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Uncertainty Propagation. 

  Uncertainty analysis of model predictions: given data about uncertainty parameters  
                    and a code that creates output from it                        characterize y.  
  Validation: Use data to test whether the UA model is appropriate.  

  We assume uncertainty  model for                  exists 
  Challenge two: uncertainty propagation. Since        is expensive to compute, we cannot 

expect to compute a statistic of u very accurately from direct simulations alone (and there 
is also curse of dimensionality).  

  We will thus incur an error in propagation, which needs to be quantified and reduced. 

  Initial Mathematical Challenges:  
  What techniques allow me to work with a small number of samples? 
  How do I quantify the error (propagation error) statistically even if the process is 

deterministic  (not unlike weather forecast)?  



Faster Uncertainty Propagation by Using 
Derivative Information? 

  Uncertainty propagation requires multiple runs of a possibly expensive code.  
  On the other hand, adjoint differentiation adds a lot more information per unit of cost 

(O(p), where p is the dimension of the uncertainty space; though needs lots of memory).  
  Q: Can I use derivative information in uncertainty propagation to accelerate its precision 

per unit of computing time. How?  
  We believe the answer is yes.  

  Issues 
  1) How do I use Sensitivity Information in UQ when we have nonlinear models? 
  2) How do I get derivative information? 



Uncertainty quantification, subject models 
  Model I. Matlab prototype code: a steady-state 3-dimensional  
finite-volume model of the reactor core, taking into account heat   
transport and neutronic diffusion. Parameters with uncertainty are 
the material properties: heat conductivity, specific coolant heat, 
heat transfer coefficient, and neutronic parameters: fission, 
scattering, and absorbtion-removal cross-sections. 
Available experimental data is parameterized by 12-38 quantifiers. 

  Model II. MATWS, a functional subset of an industrial complexity 
code SAS4A/SASSYS-1: point kinetics module with a representation 
of heat removal system. >10,000 lines of Fortran 77, sparsely  
documented. 
MATWS was used, in combination with a simulation tool Goldsim,  
to model nuclear reactor accident scenarios. The typical analysis 
task is to find out if the uncertainty resulting from the error in  
estimation of neutronic reactivity feedback coefficients is sufficiently 
small for confidence in safe reactor temperatures. The uncertainty is  
described by 4-10 parameters. 



Representing Uncertainty, Setup 

  We use hierarchical structure. Given a generic model with uncertainty 

     * with model state  
     * intermediate parameters and inputs  
     * that include errors 
     An output of interest is expressed by the merit function 
     The uncertainty is described by a set of stochastic quantifiers                                   whose 

statistical distribution we have.  

  Main Computational Task. We redefine the output as a function of uncertainty quantifiers,  
                              and seek to approximate the unknown function  

)()),(1()(
0),(

TJJTRTRR
RTF

=Δ+⋅=
=

α

),...,,( 21 nTTTT =
),...,,( 21 NRRRR =

),...,,( 21 NRRRR ΔΔΔ=Δ
)(TJ

),...,,( 21 mαααα =

)(:)( TJ=ℑ α )(αℑ



How to use derivative information?  

  Using a linear uncertainty model may not be the answer for nonlinear model.  
  But since I accept an error in the propagation term …. 

  … I can use derivatives to obtain a smaller         even when f is nonlinear! 
  We use Polynomial Regression with Derivative information to construct      . Due to the 

O(1) adjoint calculation effort independent of dimension of x, we will have better 
approximation for same cost. 

ε
 
f



Polynomial Regression with Derivatives, PRD 

  PRD procedure:  
- choose a basis of multivariate polynomials*   
the unknown function is then approximated by an expansion  
- choose training set*  
- evaluate the model and its derivatives** for each point in the training set 
- construct a regression matrix. Each row consists of either the values of the basis polynomials, 
or the values of derivatives of basis polynomials, at a point in the training set. 
- solve the regression equations (in the least-squares sense) to find coefficients  

*  but how to make the best choice? This is a topic of current investigation 
**  complete gradient information can be obtained, with limited computational  
     overhead, for a model of any complexity. 
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Polynomial Regression with Derivatives, PRD 
  PRD procedure, regression equations: 

  Note: the only interaction with the  
computationally expensive model 
is on the right side! 

  The polynomial regression approach  
without derivative information would  
require (n+1) times more rows.  
The overall computational savings  
depend on how cheaply the  
derivatives can be computed 
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PRD, basis truncation 
  Issue: we would like to use high-order polynomials to represent non-linear relationships in the 

model. But, even with the use of derivative information, the required size of the training set 
grows rapidly (curse of dimensionality in spectral space) 

  We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis 
is already available, for free!) and use an incomplete basis, i.e. polynomials of high degree only 
in variables of high importance.  

     This allows the use of some polynomials of high degree (maybe up to 5?) 
     At the same time, the basis can be truncated to fit a given computational budget on the 

evaluations of the model to form a training set. 

  In practice, we use either a complete basis of order up to 3, or its truncated version allowing the 
size of training set to be within 10-50 evaluations. 



PRD, computation of derivatives 
  There is a theoretical limit of 500% on computational overhead required to compute derivatives: 

the use of derivatives is preferred to additional sampling when the dimension of uncertainty 
space exceeds 5.  

     In practice, the overhead is 100-200%. 

  It is possible to design the model with capability to output it own derivatives: the code can be 
augmented with partial derivatives of each elementary procedure, the gradient is then 
assembled by chain rule. 

     In effect, together with evaluation of the model 
     the equations                                                          are also solved, for  

  For most applied purposes, a more promising approach is Automatic (Algorithmic) 
Differentiation, AD. It also uses the chain-rule approach, but with minimal human involvement. 

     Model re-design is not required! 

     Ideally, the only required processing is to identify inputs and outputs of interest, and resolve the 
errors at compilation of the model augmented with AD.  
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Automatic Differentiation, AD 
  AD is based on the fact that any program can be viewed as a finite sequence of elementary 

operations, the derivatives of which are known. A program P implementing the function J can be 
parsed into a sequence of elementary steps: 

     The task of AD is to assemble a new program P' to compute the derivative. In forward mode: 

  In the forward (or direct) mode, the derivative is assembled by the chain rule following 
computational flow from an input of interest to all outputs. We are more interested in the reverse 
(or adjoint) mode that follows the reversed version of the computational flow from an output to all 
inputs: 

     In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to 
multiple runs required by the direct mode. 
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Tools: Fortran 

  Fortran 95: (forward and reverse; source transformation)
–  TAF (FastOpt)

• Commercial tool
• Support for (almost) all of Fortran 95
• Used extensively in geophysical sciences applications

–  Tapenade (INRIA)
• Support for many Fortran 95 features
• Developed by a team with extensive compiler experience

–  OpenAD/F (Argonne/UChicago/Rice)
• Support for many Fortran 95 features
• Developed by a team with expertise in combintorial algorithms, 

compilers, software engineering, and numerical analysis
• Development driven by climate model & astrophysics code

  ADIFOR (Rice/Argonne) Mature and very robust tool,  Support for all of 
Fortran 77, Forward and (adequate) reverse modes

•  Hundreds of users; ~250 citations



Applying AD to code with major legacy components 
  We investigated the following question: are AD tools now at a stage where they can provide 

derivative information for realistic nuclear engineering codes? Many models of interest are 
complex, sparsely documented, and developed according to older (Fortran 77) standards. 

  Based on our experience with MATWS, the following (Fortran 77) issues make application of AD 
difficult: 

  Some features are unsupported by AD since they are not standard (machine-dependent 
code sections, nonstandard intrinsics such as LOC) 

   Some features make the resulting AD adjoint code inefficient but are supported 
(Equivalence).  



Applying AD to code with Fortran legacy 
components (ctd) 

  Not supported by AD tools (since they are nonstandard) /need to be changed. 
•  machine-dependence code sections need to be removed (i/o) 
•  Direct memory copy operations needs to be rewritten as explicit operations (when LOC 

is used) 
•  COMMON blocks with inconsistent sizes between subroutines need to be renamed 
•  Subroutines with variable number of parameters need to be split into separate 

subroutines 
  EQUIVALENCE, COMMON, IMPLICIT definitions are supported by most tools though they have 

to be changed for some (such as OpenAD). (for Open AD statement functions need to be 
replaced by subroutine definitions, they are not supported in newer Fortran) 

  Note that the problematic features we encountered have to do with memory allocation and 
management, not mathematical structure of the model! We expect that (differentiable) 
mathematical sequences of any complexity can be differentiated. 



Validation of AD derivative calculation 
  Model II, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the 

fuel and coolant temperatures with respect to the radial core expansion coefficient ,obtained by 
different AD tools, and compared with the Finite Differences approximation, FD.  

     All results agree with FD within 0.01% (and almost perfectly with each other). 

               

               

AD tool Fuel temperature derivative, 
K 

Coolant temperature derivative, 
K 

ADIFOR  
18312.5474227 17468.4511373 

OpenAD/F 
18312.5474227 17468.4511372 

TAMC 
18312.5474248 17468.4511392 

TAPENADE 
18312.5474227 17468.4511372 

FD 
18312.5269537 17468.4315994 



PRD UQ,  tests on subject models 
  Model I, Matlab prototype code. Output of interest:  
     maximal fuel centerline temperature. We show  
     performance of a version with 12 (most important)  
     uncertainty quantifiers. Performance of PRD  
     approximation with full and truncated basis is  
     compared against random sampling approach 
     (100 samples): 

              (pointwise error, at 40 points) 

                                                    
              * derivative evaluations 
                 required 150-200% overhead 

Samplin
g 

Linear 
approximation 

PRD, full 
basis 

PRD, 
truncated 
basis 

Full model 
runs 

100 1* 72* 12* 

Output 
range, K 

2237.8 
2460.5 

2227.4 
2450.0 

2237.8 
2460.5 

2237.5 
2459.6 

Error 
range, K 

-10.38 
+0.01 

-0.02 
+0.02 

-0.90 
+0.90 

Error st. 
deviation 

2.99 0.01 0.29 



Uncertainty quantification,  tests on subject models 
  Model II, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty 

in an accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical 
distribution of peak fuel temperature. 

We reproduce the distribution of the outputs correctly;  
regression constructed on 50 model  
evaluations thus replaces analysis  
with 1,000 model runs. We show  
cumulative distribution of the  
peak fuel temperature.  

Note that the PRD approximation  
is almost entirely within the 95%  
confidence interval of the  
sampling-based results.  

  Surface response, error model 
in progress (though control variate done) 



Outstanding math issues 

  AD:  
  How do I handle nondifferentiability/discontinuity and still produce a model?  
  How do I deal with adaptive procedures?  

  PRD:  
  How do I choose the polynomial basis (we use Hermite, but …) 
  How do I choose the sampling point?  
  What is the appropriate error model for few samples?  



Conclusions 

  PRD allows for UQ that leverages sensitivity calculations even for nonlinear models, and, as a 
results outperforms other UQ techniques. 

  An important part of PRD is Automatic Differentiation; it can be applied to codes of *industrial* 
complexity.  

  We have some ideas what to do even when only piecewise differentiability.  

  Future: bigger codes, fewer samples ….  



Why Automatic Differentiation? (cont.) 

  Alternative #1:hand-coded derivatives
•  hand-coding is tedious and error-prone
•  coding time grows with program size and complexity
•  automatically generated code may be faster
•  no natural way to compute derivative matrix-vector products (Jv, JTv, Hv) 

without forming full matrix
•  maintenance is a problem (must maintain consistency)

  Alternative #2: finite difference approximations
•  introduce truncation error that in the best case halves the digits of accuracy
•  cost grows with number of independents
•  no natural way to compute JTv products



Example: a simple function 

#include <math.h> 
#include <stream.h> 

void func(double *f, double x, double y){ 
  double a,b; 

  if (x > y) { 
    a = cos(x); 
    b = sin(y)*y*y; 
  } else { 
    a = x*sin(x)/y; 
    b = exp(y); 
  } 
  *f = exp(a*b); 
} 



Example: AD via operator overloading 

#include <math.h> 
#include <stream.h> 
#include "adouble.hxx" 

void func(a_double *f, a_double x, a_double y){ 
  a_double a,b; 

  if (x > y) { 
    a = cos(x); 
    b = sin(y)*y*y; 
  } else { 
    a = x*sin(x)/y; 
    b = exp(y); 
  } 
  *f = exp(a*b); 
} 



Example: ADIC output 
#include "ad_deriv.h" 
#include <math.h> 
#include "adintrinsics.h" 
void   ad_func(DERIV_TYPE  *f,DERIV_TYPE  x,DERIV_TYPE  y) { 
DERIV_TYPE  a, b, ad_var_0, ad_var_1, ad_var_2; 
double  ad_adji_0,ad_loc_0,ad_loc_1,ad_adj_0,ad_adj_1,ad_adj_2,ad_adj_3; 

   if (DERIV_val(x) > DERIV_val(y))     { 
     DERIV_val(a) = cos( DERIV_val(x)); /*cos*/ 
      ad_adji_0 = -sin( DERIV_val(x)); 
        { 
            ad_grad_axpy_1(&(a), ad_adji_0, &(x)); 
        } 
     DERIV_val(ad_var_0) = sin( DERIV_val(y)); /*sin*/ 
      ad_adji_0 = cos( DERIV_val(y)); 
        { 
            ad_grad_axpy_1(&(ad_var_0), ad_adji_0, &(y)); 
        } 
        { 
            ad_loc_0 = DERIV_val(ad_var_0) * DERIV_val(y); 
            ad_loc_1 = ad_loc_0 * DERIV_val(y); 
            ad_adj_0 = DERIV_val(ad_var_0) * DERIV_val(y); 
            ad_adj_1 = DERIV_val(y) * DERIV_val(y); 
            ad_grad_axpy_3(&(b), ad_adj_1, &(ad_var_0), ad_adj_0, &(y), ad_loc_0, &(y)); 
            DERIV_val(b) = ad_loc_1; 
        } 
    } 
    else     { 
        // ... 
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Capabilities 

  Fast (O(1) function evaluation) computation of
•  gradient (reverse)
•  Jacobian-vector product (forward)
•  transposed-Jacobian-vector product (reverse)
•  Hessian-vector product (F+R, R+F, R+R)

  Efficient computation of full Jacobians and Hessians, when able to exploit:
•  sparsity (combine structurally orthogonal columns/rows)
•  low-rank structure (scarcity or ESM or ...)
•  combinations of (near) sparsity and low-rank structure (scarcity/WIP)

  Efficient high-order directional derivatives
•  Can compute high-order derivative tensors for modest number of independent 

variables (cost essentially proportional to number of unique entries in tensor)
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Challenges 

  Full Jacobian or Hessian with no underlying structure (rare) can be 
expensive to compute 

  Reverse mode requires storage of intermediate states
•  Worst case storage proportional to # flops in function evaluation
•  In practice, use combination of storage/recomputation to reduce storage

• Well-known strategies for time-stepping computations, achieving 
(worst-case) logarithmic growth in cost of gradient

• Best performance usually requires an application-specific strategy
  Implementation of source transformation tools requires robust compiler 

infrastructure and compiler analyses
•  Open-source, industrial-strength compiler infrastructures are rare
•  Infrastructures often do not include full set of required analyses
•  AD theory for full Fortran 90 / C++ languages not yet developed

  Provides only local information
•  Must be combined with sampling to provide global information
•  Note: local ≠ linear

  Computes (chain-rule) derivatives of code



PRD, selection of better basis 
  We inherited the use of Hermite multivariate polynomials as basis from a related method: 

Stochastic Finite Elements expansion. 
 Hermite polynomials are most appropriate where the statistical distribution of inputs are known 
(and normal!) In practical tasks, this is not the case. 
 While performance of PRD so far is acceptable, Hermite basis may not be a good choice for 
constructing a regression matrix with derivative information; it causes poor condition number of 
linear equations (of the Fischer matrix). 

  Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability 
measure ρ; Gaussian measure is the specific choice): 

  We formulate new orthogonality conditions: 

 and apply Gramm-Schmidt. 
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PRD, selection of better basis 
  Model I, Matlab prototype code. We compare the setup of PRD method using Hermite 

polynomial basis and the improved basis. We observe the improvement in the distribution of 
singular values of the collocation matrix. 

    We compare numerical 
    conditioning for Hermite, 
    Legendre polynomials,  
    and the basis based on 
    new orthogonality    
    conditions. 

    Testing of performance 
    of PRD in this new setup 
    is in progress. 
  This will offer us substantial  
flexibility in creating the  
surrogate model. 



Preliminary results of using reduced model for 
creating the surrogate 

  The optimized base does a better job with less information. Here obtained with using fewer 
iterations in the steady-state neutronic model. 



PRD, computation of derivatives 
  There is a possibility that some calculations in the model are inherently non-smooth 

Some of the reasons are: 
- incomplete convergence of a differentiable structure 
- a switch between branches in the control structure of the code 
- very stiff numerical effect 

The options are: 
- build a smoothing interpolation and differentiate that 
- re-design just this model part to be smooth 
- re-design just this model part to add capability to output it own (discontinuous?) derivative 

approximations, maybe by finite differences 

  Detection of such places in the model flow requires automatic tracing tools. Fortunately, AD tools 
have this capacity (with some development effort required to search for specific features). 



Uncertainty Quantification, UQ 
  Task of UQ: to relate the information on uncertainty in the  
inputs (and parameters) of the model to the resulting  
     variation in the outputs. Ultimately leads to improvement  
     in efficiency and safety. 

 Difficulties:              
 - the information on statistical properties of inputs is scarce, disorganized.      
 - convenient representation of uncertainty is not available 
 - input space has large dimension         
 - model evaluation is computationally expensive      
 - it is unclear which points in input space are representative  
 - model code is too complex for direct study 
 - UQ is misunderstood: customers expect either fast, locally  

   valid, a priori constructed solutions, or extensive code-rewriting.     
             



Uncertainty Quantification, UQ 
  Standards for UQ in nuclear engineering simulations can be improved: 

“Complex”  means  “coupled system of several parts”,  should mean  “arbitrary complexity” 

“Large”   means  “dimension 10, processed at once”, should mean  “dimension 100, 1000” 

“High-precision”  means  “error of 10%, improved by sampling”, should mean  “error of 1%” 

  We propose to efficiently model the propagation of uncertainty through complex simulation 
models. This is achieved by sampling-based methods, but with additional information for each 
considered point in the uncertainty space extracted by methods of automated learning. 

  The goal is to construct a goal-oriented (a posteriori), globally valid, flexible representation of the 
effect of uncertainty on the outputs.  



UQ Challenges for Complex Nuclear Models 
DISCUSSION  

Mihai Anitescu and Hany Abdel-Khalik 



(Some ?) Components of the Uncertainty 
Quantification. 

  Uncertainty analysis of model predictions: given data about uncertainty parameters  
                    and a code that creates output from it                        characterize y.  
  Validation: Use data to test whether the UA model is appropriate.  
  Error Model: Use data to fix portions of        that are incorrect or unresolved (I have seen 

this in climate, not so much in NE  )   

  Challenge one: create model for                       from data. (Mihai’s definition of UQ) It 
does not need to be probabilistic (see Helton and Oberkampf RESS special issue) but it 
tends to be.  

  Challenge two: uncertainty propagation. Since        is expensive to compute, we cannot 
expect to compute a statistic of y very accurately from direct simulations alone (and there 
is also curse of dimensionality).  

  Therefore, in UP, one must assess the error made in approximating the system response 
by  



C1: Quantification of Uncertainty Challenges 

  Previous data processing approaches were 
tuned towards point estimates (see liquid Na 
Cp). Nowadays we need functional estimates, 
to do uncertainty propagation through multiply 
coupled codes, where condition (such as T 
here) vary.  

  The original data, however, may not be 
available, and experiments are expensive.  

   Q1: Can we reconstruct realistic covariance 
information, using other constraining factors 
(such as smoothness here) ? 

  Q2: Can we mesh empirical point estimates 
with code-based higher order moments? 

  Q3: What are better data models for UQ with 
high-fidelity physics?  



C2: Propagation of uncertainty challenges 

  Once the probabilistic model exists, we need to propagate it through the code. 
Nevertheless, expensive codes make it likely that we will not be able to reach the desired 
accuracy for a statistic of y, through sampling alone.  

  We must then create a model of the response from a limited number of samples, which 
has its own error 

  What is the appropriate statistical error model          of the approximation and how do we 
get the best approximation from a given amount of computational power (use 
derivatives ?) 

  Can one use multiple codes with different physics resolution to do UP at a smaller cost? 
(and which is still of high quality)? 

  Can  I  create high quality reduced model for the same purpose?  
  Is full-system adjoint calculation ready for prime time, and can it be used to this end?      

ε



How to Design Computational Experiments to 
reduce Uncertainty Propagation Error ? 

  If running the computational experiments is expensive, then we must choose the best 
points at which to run them, the points which will result in the smallest error.  

  What is the best strategy for running such experiments?  
  Can we gain something by considering hierarchies of models with different physics? How 

should these combined experiments be designed?  
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Spatio-temporal statistics 
•  How do I create high fidelity uncertainty fields for statistical downscaling?  

•  Can I use this to understand errors in approximate closure models, such as LES? 

  Possible Solu+on Gaussian Processes (Kriging):  

  Perception: Gaussian Distributions are easy:  

  Fact: Computations of large scale Gaussian distribu+ons is not resolved. Need 
matrix-free square root and determinant of Covariance Matrix.  
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How do I simulate from GP?  

Mathema+cs and Computer Science 

  Recommended solution: 
Take Cholesky of The 
Covariance matrix, cannot 
possibly scale. 

  Our solution: Matrix-free 
calculation of  Q^0.5*N(0,I) 
(Chen, Anitescu, Saad) – 
not really attacked before.  

  Example: GP with 10^6 data 
sites.  

  Future: How does it scale on 
multicore architectures?  


