
Solving Large-Scale
Differential Variational

Inequalities in Dense
Granular Flow

Mihai ANITESCU ,
 Argonne National Laboratory

With Dan Negrut,(Wisconsin) and A.
Tasora (Parma)

Hybrid System Workshop
OPTIM-A UIUC 2009

Contact dynamics applications

 Granular Flow,
 Masonry Stability,
 Rock Dynamics.
 Agent-Based Modeling

(Pedestrian Evacuation
Dynamics).

 Physics-based graphics
simulations.

 Most common
approaches by far are
smoothing approaches
(DEM)

What is DVI?

 Differential variational inequalities: Mixture of
differential equations and variational inequalities.

 In the case of complementarity,

DVI: This session.

 Mihai Anitescu: Large-scale DVI appearing in Granular
flow.

 Vijay Kumar: DVI for robotics manipulation with cables.
 Dan Negrut: Solving large-scale DVI on GPU.

Nonsmooth contact dynamics—a type of DVI
 Differential problem with variational inequality constraints –

DVI

 Truly, a Differential Problem with Equilibrium Constraints
Friction Model

Newton Equations Non-Penetration Constraints

Generalized Velocities

DVIs: Further consideration

 DVIs recently identified as distinguished problem class
mixing ODE and VI by Pang and Stewart.

 DVIs appear whenever both dynamics and inequalities/
switching appear in model description.

 Dense granular flow. The second most-manipulated
industrial material after water!
–  It still has no suitable continuum theory, since it can

exhibit simultaneous gas, liquid or solid behavior.
–  Direct numerical simulation—like ours -- and

experiments are the only discovery tools.
–  It appears in PBR, and pebble bed breeding

blanket in ITER.

DVI: Time-stepping

 Idea: Approximate with a discrete time dynamical
system which is stable and enforces inequality
constraints exactly.

 Generic time-stepping scheme (Pang and Stewart)

 Investigations in this area have build on work by
Moreau (196*), Glocker and Pfeiffer, Stewart and
Trinkle, Pang and Trinkle, and many others.

Smoothing/regularization/DEM

  Recall, DVI (for C=R+)

  Smoothing

  Followed by forward Euler.
Easy to implement!!

  Compare with the complexity
of time-stepping

 Which is faster?

Smoothing (1) Applying ADAMS to granular
flow

  ADAMS is the workhorse of
engineering dynamics.

  ADAMS/View Procedure for
simulating.

  Spheres: diameter of 60 mm
and a weight of 0.882 kg.

  Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1

ADAMS versus ChronoEngine

Time stepping has far better potential at efficiency

Smoothing (2) Simulating the PBR nuclear
reactor
 Generation IV nuclear reactor

with continuously moving fuel.
 Previous attempts: DEM methods

on supercomputers at Sandia
Labs regularization)

 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

Simulations with DEM. Bazant et al. (MIT and Sandia laboratories).

Simulating the PBR nuclear reactor
  160’000 Uranium-Graphite

spheres, 600’000 contacts on
average

  ~Two millions dual variables.
  1 CPU day on a single

processor…
 We estimate 3CPU days,

compare with 150 CPU days
for DEM !!!

Time Stepping – How did we get here?
  To make competitive with DEM, use relaxation and linearization-based

stabilization, (convex QP with conic constraints):
  We show convergence, but did we destroy the predictive power?

But In any case,
converges to same
MDI as unrelaxed
scheme.

[see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics”]

(For small µ and/or
small speeds, almost
no one-step
differences from the
Coulomb theory)

Pause: what does convergence mean here?

Pause(2) : What does convergence mean
here?

Further insight.

 The key is the combination between relaxation and
constraint stabilization.

 If the time step is smaller than the variation in
velocity then the gap function settles at

 So the solution is the same as the original scheme
for a slightly perturbed gap function…..

What is physical meaning of the relaxation?

 Origin

 Behavior

Cone complementarity

  Aiming at a more compact formulation:

 

Cone complementarity problem at each step

  Also define:

  Then:

becomes..

This is a CCP,

CONE COMPLEMENTARITY
PROBLEM

Cone complementarity—Decomposable
cones.

  Here we introduced the convex cone

  ..and its polar cone:

CCP:

In R^3 is i-th friction cone

is R

General: The iterative method (Anitescu-
Tasora 09).

  How to efficiently solve the Cone Complementarity Problem for large-
scale systems?

  Our method: use a projected iteration (Gauss-Seidel)

  with matrices:
  ..and a non-extensive
orthogonal projection
operator onto feasible set

NT=

General: The iterative method

 ASSUMPTIONS

 Under the above assumptions, we
can prove THEOREMS about convergence.

 The method produces a bounded sequence
with an unique accumulation point.

Always satisfied in
multibody systems

Use ω overrelaxation
factor to adjust this

Essentially free
choice, we use
identity blocks

Validation of projected GS convex relaxation
time-stepping: PBR

Validation: PBR: Packing statistics (T & A, 09)

DVI: Time-stepping validation : Hopper
(Tasora, Anitescu, 2009)

Hopper experiment and simulation: Images

t=0s t=0.6s t=1.2s

Hopper Results: Velocity

 Note that there are sphere measurement errors of 2%,
and particle-wall friction variations of 10% (reduced by
climate control).

Future work

 N non symmetric, but positive semidefinite.
 Parallelizing the algorithms: block Jacobi with Gauss

Seidel blocks, or coloring GS (50% there).
 Huge scale simulation. Multigrid for rigid multibody

dynamics?
 Including a good collision model– here we are at a loss

with rigid body theory – may need some measure of
deformability – convolution complementarity.

 Involving other physics … fluid flow.
 Compare with experimental data.

Conclusions

 We have defined a new algorithm for complementarity
problems with conic constraints, that solves CONVEX
subproblems.

 We have shown that it can solve very large problems
in granular flow far faster than DEM.

 It is the first iterative algorithm that provably converges
for nonsmooth rigid body dynamics.

 We have shown that it correctly computes the statistics
of dense granular flow by validation with PHYSICAL
experiment

What are roadblocks to DVI progress?

 Need to extend the use of time-stepping methods –
new applications and new extensions.

 Need to accommodate heterogeneous systems, that
may have sharply different time scales – multirate
methods

 Need to efficiently solve very large scale problems
10^7-10^9 variables.
–  Use semismooth Newton methods to exploit the

high time coherence of the solution.
–  Use domain decomposition and multigrid methods

for efficiently solving the linear systems.

New applications: Stochastic Optimization of
Integrated Energy Systems under Uncertainty

 Stochastic Optimization of hybrid systems with
weather uncertainty info can result in enormous cost
and energy savings (Zavala, Anitescu, et al, 2009).

 But a SO problem must be solved in real-time in
nonlinear model predictive control (NLMPC).

DVI for real-time model predictive control

 The problem to be solved is:

 But the optimal control u can be obtained by sensitivity
analysis and results in a DVI!

 Current real-time approaches do smoothing, we expect
time-stepping will be faster, as in the granular case.

Solving DVIs with sharply different time
scales

 E.g. special physics
pebble in PBR or rover
on Mars.

 It is inefficient to run the
simulation at the time
scale of the rover, the
advantage of time-
stepping methods is lost.

 We propose to
investigate a multirate
algorithm for DVI.

A predictor-corrector multirate approach.

 Assume a separation of variables, in regular and
important (‘fast’) variables:

 Advance all variables by a “large” time step H, and
interpolate the regular variables between the interval
endpoints, creating

 In the corrector step, solve the reduce problem for the
important variables, with much smaller time step, h.

Applied mathematics questions -- Multirate.

 How do we choose the fast and slow variables.
 Is the predictor-corrector scheme convergent? We plan

to investigate this using perturbation theory of VI.
 What is a good interpolation scheme that results in

minimum violation of the constraints in the corrector
step?

 We point out that convergence results for multirate
methods for ODE and PDE cannot be extended due to
the existence of the inequality constraints – even the
DAE case is not completely solved

The time-stepping subproblem

 It is a generalization of optimization over cones.
 The cones of interest are or low-dimensional

second-order cone.

 Its most common form: cone complementarity problem

How to solve very large DVI instances by
time-stepping?

 The solution of the time-stepping subproblem has a
high time coherence.

 Therefore it will be useful to easily restart it from the
solution of the past problem “warm-start” it.

 Interior point with CHOLMOD (Petra et al., OMS, 09)
has shown important potential for this problem.

 Nonetheless, interior-point approaches are hard to
warm-start. In addition, the difficulty in solving the
Newton steps with iterative methods due to scaling
issues, have pointed us towards semismooth methods.

Semismooth methods for large-scale DVI

 Rephrase as semismooth nonlinear equation-Newton.

 Use Jordan-algebra-based Fischer-Burmeister functions, in the
case of second-order cones (B-subdifferential from Pan 08) .

Applied Math Questions -- Semismooth

 The key difference is the existence of the second-order
cone

 If N is symmetric, can we obtain a symmetric system
that does not have conditioning problems (Extend the
Benson – Munson method to cone case).

 Can it still be warm-started well?
 What is an appropriate globalization strategy ?
 This method will be implemented in TAO.

Solving the large-scale linear system

 We use methods inspired by PDEs, since in many
DVIs the system has macroscale coherence, but the
macroscale constitutive laws are not know.

  For dense granular flow DVI, many times the problem
does homogenize after about 5 atomic layers to an
unknown parabolic-like behavior. We use domain
decomposition.

 For DVIs with different co-existing regimes, and
different macroscale variables, we use adaptive
multigrid approaches, based on compatible relaxation.

Solving the large-scale linear equations:
domain decomposition

 Robust first step for extending the size of the problems
resolved efficiently.

 We will investigate both additive Schwarz
preconditioning approaches, as well as nonlinear
domain decomposition, with subdomains
and metadomains

 AM issues: size of domain overlap, partitioning
strategies, subproblem resolution precision.

Large-scale linear problem– multigrid.

 For adaptative and different macroscale variable
problems: compatible-relaxation (CR)

 CR: GS while keeping the coarse variable constrained.

 Use speed of convergence of CR do decide which
variables should be kept in the coarse level.

 Solve an algebraic subproblem to determine the
coarsening rules and interpolation operator.

 The impressive results for discrete state problems of
CR AMG recommends it despite its risks.

A graph-based representation for DVI.

 The usual abstraction where function and Jacobian
information is computed by the user seems difficult to
manipulate optimally, particularly in environments
where there is a premium on communication.

 It would be helpful if the representation naturally allows
modeling of the problem and problem resolution in the
same memory space.

 We propose to restrict our attention to problems that
have a graph-like incidence structure, which covers all
our motivating cases.

 Since the type of functions and constraints attached to
an edge is very small, minimal information needs to be
passed around, except for the incidence info.

A graph-based representation for DVI:

Milestones

DVI accomplishment highligh: GPU
implementation
 GPU implementation of the Anitescu-Tasora algorithm.

(Tasora et al., (4)), NVIDIA with 16 stream processors.

CPU GPU
Number of

Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time
CCP

Speedup
CD

Speedup
Step

Speedup

128000
103.6665

8 3.80176
109.3428

7 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208

Proposed Research Outline: Advanced
Methods for DVI.

 DVI: Motivating applications and comparison with
regularization methods-DEM.

  DVI: validation of time-stepping schemes.
  Research needs and proposed solutions.
  Implementation framework.

Applying ADAMS to granular flow

  ADAMS is the workhorse of
engineering dynamics.

  ADAMS/View Procedure for
simulating.

  Spheres: diameter of 60 mm
and a weight of 0.882 kg.

  Forces:smoothing with
stiffness of 1E5, force
exponent of 2.2, damping
coefficient of 10.0, and a
penetration depth of 0.1

ADAMS versus ChronoEngine

Conclusion 1: Often, time stepping is more promising,

Time stepping scheme -- original

  A measure differential inclusion solution can be obtained by time-stepping
(Stewart, 1998, Anitescu 2006)

Speeds

Forces

Bilateral constraint
equations

Contact constraint
equations

Coulomb 3D friction
model

Stabilization

 terms

COMPLEMENTARITY!

Reaction
impulses

Time Stepping -- Convex Relaxation

  A modification (relaxation, to get convex QP with conic constraints):

But In any case,
converges to same
MDI as unrelaxed
scheme.

[see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics”]

(For small µ and/or
small speeds, almost
no one-step
differences from the
Coulomb theory)

Cone complementarity

  Aiming at a more compact formulation:

 

Cone complementarity problem at each step

  Also define:

  Then:

becomes..

This is a CCP,

CONE COMPLEMENTARITY
PROBLEM

Cone complementarity—Decomposable
cones.

  Here we introduced the convex cone

  ..and its polar cone:

CCP:

In R^3 is i-th friction cone

is R

General: The iterative method

  Question 3: How to efficiently solve the Cone Complementarity Problem
for large-scale systems?

  Our method: use a fixed-point iteration

  with matrices:
  ..and a non-extensive
orthogonal projection
operator onto feasible set

NT=

The projection operator is easy and separable

  For each frictional contact constraint:

 For each bilateral constraint, simply do nothing.
 The complete operator:

Simulating the PBR nuclear reactor

 Problem of bidisperse granular
flow with dense packing.

 Previous attempts: DEM methods
on supercomputers at Sandia
Labs regularization)

 40 seconds of simulation for
440,000 pebbles needs 1 week
on 64 processors dedicated
cluster (Rycroft et al.)

Simulations with DEM. Bazant et al. (MIT and Sandia laboratories).

Simulating the PBR nuclear reactor
  160’000 Uranium-Graphite

spheres, 600’000 contacts on
average

  Two millions of primal
variables, six millions of dual
variables

  1 day on a Windows station…
  But we are limited by the 2GB

user mode limit, 64 bit port in
progress—but linear scaling..

 We estimate 3CPU days,
compare with 450 CPU days
for an incomplete solution in
2006 !!!

  Answer 3: Our approach is
efficient for large scale!!

Research needs

 What do we need to
extend the reach of DVI?

In addition, we can approach efficiently
approach many engineering problems (see
website for papers)

Scaling/constraint accuracy test:

  Size-segregation in shaker, with thousands of steel spheres

Note: solution beyond
reach of Lemke-type LCP
solvers!

Tests

 Feasibility accuracy increases with number of iterations:

Speed violation in constraints Position error in constraints (penetration)

(with example of 300 spheres in shaker)

Tests: Scalability
 CPU effort per contact, since our contacts are the problem variables.
 Penetration error was uniformly no larger than 0.2% of diameter.

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres

Preliminary Results for GS on large problems
on GPU

CPU GPU

Number of Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time CCP Speedup CD Speedup Step Speedup

8000 5.26725 0.10655 5.47370 0.39600 0.12288 0.54658 13.3010 0.8671 10.0144

16000 11.18999 0.23601 11.63754 0.74096 0.15337 0.95315 15.1020 1.5388 12.2095

32000 23.28647 0.55861 24.28257 1.46889 0.21752 1.80878 15.8531 2.5680 13.4249

64000 49.16970 1.36559 51.44442 3.12925 0.36476 3.75152 15.7130 3.7438 13.7130

128000 103.66658 3.80176 109.34287 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208

Comparison with experimental data PBR

Packing statistics

References (preprints are at authors’ web
site)

 M Anitescu, A. Tasora. ”An iterative approach for cone
complementarity problems for nonsmooth dynamics”.
Preprint ANL/MCS-P1413-0507, May 2007.

 M. Anitescu. Optimization-based simulation of
nonsmooth dynamics. Mathematical Programming,
series A, 105, pp 113–143, 2006.

 Madsen, J., Pechdimaljian, N., and Negrut, D., 2007.
Penalty versus complementarity-based frictional
contact of rigid bodies: A CPU time comparison.
Preprint. TR-2007-05, Simulation-Based Engineering
Lab, University of Wisconsin, Madison.

Multi-core multithreaded parallelism

  Trend in CPU: add multi-core. Today, dual cores. Tomorrow:
4,8,16, ..

 Multi-cores allow at least nt threads (or fibers) to run in parallel:

  With nc cores, maximum ncx expected speedup (ex. <2x speedup in dual
core)

  In Win/Posix/Linux, multithreading C++ API is done in similar
ways.

  Thread switching is almost instant (unlike process multitask
switching)

  All RAM memory can be shared among threads

Multi-core multithreaded parallelism

 Problems caused by memory sharing in
multithreading:

 Race conditions: since OS can switch threads
‘randomly’, the order of execution of parallel
instructions can be non-deterministic
 need of synchronization tricks (ex. semaphores)

 Resource locking: double write access to the same
address of shared RAM must be avoided!  need
of mutexes, or spinlocks, or semaphores

Multi-core multithreaded parallelism

 A basic multi-threaded variant of our iterative solver
can be easily implemented on multi-core CPU systems

 At each iteration, the loop over all constraints (the
expensive part) is subdivided to multiple threads:

 Each update of constraint multiplier requires the update
of the speed vector v (only for 6+6 elements relative to
the two connected bodies), so there is the risk that two
threads want to update the speed of the same body…
–  This ‘conflict’ risk is low if nb >> nt

–  Problem can be solved using spinlock or mutex
–  Nondeterministic algorithms? (no-sync)

Multi-core multithreaded parallelism

 Multithreaded version of the algorithm
 PHASE 1.a:

•  All contacts are divided among
nt threads

•  Very simple: computations
never overlap write addresses!

i-th contact

Multi-core multithreaded parallelism

PHASE 1.b:

Th
re

ad
 1

Th

re
ad

 2

i-th constraint

•  All constraints are divided
among nt threads

•  Very simple: computations
never overlap write addresses!

Multi-core multithreaded parallelism

PHASE 2.a: contacts •  All contacts are divided among nt
threads

•  The results are 6+6 block-stores in
speed vector, so there is the risk of
WRITE CONFLICT!

Multi-core multithreaded parallelism

PHASE 2.b: bilateral •  The results are 6+6 block-
increments in speed vector, so there
is the risk of WRITE CONFLICT!

[similar to PHASE 2.a – do not show graphs]

Multi-core multithreaded parallelism

  PHASE 2.c:

 Here just remember that

v(l)+ h M -1 f

•  All variables (bodies) are divided
among nt threads

•  Very simple: computations never
overlap write addresses!

Multi-core multithreaded parallelism
 PHASE 3 (to be repeated for a set number of iterations):

•  All contacts are divided among nt
threads

This first sub-step is easy:
computations never overlap
write addresses

Multi-core multithreaded parallelism

 PHASE 3 (to be repeated for iterations): •  All contacts are divided among nt
threads

This second sub-step is easy: it is
the projection onto friction cone

Multi-core multithreaded parallelism

 PHASE 3 (to be repeated for iterations): •  All contacts are divided among nt
threads

This third sub-step is easy

Multi-core multithreaded parallelism
 PHASE 3 (to be repeated for iterations): •  All contacts are divided among nt

threads

This fourth sub-step is similar to phases 2.a/2.b:
results are 6+6 block-stores in speed vector, so
there is the risk of WRITE CONFLICT!

Multi-core multithreaded parallelism

 PHASE 3 (to be repeated for iterations): •  All constraints are divided among
nt threads

(we do not discuss the loop on bilateral
constraints because it is the same as the four
steps detailed before)

Multi-core multithreaded parallelism
 How to avoid the possible write-conflicts in shared memory, introduced
in Phases 2.a, 2.b and 3 (fourth step) ?
 SOLUTION 0
 Do nothing, and just tolerate the risk of non-atomic updates of floating point
values.
(Maybe I’ve been lucky: this never caused problems so far… Anyway, remember
Murphy’s laws, etc.)
 SOLUTION 1
 Introduce a shared single mutex (called ‘critical section’ in Windows API) to be
raised each time the v vector is written by some thread.
 + simple implementation
-- each single thread will halts all threads even when not needed
 SOLUTION 2
 Allocate nb mutexes, each per body.
 + simple implementation, good performance
 -- will waste RAM when dealing with thousands of bodies

Multi-core multithreaded parallelism
 How to avoid the possible write-conflicts in shared memory,
introduced in Phases 2.a, 2.b and 3 (fourth step) ?
 SOLUTION 3
 Allocate a fixed amount of mutexes into an hash-table. When a thread
need to write in a body, it quickly transforms the body index into an hash-
table index using an hash function, then blocks the corresponding mutex into
that bucket.
 If the number of mutexes in the hash table is an order of magnitude larger than the
number of parallel threads, it is unlikely that we get ‘false conflict’, and performance is as
good as if we have as many mutexes as bodies.

 + good performance, do not waste RAM
 -- not so easy to implement

Body 1
Body 2
Body 3
Body 4

Body 997
Body 998
Body 999
Body 1000

…..

Ex: no conflict

Hash table
of mutexes

Body 1
Body 2
Body 3
Body 4

Body 997
Body 998
Body 999
Body 1000

…..

Ex: conflict
(one thread will wait for the other)

Hash table
of mutexes

Body 1
Body 2
Body 3
Body 4

Body 997
Body 998
Body 999
Body 1000

…..

Ex: false conflict
 (one thread will wait for the other)

Hash table
of mutexes

Hashing fx (thread 2)
Hashing fx (thread 1)

GP-GPU stream-kernel parallelism
 GPU, Graphical Processor Units = many “stream

processors”
 Clusters of “multiprocessors” ( hundreds of parallel

threads)
 Recent GPU have floating-point capability claimed IEEE

single

 Can be used for general purpose parallel
computation
(GP-GPU = General Purpose GPU)

 Nvidia offers CUDA as a programming
API-SDK to exploit GPU multiprocessors
for scientific computing! (G80 family)

 Nvidia sells cheap TESLA boards, a
low-cost way to get 1TeraFlop parallel
computing power.

GP-GPU stream-kernel parallelism

 Performance: > 1000 GFLOPS with recent GPU
processors

From Nvidia CUDA docs, 2007

GP-GPU stream-kernel parallelism

 SIMD (non-VonNeumann) architecture:
  Single Instruction (“kernel”) on..

  Multiple Data (“stream”)

 Our iterative method for multibody can be implemented as SIMD

  High internal memory bandwidth (>80 GB/s),
but CPU GPU bottleneck (max 3.7 GB/s upload, 2 GB/s
download)

GP-GPU stream-kernel parallelism

 We adopt the CUDA SDK to
develop C++ code which can
easily exploit the capabilities of
the G80 boards from NVIDIA.

–  With CUDA, one can write
‘kernels’ (functions executed in
parallel) in C-like language.

–  Kernels are executed in ‘blocks’
of parallel threads.

–  Multiple blocks can be arranged
in ‘grids’

GP-GPU stream-kernel parallelism
 Memory issues..
 Not all memory write/reads are cost-less
 On G80 boards :
-  Global memory: >1Gb of DRAM (but >100 clock cycles of write/read

latency)
-  Shared memory: few kBytes per multiprocessor, but no latency

-  Shared memory has limitations:
 A shared memory cache per thread block  blocks cannot communicate
 Shared memory cache is limited in size (16kBytes on G80 boards)

GP-GPU stream-kernel parallelism

 Relevant design constraints
–  How many threads per thread block? Max 512

(hardware limit)
Too many threads: waste the shared memory cache.
Too few threads: multiprocessors cannot hide global memory

latency.
Suggested: 128 threads per block or more.

–  How many thread blocks per grid?
At least as many as available multiprocessors (ex. 12 on

8800 GT)
Suggested: 100 blocks per grid or more.

Examples

  Benchmark: contacts between articulated objects (contacts + bilateral
joints)

Note: real-time simulation

Examples
  Benchmark: contacts between many polytopes and high friction

coeff.

High stacks of objects: a
typical difficult benchmark.

Even smallest CCP errors
may compromise stability.

 Many iterations needed,
otherwise unstable and falls.
Indicates need for
preconditioning or warm
starting; subject of future
research.

100 iterations: STABLE

Few iterations: UNSTABLE

Examples

 Refueling in a PBR nuclear
reactor

- Up to 300’000 uranium-graphite pebbles

- Dense bidisperse granular flow problem:
hard to simulate

- Our method requires hours on 1CPU
where other approach (DEM) requires
weeks on 64 .

- Currently, we are doing 30,000 pebbles
in about 2 hrs CPU on windows Laptop,
maximum 120,000 contacts and
+500,000 impulse variables.

For details on PBR reactors, see Bazant et al. (MIT)

Some open problems

 Slow convergence for high mass ratios (many
iterations needed for reasonable precisions).

 How to introduce a more advanced friction model?
Ex: different static and kinematic friction coefficients,
etc.
Note: anisotropic friction would be easy.

 How to precondition (to make the number of iterations
constant for same penetration error and vastly
increasing number of bodies?) though warm starting
may contribute a lot here.

 Collisions with restitution: not discussed here..

Future work

 Optimization of C++ source, aiming at simulations with
500’000 bodies on a single PC.

 Implementation on parallel machines. Multithreading.

 Persistent contact manifold, for warm starting the
method

 Recent GP-GPU processors should be exploited for
massive low-cost parallelism (SIMD stream-kernel
architecture)

Conclusions
 Approach based on Time Stepping Methods

 Solution by means of fixed point iteration, with no
polygonal cone approximation.

 Fast, robust, matrix-less iterative scheme

 Fits well in real-time scenarios, since can be stopped
early with a good solution.

 Tested with more than 500’000 constraint multipliers,
scales well.

 Implemented in a C++ multibody simulation
middleware Chrono::Engine (developer by Tasora)
(http://www.deltaknowledge.com/chronoengine)

Introduction
  Example: a walking robot, simulated using our approach

Introduction
  Unilateral constraints, friction, impacts are frequent in mechanisms
  They result in discontinuities in velocity non-smooth dynamics

Example: packaging device Example: radial gripper with 3D cams

Traditional ODE / DAE solvers
require smoothness!

Introduction

 Multi rigid body systems, n degrees of freedom

Only bilateral
constraints:

DAE / ODE:
Solve for unknown accelerations at each
time step using linear systems

O(n3) computational complexity [Gauss]

O(n) computational complexity with recent
methods [A.Tasora, D.Baraff]

Introduction

  .. Adding also non-
smooth constraints
(es.friction):

ODE or DAE + regularization methods
(trick: approximate with stiff force fields)

Stiffness: too small time steps!

“Time Stepping Methods” ,
“Vector Measure Differential Inclusions”

 DCP: Differential-Complementarity Problem

Embed complementarity problem, each step

How to solve complementarity problems?

ODE or DAE + “stop-and-restart” methods

Impracticable for complex systems!

N
O

N
O

O
K

Handle large steps, multiple discontinuities

Goal

 Develop a solver for complementarity problems in time
stepping methods with full cone formulation

 Must be able to handle thousands or millions of
constraints

 Iterative solver, matrix-less, linear-time, linear-space

 Robust: must handle ill-posed
and redundant constraints

 Efficient, fast, real-time if possible

Goal
 Why not use off-the-shelf LCP (Linear Complementarity) solvers

(PATH)?
 Most LCP solvers (Lemke, Dantzig) are based on exact simplex

methods with NP-hard complexity class. Risk of combinatorial
explosion!

Example (D.Stewart): Polyhedral approximation of friction cones, to feed into typical LCP solvers

Need for a custom iterative non-
linear complementarity solver

 We prefer an approximate O(n)
iterativem method

  LCP require finitely-generated
approximations of NL convex
sets, see the friction cones:

 We want no polyhedral
approximations, within a matrix-
free method for very large scal
ecomputation – not available

Team

 Mihai Anitescu

 Alessandro Tasora
–  University of Parma,
–  Author of

ChronoEngine

 Dan Negrut,
–  University of

Wisconsin
–  Former ADAMS

developer

Nonsmooth contact dynamics
 Differential problem with equilibrium constraints – DPEC.

Friction Model

It is a hybrid system – where is the
switching?

 When bodies enter contact (collision, plastic in the
previous formulation)

 Stick-Slip transition.

Pause: Constraint Stabilization

 Compared to original scheme

 Allows fixed time steps for plastic collisions.
 How do we know it is achieved? Infeasibility is one

order better than accuracy (O(h^2))

General: Theory

 Answer 2: Simple, but first result of this nature for conic
constraints—and HIGHLY EFFICIENT

Conic Complementarity IS NATURAL in
Coulomb Models.

  Coulomb model.

 Most previous approaches discretize friction cone to use LCP…
 Question 2: Can we still get convergence but not do that?

The algorithm

 Development of an efficient algorithm for fixed point iteration:

  avoid temporary data, exploit sparsity. Never compute explicitly the N matrix!

  implemented in incremental form. Compute only deltas of multipliers.

  O(n) space requirements and supports premature termination

  for real-time purposes: O(n) time

The algorithm is specialized, for minimum
memory use!

 

Simulating the PBR nuclear reactor

 The PBR nuclear reactor:
- Fourth generation design
- Inherently safe, by Doppler
broadening of fission cross
section

- Helium cooled > 1000 °C
- Can crack water (mass
production
of hydrogen)

- Continuous cycling of 360’000
graphite spheres in a pebble
bed

Granular
flow

Options and challenges for methods with no
smoothing

  Piecewise DAE (Haug, 86)
–  Plus : Uses well understood DAE technology
–  Minus: The density of switches, switching consistency, and

Painleve are problems.
  Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang &

Trinkle, 1995)
–  Plus: No consistency problem.
–  Minus: Density of switches and Painleve.

  Velocity-impulse time-stepping. (Moreau, 196*, 198*,199*, Stewart
and Trinkle, 1996, Anitescu & Potra, 1997)
–  Plus: No consistency, or Painleve. Some have fixed time

stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06).
–  Minus: Nonzero restitution coefficient is tough—but its value is

disputable in any case

New large scale computational opportunity
Graphical Processing Unit

IBM BlueGene/L—GPU
comparison

  Entry model: 1024 dual core nodes

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)

  Dedicated OS

  Dedicated power management solution

  Require dedicated IT support

  Price (2007): $1.4 million

  Same GPU power (2008): 7K!!!

Brick Wall Example…

  Times reported are in seconds for one second long simulation
  GPU: NVIDIA GeForce 8800 GTX

