(a") 0 AN g(ab)
eFTl = 2F 4 Az, AL =\ 4 AN

Then(zk\*) — (z*, \*) quadratically.
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e Starting with(z, A) near(z*, \*) that satisfies the Relaxed SOSC and strict
complementarity. Then the stabilized Newton method

Ve L(zF, NF) Vg(zk) phtl ok &V, L(xF, \F)
Vg(z*) ek, ARTL o5 \F sg(xh)

e Then(z*, \*) — (z*, \*) superlinearly ifu* = Q||(z*, \F) & (z*, \Y)]].

e By Schur Complement and since there exists a positive definite augmented
Lagrangian, the system is nonsingular.

e The method has been extended to cases without strict complementarity, for
stronger second-order conditions of the Lagrangian.
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e For simplicity, only inequality constraints will be considered.

e Need a measure that will balance feasibility and optimality (see Sven'’s Filter
SQP). This will measure progress along a given direction.

P(z) = max{go(z), 91(z), ...gm(2)}.
Heregq(x) = 0.

e 1" IS an unconstrained minimum of the penalized objective function
o(x) = f(x) + csP(z).

e However,¢(x) becomes nondifferentiable.

o v

15




minimize Vf(z)Td + 2dTHd + c4¢
subjectto  g;(z) + Vg;(z)''d < ¢, §=0,1,2...m,

e If \isa multiplier,cs = Ao + >, \; andAo¢ = 0 (this QP is always feasible).

e If H=1and
o> 27+ ) Af, VAT € M(z)
1=1
then¢ = 0 and . With MFCQ M (z*) is
bounded.

e With MFCQ, the feasible set has an interior and the steepest descent QP is

\always feasible. /
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SQP:
1. Setk = 0, chooser®.
2. Computei® from
minimize Vi) d+ 1d"d
g;(z*) + Vg, (2*)Td <0, j=1,...,m.
3. Choosex* from a line search procedure, and s&tt!) = 2% + o d*.

4. Setk = k + 1 and return to Step 2.

o
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)
(a) Hereca* is chosen such that
da* +atd®) = min{g(c* + ad®) }
() Here a fixed scalag > 0 is selected, and” is chosen
such that

o(z" + oFdF) = g%(l)n {$(z" + ad")}.

(©) Here fixed scalars, 7, ando with s > 0, 7 € (0,1), ando € (0, 1)
are chosen and we set = 7™ s, wherem;, is the first nonnegative integet for
which

o(z¥) Sp(z® + 7" sd®) > or™s(d*)Td".

It can be shown that the Armijo rule yields a stepsize after a finite number of

Qerations. /
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If £* satisfies MFCQ and the Quadratic Growth Condition

f(x) > f(z*) + ol||lz <2*||?, Vaz feasible inB(z*,r)

If 20 is sufficiently close ta:*, with z* generated by the steepest descent
algorithm with an exacL ., penalty function with sufficiently large,,

o ¥ — z* R-linearly.

o $(z%) — ¢(z*) Q-linearly.

e z* IS an isolated stationary point of the NLP.

o
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e The example

min 2z
shj.to: go(z,y,2) = (ze1)22yel) ez <0
g(z,y,2) = e3(@@el)?+(ye1)?)

+ 3(zel)(yel) ez <0
g2(z,y,2) = Lzel) 4+ (yel)iiez <0
g3(z,y,2) = 3((@el)?+(ye1)?)

& 3xel)(yel) ez < 0.

e Each constraint is obtained from the other by rotating(the/) plane withZ..
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www.mcs.anl.gov/~anitescu/SIMULATIONS/constrsetflat.wrl
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e At (1,1,0), the NLP satisfies satisfies both Quadratic Growth and MFCQ.

e However,

' Vo L(z*, X )u > 0, Yu € C.

IS not satisfies by any feasiblée.

any \* € M(x*),

1
Ve L(x™, ) + —Vg(a:*)Vg(x*)T 7 0

o
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e The feasible set is represented by

gi(x)—kti =0, ¢, > () for 1=1,...,m.
e A penalty term (with parameter) is added to the objective

min  f(z) + Yy Nilgi(@) + ) + L(gi(x) + )7
subjectto ¢t; >0, i=1,....,m.

o Take)\, i = getxz (A, 1) subject to trust-region constraints update\, .

e Desired outcomeyx bounded bellow and trust region inactive.

o
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Viz.t) (@)Ll (z*,0) =

Forw + Z?:l()‘iG:c:c + %Vgi(x*)Vgi(x*)T) %Vg(a:*)
%Vg(a:*)T Iy

2
7]
IS positive semidefinite on the subspdce 0, which implies

4 4
3 - 1 XiQi
0= Foe+ D (XiGaa + ;Vgi(a:*)Vgi(a:*)T) — ( 2i=1 M@

=1

0

)

Sincel — \*, 4 — 0. Thus Lagrangian methods lose the advantage of bounded
parameters over barrier approaches.
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Iteration | (New) Penalty Parameter Trust Region Radiuf|| oo
16 le-2 3.81 e-02
43 le-4 1.1 e-02
85 le-6 1.35 e-03
141 le-8 4.22 e-05
203 1le-10 5.28 e-06
241 le-12 1.70 e-06
268 le-14 1.93
283 le-16 4.41 e02
323 le-18 2.19e04
336 STOP

Table 1: Reduction of the penalty parameidor LANCELOT

v
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lteration gbfﬁi)l)_f’gz;)
4 4.00
9 4.00
14 3.99
19 3.99
24 4.00
27 4.00

Table 2: Rates of convergence for thg, penalty algorithm
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Nonlinear solver| ||zf*?e! — z*||2 | lterations | Message at termination
DONLP2 1.45e-16 4 Success

FilterSQP 5.26e-09 28 Convergence
LANCELOT 8.65e-07 336 Step size too small

LINF 1.05e-08 28 Step size too small
LOQO 1.60e-07 200 Iteration limit

LOQO 5.50e-07 1000 Iteration limit

MINOS 4.76e-06 27 Point cannot be improvec
SNOPT 3.37e-07 3 Optimal Solution Found

Table 3: All tolerances set to 1e-16, except DONLP2

DONLP2 < FSQP< LINF < LOQO < SNOPT< LANCELOT < MINOS
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e Given the differences NLP solvers use as a measure for tolerance, the basis
comparison was the best achievable outcome (best shot).

e The fact that NLP solvers with augmented Lagrangian perform worse Is
somewhat expected, in light of our analysis.

e Note that LINF does only slightly worse than FSQP, though it does not use
second-order information (nor it attempts to estimate it). This also shows that
problem is not in itself ill-conditioned.

e For FilterSQP, linear convergence was observed.
e For LOQO, increasing the number of iterations limit did not improve the resul

e Tolerances smaller thai®)—'® may be a problem (LOQO). Some of the
algorithms were well defined fdl0—2" and the outcomes were almost identical
with the ones fol0—1%.For tolerances in the rand@—'?—10—'° similar results

for

Kare obtained. /
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e |f a constraint is added twice, the minimizer (and the central path) of the origi
barrier f(z) < upln(<g; (x)) < pln(syq(x)) shifts to satisfy

14
g2 ('rs (/L))

V(@) & V() Vo (s (1)) = 0

g1 (zs(p

e However, the steepest descent QP has the same safugven though the
constraint is added twice:

minimize Vi(@)td+ +d¥d
subjectto  g;(z) + Vg,(z)td <0, j=1,2,2
e Also, the penalty functio® () = max{go(z), g1(x), ...gm(x)} IS invariant to
adding a constraint twice.

e Since the SQP is invariant to constraint repetition, it is reasonable to expect t

hal

hat

\itwill be more robust than the interior point approach. /
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e We show that Quadratic Growth and MFCQ induce linear convergence of the
L., exact penalty method.

e We construct an example for which QG and MFCQ hold, but for which no
locally convex augmented Lagrangian exists.

e We show that the SQP approach is more robust than Lagrangian methods, apd
possibly more robust than interior-point methods (for NLP).

e Any extension of these results would require unbounded multipliers, or some|
particularity of the constraint functions (convexity).

e The L., penalty algorithm is not the answer when ill-conditioning is present
(small maximum curvature on some of the critical cone directions). The problgm
of superlinear convergence under these assumptions is open.
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e Under the Traditional SOSC, a locally perturbed NLP will have a unigue prim
dual solution(x(p), A(p)), which is Lipschitzian with respect {a

e Under Robinson SOSC, the primal perturbed solution is unigqpé, and
Lipschitzian with respect to the perturbation. The dual solution is Lipschitzian
p =0, [M(p) &M(z*)|| = O(|pl]) (as sets).

e Under loffe SOSC, the primal perturbed solution is not necessarily unique an
Lipschitzian atz* (as a set) with respect to the perturbation only for classes of
perturbations (Maurer's example).
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