
Using Automatic Differentiation in Uncertainty
Quantification of Nuclear Simulation Models

Mihai Anitescu, Oleg Roderick,
Jean Utke, Paul Hovland
(MCS, Argonne)
Thomas Fanning
(NE, Argonne)

Also acknowledging the work of Mihai Alexe (Virginia Tech) and Yiou Li (IIT)

May 2010

Uncertainty Propagation.

  Uncertainty analysis of model predictions: given data about uncertainty parameters
 and a code that creates output from it characterize y.
  Validation: Use data to test whether the UA model is appropriate.

  We assume uncertainty model for exists
  Challenge two: uncertainty propagation. Since is expensive to compute, we cannot

expect to compute a statistic of u very accurately from direct simulations alone (and there
is also curse of dimensionality).

  We will thus incur an error in propagation, which needs to be quantified and reduced.

  Initial Mathematical Challenges:
  What techniques allow me to work with a small number of samples?
  How do I quantify the error (propagation error) statistically even if the process is

deterministic (not unlike weather forecast)?

Faster Uncertainty Propagation by Using
Derivative Information?

  Uncertainty propagation requires multiple runs of a possibly expensive code.
  On the other hand, adjoint differentiation adds a lot more information per unit of cost

(O(p), where p is the dimension of the uncertainty space; though needs lots of memory).
  Q: Can I use derivative information in uncertainty propagation to accelerate its precision

per unit of computing time. How?
  We believe the answer is yes.

  Issues
  1) How do I use Sensitivity Information in UQ when we have nonlinear models?
  2) How do I get derivative information?

Uncertainty quantification, subject models
  Model I. Matlab prototype code: a steady-state 3-dimensional
finite-volume model of the reactor core, taking into account heat
transport and neutronic diffusion. Parameters with uncertainty are
the material properties: heat conductivity, specific coolant heat,
heat transfer coefficient, and neutronic parameters: fission,
scattering, and absorbtion-removal cross-sections.
Available experimental data is parameterized by 12-38 quantifiers.

  Model II. MATWS, a functional subset of an industrial complexity
code SAS4A/SASSYS-1: point kinetics module with a representation
of heat removal system. >10,000 lines of Fortran 77, sparsely
documented.
MATWS was used, in combination with a simulation tool Goldsim,
to model nuclear reactor accident scenarios. The typical analysis
task is to find out if the uncertainty resulting from the error in
estimation of neutronic reactivity feedback coefficients is sufficiently
small for confidence in safe reactor temperatures. The uncertainty is
described by 4-10 parameters.

Representing Uncertainty, Setup

  We use hierarchical structure. Given a generic model with uncertainty

 * with model state
 * intermediate parameters and inputs
 * that include errors
 An output of interest is expressed by the merit function
 The uncertainty is described by a set of stochastic quantifiers whose

statistical distribution we have.

  Main Computational Task. We redefine the output as a function of uncertainty quantifiers,
 and seek to approximate the unknown function

)()),(1()(
0),(

TJJTRTRR
RTF

=Δ+⋅=
=

α

),...,,(21 nTTTT =
),...,,(21 NRRRR =

),...,,(21 NRRRR ΔΔΔ=Δ
)(TJ

),...,,(21 mαααα =

)(:)(TJ=ℑ α)(αℑ

How to use derivative information?

  Using a linear uncertainty model may not be the answer for nonlinear model.
  But since I accept an error in the propagation term ….

  … I can use derivatives to obtain a smaller even when f is nonlinear!
  We use Polynomial Regression with Derivative information to construct . Due to the

O(1) adjoint calculation effort independent of dimension of x, we will have better
approximation for same cost.

ε

f

Polynomial Regression with Derivatives, PRD

  PRD procedure:
- choose a basis of multivariate polynomials*
the unknown function is then approximated by an expansion
- choose training set*
- evaluate the model and its derivatives** for each point in the training set
- construct a regression matrix. Each row consists of either the values of the basis polynomials,
or the values of derivatives of basis polynomials, at a point in the training set.
- solve the regression equations (in the least-squares sense) to find coefficients

* but how to make the best choice? This is a topic of current investigation
** complete gradient information can be obtained, with limited computational
 overhead, for a model of any complexity.

{ })(αqΨ
∑ Ψ≈ℑ q qqx)()(αα

{ }),...,,(; 21
i
n

ii
iAA ααα=

qx

Polynomial Regression with Derivatives, PRD
  PRD procedure, regression equations:

  Note: the only interaction with the
computationally expensive model
is on the right side!

  The polynomial regression approach
without derivative information would
require (n+1) times more rows.
The overall computational savings
depend on how cheaply the
derivatives can be computed

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ℑ

ℑ

ℑ
ℑ

ℑ

ℑ

ℑ
ℑ

=⋅

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

ΨΨ

ΨΨ

ΨΨ
ΨΨ

ΨΨ

ΨΨ

ΨΨ
ΨΨ

m

M

M

m

m

M

m

M

MM

mm

d
Ad

A

d
Ad
A

d
Ad

d
Ad

d
Ad
A

x

d
Ad

d
Ad

AA

d
Ad

d
Ad

AA
d
Ad

d
Ad

d
Ad

d
Ad

d
Ad

d
Ad

AA

α

α

α

α

α

αα

αα

αα

αα

αα

)(

)(

)(
)(

)(

)(

)(
)(

)()(

)()(

)()(
)()(

)()(

)()(

)()(
)()(

1

2
2

1

2

1
1

1
1

21

21

1

22

1

21
2221

1211

2

12

2

11
1

12

1

11
1211

…

…

…

…

…

…

…

…

PRD, basis truncation
  Issue: we would like to use high-order polynomials to represent non-linear relationships in the

model. But, even with the use of derivative information, the required size of the training set
grows rapidly (curse of dimensionality in spectral space)

  We use a heuristic: we rank uncertainty quantifiers by importance (a form of sensitivity analysis
is already available, for free!) and use an incomplete basis, i.e. polynomials of high degree only
in variables of high importance.

 This allows the use of some polynomials of high degree (maybe up to 5?)
 At the same time, the basis can be truncated to fit a given computational budget on the

evaluations of the model to form a training set.

  In practice, we use either a complete basis of order up to 3, or its truncated version allowing the
size of training set to be within 10-50 evaluations.

PRD, computation of derivatives
  There is a theoretical limit of 500% on computational overhead required to compute derivatives:

the use of derivatives is preferred to additional sampling when the dimension of uncertainty
space exceeds 5.

 In practice, the overhead is 100-200%.

  It is possible to design the model with capability to output it own derivatives: the code can be
augmented with partial derivatives of each elementary procedure, the gradient is then
assembled by chain rule.

 In effect, together with evaluation of the model
 the equations are also solved, for

  For most applied purposes, a more promising approach is Automatic (Algorithmic)
Differentiation, AD. It also uses the chain-rule approach, but with minimal human involvement.

 Model re-design is not required!

 Ideally, the only required processing is to identify inputs and outputs of interest, and resolve the
errors at compilation of the model augmented with AD.

0)),(,(:)(== αTRTFTJJ
0)(=

∂
∂⋅

∂
∂+⋅

∂
∂⋅

∂
∂+

∂
∂

αα
R

R
F

d
dT

T
R

R
F

T
F

ααα d
dT

dT
dJ

d
dJ

d
dT ⋅=:

Automatic Differentiation, AD
  AD is based on the fact that any program can be viewed as a finite sequence of elementary

operations, the derivatives of which are known. A program P implementing the function J can be
parsed into a sequence of elementary steps:

 The task of AD is to assemble a new program P' to compute the derivative. In forward mode:

  In the forward (or direct) mode, the derivative is assembled by the chain rule following
computational flow from an input of interest to all outputs. We are more interested in the reverse
(or adjoint) mode that follows the reversed version of the computational flow from an output to all
inputs:

 In adjoint mode, the complete gradient can be computed in a single run of P', as opposed to
multiple runs required by the direct mode.

)))((...(: 11 αfffJP kk −=

ik

k

k

k
i

f
f
f

f
fJP

αα ∂
∂⋅⋅

∂
∂⋅

∂
∂=∇

−

−

−

1

2

1

1
...)(:'

T

k

k
TT

f
f

f
ffJP ⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂⋅⋅⎟⎟⎠

⎞
⎜⎜⎝

⎛
∂
∂⋅⎟

⎠
⎞⎜

⎝
⎛
∂
∂=∇

−11

21 ...):'
αα

Tools: Fortran

  Fortran 95: (forward and reverse; source transformation)
–  TAF (FastOpt)

• Commercial tool
• Support for (almost) all of Fortran 95
• Used extensively in geophysical sciences applications

–  Tapenade (INRIA)
• Support for many Fortran 95 features
• Developed by a team with extensive compiler experience

–  OpenAD/F (Argonne/UChicago/Rice)
• Support for many Fortran 95 features
• Developed by a team with expertise in combintorial algorithms,

compilers, software engineering, and numerical analysis
• Development driven by climate model & astrophysics code

  ADIFOR (Rice/Argonne) Mature and very robust tool, Support for all of
Fortran 77, Forward and (adequate) reverse modes

•  Hundreds of users; ~250 citations

Applying AD to code with major legacy components
  We investigated the following question: are AD tools now at a stage where they can provide

derivative information for realistic nuclear engineering codes? Many models of interest are
complex, sparsely documented, and developed according to older (Fortran 77) standards.

  Based on our experience with MATWS, the following (Fortran 77) issues make application of AD
difficult:

  Some features are unsupported by AD since they are not standard (machine-dependent
code sections, nonstandard intrinsics such as LOC)

  Some features make the resulting AD adjoint code inefficient but are supported
(Equivalence).

Applying AD to code with Fortran legacy
components (ctd)

  Not supported by AD tools (since they are nonstandard) /need to be changed.
•  machine-dependence code sections need to be removed (i/o)
•  Direct memory copy operations needs to be rewritten as explicit operations (when LOC

is used)
•  COMMON blocks with inconsistent sizes between subroutines need to be renamed
•  Subroutines with variable number of parameters need to be split into separate

subroutines
  EQUIVALENCE, COMMON, IMPLICIT definitions are supported by most tools though they have

to be changed for some (such as OpenAD). (for Open AD statement functions need to be
replaced by subroutine definitions, they are not supported in newer Fortran)

  Note that the problematic features we encountered have to do with memory allocation and
management, not mathematical structure of the model! We expect that (differentiable)
mathematical sequences of any complexity can be differentiated.

Validation of AD derivative calculation
  Model II, MATWS, subset of SAS4A/SASSYS-1. We show estimates for the derivatives of the

fuel and coolant temperatures with respect to the radial core expansion coefficient ,obtained by
different AD tools, and compared with the Finite Differences approximation, FD.

 All results agree with FD within 0.01% (and almost perfectly with each other).

AD tool Fuel temperature derivative,
K

Coolant temperature derivative,
K

ADIFOR
18312.5474227 17468.4511373

OpenAD/F
18312.5474227 17468.4511372

TAMC
18312.5474248 17468.4511392

TAPENADE
18312.5474227 17468.4511372

FD
18312.5269537 17468.4315994

PRD UQ, tests on subject models
  Model I, Matlab prototype code. Output of interest:
 maximal fuel centerline temperature. We show
 performance of a version with 12 (most important)
 uncertainty quantifiers. Performance of PRD
 approximation with full and truncated basis is
 compared against random sampling approach
 (100 samples):

 (pointwise error, at 40 points)

 * derivative evaluations
 required 150-200% overhead

Samplin
g

Linear
approximation

PRD, full
basis

PRD,
truncated
basis

Full model
runs

100 1* 72* 12*

Output
range, K

2237.8
2460.5

2227.4
2450.0

2237.8
2460.5

2237.5
2459.6

Error
range, K

-10.38
+0.01

-0.02
+0.02

-0.90
+0.90

Error st.
deviation

2.99 0.01 0.29

Uncertainty quantification, tests on subject models
  Model II, MATWS, subset of SAS4A/SASSYS-1. We repeat the analysis of effects of uncertainty

in an accident scenario modeled by MATWS + GoldSim. The task is to estimate statistical
distribution of peak fuel temperature.

We reproduce the distribution of the outputs correctly;
regression constructed on 50 model
evaluations thus replaces analysis
with 1,000 model runs. We show
cumulative distribution of the
peak fuel temperature.

Note that the PRD approximation
is almost entirely within the 95%
confidence interval of the
sampling-based results.

  Surface response, error model
in progress (though control variate done)

Outstanding math issues

  AD:
  How do I handle nondifferentiability/discontinuity and still produce a model?
  How do I deal with adaptive procedures?

  PRD:
  How do I choose the polynomial basis (we use Hermite, but …)
  How do I choose the sampling point?
  What is the appropriate error model for few samples?

Conclusions

  PRD allows for UQ that leverages sensitivity calculations even for nonlinear models, and, as a
results outperforms other UQ techniques.

  An important part of PRD is Automatic Differentiation; it can be applied to codes of *industrial*
complexity.

  We have some ideas what to do even when only piecewise differentiability.

  Future: bigger codes, fewer samples ….

Why Automatic Differentiation? (cont.)

  Alternative #1:hand-coded derivatives
•  hand-coding is tedious and error-prone
•  coding time grows with program size and complexity
•  automatically generated code may be faster
•  no natural way to compute derivative matrix-vector products (Jv, JTv, Hv)

without forming full matrix
•  maintenance is a problem (must maintain consistency)

  Alternative #2: finite difference approximations
•  introduce truncation error that in the best case halves the digits of accuracy
•  cost grows with number of independents
•  no natural way to compute JTv products

Example: a simple function

#include <math.h>
#include <stream.h>

void func(double *f, double x, double y){
 double a,b;

 if (x > y) {
 a = cos(x);
 b = sin(y)*y*y;
 } else {
 a = x*sin(x)/y;
 b = exp(y);
 }
 *f = exp(a*b);
}

Example: AD via operator overloading

#include <math.h>
#include <stream.h>
#include "adouble.hxx"

void func(a_double *f, a_double x, a_double y){
 a_double a,b;

 if (x > y) {
 a = cos(x);
 b = sin(y)*y*y;
 } else {
 a = x*sin(x)/y;
 b = exp(y);
 }
 *f = exp(a*b);
}

Example: ADIC output
#include "ad_deriv.h"
#include <math.h>
#include "adintrinsics.h"
void ad_func(DERIV_TYPE *f,DERIV_TYPE x,DERIV_TYPE y) {
DERIV_TYPE a, b, ad_var_0, ad_var_1, ad_var_2;
double ad_adji_0,ad_loc_0,ad_loc_1,ad_adj_0,ad_adj_1,ad_adj_2,ad_adj_3;

 if (DERIV_val(x) > DERIV_val(y)) {
 DERIV_val(a) = cos(DERIV_val(x)); /*cos*/
 ad_adji_0 = -sin(DERIV_val(x));
 {
 ad_grad_axpy_1(&(a), ad_adji_0, &(x));
 }
 DERIV_val(ad_var_0) = sin(DERIV_val(y)); /*sin*/
 ad_adji_0 = cos(DERIV_val(y));
 {
 ad_grad_axpy_1(&(ad_var_0), ad_adji_0, &(y));
 }
 {
 ad_loc_0 = DERIV_val(ad_var_0) * DERIV_val(y);
 ad_loc_1 = ad_loc_0 * DERIV_val(y);
 ad_adj_0 = DERIV_val(ad_var_0) * DERIV_val(y);
 ad_adj_1 = DERIV_val(y) * DERIV_val(y);
 ad_grad_axpy_3(&(b), ad_adj_1, &(ad_var_0), ad_adj_0, &(y), ad_loc_0, &(y));
 DERIV_val(b) = ad_loc_1;
 }
 }
 else {
 // ...

24

Capabilities

  Fast (O(1) function evaluation) computation of
•  gradient (reverse)
•  Jacobian-vector product (forward)
•  transposed-Jacobian-vector product (reverse)
•  Hessian-vector product (F+R, R+F, R+R)

  Efficient computation of full Jacobians and Hessians, when able to exploit:
•  sparsity (combine structurally orthogonal columns/rows)
•  low-rank structure (scarcity or ESM or ...)
•  combinations of (near) sparsity and low-rank structure (scarcity/WIP)

  Efficient high-order directional derivatives
•  Can compute high-order derivative tensors for modest number of independent

variables (cost essentially proportional to number of unique entries in tensor)

25

Challenges

  Full Jacobian or Hessian with no underlying structure (rare) can be
expensive to compute

  Reverse mode requires storage of intermediate states
•  Worst case storage proportional to # flops in function evaluation
•  In practice, use combination of storage/recomputation to reduce storage

• Well-known strategies for time-stepping computations, achieving
(worst-case) logarithmic growth in cost of gradient

• Best performance usually requires an application-specific strategy
  Implementation of source transformation tools requires robust compiler

infrastructure and compiler analyses
•  Open-source, industrial-strength compiler infrastructures are rare
•  Infrastructures often do not include full set of required analyses
•  AD theory for full Fortran 90 / C++ languages not yet developed

  Provides only local information
•  Must be combined with sampling to provide global information
•  Note: local ≠ linear

  Computes (chain-rule) derivatives of code

PRD, selection of better basis
  We inherited the use of Hermite multivariate polynomials as basis from a related method:

Stochastic Finite Elements expansion.
 Hermite polynomials are most appropriate where the statistical distribution of inputs are known
(and normal!) In practical tasks, this is not the case.
 While performance of PRD so far is acceptable, Hermite basis may not be a good choice for
constructing a regression matrix with derivative information; it causes poor condition number of
linear equations (of the Fischer matrix).

  Hermite polynomials are generated by orthogonalization process, to be orthogonal (in probability
measure ρ; Gaussian measure is the specific choice):

  We formulate new orthogonality conditions:

 and apply Gramm-Schmidt.

∫
Ω

=ΨΨ jhhj dAAAA δρ)()()(

∫ ∑
Ω

= =⎟⎟⎠

⎞
⎜⎜⎝

⎛ Ψ∂⋅
Ψ∂

+ΨΨ ih
m
i

i

h

i

j
hj dAAAA
AA δρ

αα
)()()(

)()(1

PRD, selection of better basis
  Model I, Matlab prototype code. We compare the setup of PRD method using Hermite

polynomial basis and the improved basis. We observe the improvement in the distribution of
singular values of the collocation matrix.

 We compare numerical
 conditioning for Hermite,
 Legendre polynomials,
 and the basis based on
 new orthogonality
 conditions.

 Testing of performance
 of PRD in this new setup
 is in progress.
  This will offer us substantial
flexibility in creating the
surrogate model.

Preliminary results of using reduced model for
creating the surrogate

  The optimized base does a better job with less information. Here obtained with using fewer
iterations in the steady-state neutronic model.

PRD, computation of derivatives
  There is a possibility that some calculations in the model are inherently non-smooth

Some of the reasons are:
- incomplete convergence of a differentiable structure
- a switch between branches in the control structure of the code
- very stiff numerical effect

The options are:
- build a smoothing interpolation and differentiate that
- re-design just this model part to be smooth
- re-design just this model part to add capability to output it own (discontinuous?) derivative

approximations, maybe by finite differences

  Detection of such places in the model flow requires automatic tracing tools. Fortunately, AD tools
have this capacity (with some development effort required to search for specific features).

Uncertainty Quantification, UQ
  Task of UQ: to relate the information on uncertainty in the
inputs (and parameters) of the model to the resulting
 variation in the outputs. Ultimately leads to improvement
 in efficiency and safety.

 Difficulties:
 - the information on statistical properties of inputs is scarce, disorganized.
 - convenient representation of uncertainty is not available
 - input space has large dimension
 - model evaluation is computationally expensive
 - it is unclear which points in input space are representative
 - model code is too complex for direct study
 - UQ is misunderstood: customers expect either fast, locally

 valid, a priori constructed solutions, or extensive code-rewriting.

Uncertainty Quantification, UQ
  Standards for UQ in nuclear engineering simulations can be improved:

“Complex” means “coupled system of several parts”, should mean “arbitrary complexity”

“Large” means “dimension 10, processed at once”, should mean “dimension 100, 1000”

“High-precision” means “error of 10%, improved by sampling”, should mean “error of 1%”

  We propose to efficiently model the propagation of uncertainty through complex simulation
models. This is achieved by sampling-based methods, but with additional information for each
considered point in the uncertainty space extracted by methods of automated learning.

  The goal is to construct a goal-oriented (a posteriori), globally valid, flexible representation of the
effect of uncertainty on the outputs.

UQ Challenges for Complex Nuclear Models
DISCUSSION

Mihai Anitescu and Hany Abdel-Khalik

(Some ?) Components of the Uncertainty
Quantification.

  Uncertainty analysis of model predictions: given data about uncertainty parameters
 and a code that creates output from it characterize y.
  Validation: Use data to test whether the UA model is appropriate.
  Error Model: Use data to fix portions of that are incorrect or unresolved (I have seen

this in climate, not so much in NE)

  Challenge one: create model for from data. (Mihai’s definition of UQ) It
does not need to be probabilistic (see Helton and Oberkampf RESS special issue) but it
tends to be.

  Challenge two: uncertainty propagation. Since is expensive to compute, we cannot
expect to compute a statistic of y very accurately from direct simulations alone (and there
is also curse of dimensionality).

  Therefore, in UP, one must assess the error made in approximating the system response
by

C1: Quantification of Uncertainty Challenges

  Previous data processing approaches were
tuned towards point estimates (see liquid Na
Cp). Nowadays we need functional estimates,
to do uncertainty propagation through multiply
coupled codes, where condition (such as T
here) vary.

  The original data, however, may not be
available, and experiments are expensive.

  Q1: Can we reconstruct realistic covariance
information, using other constraining factors
(such as smoothness here) ?

  Q2: Can we mesh empirical point estimates
with code-based higher order moments?

  Q3: What are better data models for UQ with
high-fidelity physics?

C2: Propagation of uncertainty challenges

  Once the probabilistic model exists, we need to propagate it through the code.
Nevertheless, expensive codes make it likely that we will not be able to reach the desired
accuracy for a statistic of y, through sampling alone.

  We must then create a model of the response from a limited number of samples, which
has its own error

  What is the appropriate statistical error model of the approximation and how do we
get the best approximation from a given amount of computational power (use
derivatives ?)

  Can one use multiple codes with different physics resolution to do UP at a smaller cost?
(and which is still of high quality)?

  Can I create high quality reduced model for the same purpose?
  Is full-system adjoint calculation ready for prime time, and can it be used to this end?

ε

How to Design Computational Experiments to
reduce Uncertainty Propagation Error ?

  If running the computational experiments is expensive, then we must choose the best
points at which to run them, the points which will result in the smallest error.

  What is the best strategy for running such experiments?
  Can we gain something by considering hierarchies of models with different physics? How

should these combined experiments be designed?

6/15/10
Mathematics and Computer Science

3
7

Spatio-temporal statistics
•  How do I create high fidelity uncertainty fields for statistical downscaling?

•  Can I use this to understand errors in approximate closure models, such as LES?

  Possible Solu+on Gaussian Processes (Kriging):  

  Perception: Gaussian Distributions are easy:

  Fact: Computations of large scale Gaussian distribu+ons is not resolved. Need
matrix-free square root and determinant of Covariance Matrix.

6/15/10 3
8

How do I simulate from GP?

Mathema+cs and Computer Science 

  Recommended solution:
Take Cholesky of The
Covariance matrix, cannot
possibly scale.

  Our solution: Matrix-free
calculation of Q^0.5*N(0,I)
(Chen, Anitescu, Saad) –
not really attacked before.

  Example: GP with 10^6 data
sites.

  Future: How does it scale on
multicore architectures?

