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Contact dynamics applications 

 Granular Flow,  
 Masonry Stability,  
 Rock Dynamics.  
 Agent-Based Modeling 

(Pedestrian Evacuation 
Dynamics).  

 Physics-based graphics 
simulations. 

 Most common 
approaches by far are 
smoothing approaches 
(DEM)  



What is DVI?  

 Differential variational inequalities: Mixture of 
differential equations and variational inequalities. 

 In the case of complementarity,  



DVI: This session. 

 Mihai Anitescu: Large-scale DVI appearing in Granular 
flow.  

 Vijay Kumar: DVI for robotics manipulation with cables.  
 Dan Negrut: Solving large-scale DVI on GPU.  



Nonsmooth contact dynamics—a type of DVI 
 Differential problem with variational inequality constraints  – 

DVI 

 Truly, a Differential Problem with Equilibrium Constraints 
Friction Model 

Newton Equations Non-Penetration Constraints 

Generalized Velocities 



DVIs: Further consideration 

 DVIs recently identified as distinguished problem class 
mixing ODE and VI by Pang and Stewart.  

 DVIs appear whenever both dynamics and inequalities/ 
switching appear in model description.  

 Dense granular flow. The second most-manipulated 
industrial material after water!   
–  It still has no suitable continuum theory, since it can 

exhibit simultaneous gas, liquid or solid behavior.  
–  Direct numerical simulation—like ours -- and 

experiments are the only discovery tools.  
–  It appears in PBR, and pebble bed  breeding 

blanket in ITER.  



DVI: Time-stepping 

 Idea: Approximate with a discrete time dynamical 
system which is stable and enforces inequality 
constraints exactly. 

 Generic time-stepping scheme (Pang and Stewart) 

 Investigations in this area have build on work by 
Moreau (196*), Glocker and Pfeiffer, Stewart and 
Trinkle, Pang and Trinkle, and many others. 



Smoothing/regularization/DEM 

  Recall, DVI (for C=R+) 

  Smoothing  

  Followed  by forward Euler. 
Easy to implement!! 

  Compare with the complexity 
of time-stepping 

 Which is faster? 



Smoothing (1) Applying ADAMS to granular 
flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Time stepping has far better potential at efficiency 



Smoothing (2) Simulating the PBR nuclear 
reactor 
 Generation IV nuclear reactor 

with continuously moving fuel.  
 Previous attempts: DEM methods 

on supercomputers at Sandia 
Labs regularization) 

 40 seconds of simulation for 
440,000 pebbles needs 1 week 
on 64 processors dedicated 
cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  ~Two millions dual variables. 
  1 CPU day on a single 

processor… 
 We estimate 3CPU days, 

compare with 150 CPU days 
for DEM  !!! 



Time Stepping – How did we get here? 
  To make competitive with DEM, use relaxation and linearization-based 

stabilization, (convex QP with conic constraints): 
  We show convergence, but did we destroy the predictive power? 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small µ and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



Pause: what does convergence mean here? 



Pause(2) : What does convergence mean 
here? 



Further insight.  

 The key is the combination between relaxation and 
constraint stabilization. 

 If the time step is smaller than the variation in 
velocity then the gap function settles at  

 So the solution is the same as the original scheme 
for a slightly perturbed gap function….. 



What is physical meaning of the relaxation? 

 Origin 

 Behavior 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone  complementarity problem at each step 

  Also define:  

  Then:       

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



Cone complementarity—Decomposable 
cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



General: The iterative method (Anitescu-
Tasora 09). 

  How to efficiently solve the Cone Complementarity Problem for large-
scale systems? 

  Our method: use a projected iteration (Gauss-Seidel) 

  with matrices: 
  ..and a non-extensive 
orthogonal projection  
operator onto feasible set 

NT= 



General: The iterative method 

 ASSUMPTIONS 

 Under the above assumptions, we 
can prove THEOREMS about convergence. 

 The method produces a bounded sequence  
with an unique accumulation point. 

Always satisfied in 
multibody systems 

Use ω overrelaxation 
factor to adjust this 

Essentially free 
choice, we use 
identity blocks 



Validation of projected GS convex relaxation 
time-stepping: PBR 



Validation: PBR: Packing statistics (T & A, 09) 



DVI: Time-stepping validation : Hopper 
(Tasora, Anitescu, 2009) 



Hopper experiment and simulation: Images 

t=0s t=0.6s t=1.2s 



Hopper Results: Velocity 

 Note that there are sphere measurement errors of 2%, 
and particle-wall friction variations of 10% (reduced by 
climate control).  



Future work 

 N non symmetric, but positive semidefinite.  
 Parallelizing the algorithms: block Jacobi with Gauss 

Seidel blocks, or coloring GS (50% there).  
 Huge scale simulation. Multigrid for rigid multibody 

dynamics? 
 Including a good collision model– here we are at a loss 

with rigid body theory – may need some measure of 
deformability – convolution complementarity. 

 Involving other physics … fluid flow.  
 Compare with experimental data.  



Conclusions 

 We have defined a new algorithm for complementarity 
problems with conic constraints, that solves CONVEX 
subproblems. 

 We have shown that it can solve  very large problems 
in granular flow far faster than DEM. 

 It is the first iterative algorithm that provably converges 
for nonsmooth rigid body dynamics.  

 We have shown that it correctly computes the statistics 
of dense granular flow by validation with PHYSICAL 
experiment 



What are roadblocks to DVI progress?  

 Need to extend the use of time-stepping methods – 
new applications and new extensions.  

 Need to accommodate heterogeneous systems, that 
may have sharply different time scales – multirate 
methods 

 Need to efficiently solve very large scale problems 
10^7-10^9 variables. 
–  Use semismooth Newton methods to exploit the 

high time coherence of the solution.  
–  Use domain decomposition and multigrid methods 

for efficiently solving the linear systems.  



New applications: Stochastic Optimization of 
Integrated Energy Systems under Uncertainty 

 Stochastic Optimization of hybrid systems with 
weather uncertainty info can result in enormous cost 
and energy savings (Zavala, Anitescu, et al, 2009). 

 But a SO problem must be solved in real-time in 
nonlinear model predictive control (NLMPC).   



DVI for real-time model predictive control 

 The problem to be solved is:  

 But the optimal control u can be obtained by sensitivity 
analysis and results in a DVI! 

 Current real-time approaches do smoothing, we expect 
time-stepping will be faster, as in the granular case. 



Solving DVIs with sharply different time 
scales 

 E.g. special physics 
pebble in PBR or rover 
on Mars.  

 It is inefficient to run the 
simulation at the time 
scale of the rover, the 
advantage of time-
stepping methods is lost.  

 We propose to 
investigate a multirate 
algorithm for DVI. 



A predictor-corrector multirate approach.  

 Assume a separation of variables, in regular and 
important (‘fast’) variables: 

 Advance all variables by a “large” time step H, and 
interpolate the regular variables between the interval 
endpoints, creating  

 In the corrector step, solve the reduce problem for the 
important variables, with much smaller time step, h.  



Applied mathematics questions -- Multirate. 

 How do we choose the fast and slow variables.  
 Is the predictor-corrector scheme convergent? We plan 

to investigate this using perturbation theory of VI.  
 What is a good interpolation scheme that results in 

minimum violation of the constraints in the corrector 
step?  

 We point out that convergence results for multirate 
methods for ODE and PDE cannot be extended due to 
the existence of the inequality constraints – even the 
DAE case is not completely solved 



The time-stepping subproblem 

 It is a generalization of optimization over cones. 
 The cones of interest are           or low-dimensional 

second-order cone.  

 Its most common form: cone complementarity problem 



How to solve very large DVI instances by 
time-stepping?  

 The solution of the time-stepping subproblem has a 
high time coherence.  

 Therefore it will be useful to easily restart it from the 
solution of the past problem “warm-start” it.  

 Interior point with CHOLMOD (Petra et al., OMS, 09) 
has shown important potential for this problem. 

 Nonetheless, interior-point approaches are hard to 
warm-start. In addition, the difficulty in solving the 
Newton steps with iterative methods due to scaling 
issues, have pointed us towards semismooth methods.  



Semismooth methods for large-scale DVI 

 Rephrase as semismooth nonlinear equation-Newton. 

 Use Jordan-algebra-based Fischer-Burmeister functions, in the 
case of second-order cones (B-subdifferential from Pan 08) .  



Applied Math Questions -- Semismooth 

 The key difference is the existence of the second-order 
cone 

 If N is symmetric, can we obtain a symmetric system 
that does not have conditioning problems (Extend the  
Benson – Munson method to cone case). 

 Can it still be warm-started well?   
 What is an appropriate globalization strategy ? 
 This method will be implemented in TAO.   



Solving the large-scale linear system 

 We use methods inspired by PDEs, since in many 
DVIs the system has macroscale coherence, but the 
macroscale constitutive laws are not know.  

  For dense granular flow DVI, many times the problem 
does homogenize after about 5 atomic layers to an 
unknown parabolic-like behavior. We use domain 
decomposition.  

 For DVIs with different co-existing regimes, and 
different macroscale variables, we use adaptive 
multigrid approaches, based on compatible relaxation.  



Solving the large-scale linear equations: 
domain decomposition 

 Robust first step for extending the size of the problems 
resolved efficiently.  

 We will investigate both additive Schwarz 
preconditioning approaches, as well as nonlinear 
domain decomposition, with subdomains                          
and metadomains   

 AM issues: size of domain overlap, partitioning 
strategies, subproblem resolution precision.  



Large-scale linear problem– multigrid.  

 For adaptative and different macroscale variable 
problems: compatible-relaxation (CR) 

 CR: GS while keeping the coarse variable constrained. 

 Use speed of convergence of CR do decide which 
variables should be kept in the coarse level.  

 Solve an algebraic subproblem to determine the 
coarsening rules and interpolation operator.  

 The impressive results for discrete state problems of 
CR AMG recommends it despite its risks.  



A graph-based representation for DVI.  

 The usual abstraction where function and Jacobian 
information is computed by the user seems difficult to 
manipulate optimally, particularly in environments 
where there is a premium on communication.  

 It would be helpful if the representation naturally allows 
modeling of the problem and problem resolution in the 
same memory space.  

 We propose to restrict our attention to problems that 
have a graph-like incidence structure, which covers all 
our motivating cases.  

 Since the type of functions and constraints attached to 
an edge is very small, minimal information needs to be 
passed around, except for the incidence info.  



A graph-based representation for DVI: 



Milestones 



DVI accomplishment highligh: GPU 
implementation 
 GPU implementation of the Anitescu-Tasora algorithm. 

(Tasora et al., (4)), NVIDIA with 16 stream processors. 

CPU GPU 
Number of 

Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time 
CCP 

Speedup 
CD 

Speedup 
Step 

Speedup 

128000 
103.6665

8 3.80176 
109.3428

7 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208 



Proposed Research Outline: Advanced 
Methods for DVI.  

 DVI: Motivating applications and comparison with 
regularization methods-DEM. 

  DVI: validation of time-stepping schemes.  
  Research needs and proposed solutions.  
  Implementation framework.  



Applying ADAMS to granular flow 

  ADAMS is the workhorse of 
engineering dynamics. 

  ADAMS/View Procedure for 
simulating.  

  Spheres: diameter of 60 mm 
and a weight of 0.882 kg. 

  Forces:smoothing with 
stiffness of 1E5, force 
exponent of 2.2, damping 
coefficient of 10.0, and a 
penetration depth of 0.1 



ADAMS versus ChronoEngine 

Conclusion 1: Often, time stepping is more promising,  



Time stepping scheme -- original 

  A measure differential inclusion solution can be obtained by time-stepping 
(Stewart, 1998, Anitescu 2006) 

Speeds 

Forces 

Bilateral constraint 
equations 

Contact constraint 
equations 

Coulomb 3D friction 
model 

Stabilization 

 terms 

COMPLEMENTARITY! 

Reaction 
impulses 



Time Stepping -- Convex Relaxation 

  A modification (relaxation, to get convex QP with conic constraints): 

But In any case, 
converges to same 
MDI as unrelaxed 
scheme. 

[ see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics” ] 

(For small µ and/or 
small speeds, almost 
no one-step 
differences from the 
Coulomb theory) 



Cone complementarity 

  Aiming at a more compact formulation:  

           



Cone  complementarity problem at each step 

  Also define:  

  Then:       

becomes.. 

This is a CCP, 

CONE COMPLEMENTARITY  
PROBLEM 



Cone complementarity—Decomposable 
cones. 

  Here we introduced the convex cone 

  ..and its polar cone: 

CCP: 

In R^3 is i-th friction cone 

is  R 



General: The iterative method 

  Question 3: How to efficiently solve the Cone Complementarity Problem 
for large-scale systems? 

  Our method: use a fixed-point iteration 

  with matrices: 
  ..and a non-extensive 
orthogonal projection  
operator onto feasible set 

NT= 



The projection operator is easy and separable 

   For each frictional contact constraint: 

 For each bilateral constraint, simply do nothing. 
 The complete operator: 



Simulating the PBR nuclear reactor 

 Problem of bidisperse granular 
flow with dense packing.  

 Previous attempts: DEM methods 
on supercomputers at Sandia 
Labs regularization) 

 40 seconds of simulation for 
440,000 pebbles needs 1 week 
on 64 processors dedicated 
cluster (Rycroft et al.) 

Simulations with DEM.  Bazant et al. (MIT and  Sandia laboratories). 



Simulating the PBR nuclear reactor 
  160’000 Uranium-Graphite 

spheres, 600’000 contacts on 
average 

  Two millions of primal 
variables, six millions of dual 
variables 

  1 day on a Windows station… 
  But we are limited by the 2GB 

user mode limit, 64 bit port in 
progress—but linear scaling.. 

 We estimate 3CPU days, 
compare with 450 CPU days 
for an incomplete solution in 
2006 !!! 

  Answer 3: Our approach is 
efficient for large scale!! 



Research needs 

 What do we need to 
extend the reach of DVI? 



In addition, we can approach efficiently 
approach many engineering problems (see 
website for papers) 



Scaling/constraint accuracy test: 

  Size-segregation in shaker, with thousands of steel spheres 

Note: solution beyond 
reach of Lemke-type  LCP 
solvers! 



Tests 

 Feasibility accuracy increases with number of iterations: 

Speed violation in constraints Position error in constraints (penetration) 

(with example of 300 spheres in shaker) 



Tests: Scalability 
 CPU effort per contact, since our contacts are the problem variables. 
 Penetration error was uniformly no larger than 0.2% of diameter.   

Number of contacts in time, 300 spheres CPU time per step for 300-1500 spheres 



Preliminary Results for GS on large problems 
on GPU  

CPU GPU 

Number of Bodies CCP Time CD Time Step Time CCP Time CD Time Step Time CCP Speedup CD Speedup Step Speedup 

8000 5.26725 0.10655 5.47370 0.39600 0.12288 0.54658 13.3010 0.8671 10.0144 

16000 11.18999 0.23601 11.63754 0.74096 0.15337 0.95315 15.1020 1.5388 12.2095 

32000 23.28647 0.55861 24.28257 1.46889 0.21752 1.80878 15.8531 2.5680 13.4249 

64000 49.16970 1.36559 51.44442 3.12925 0.36476 3.75152 15.7130 3.7438 13.7130 

128000 103.66658 3.80176 109.34287 6.97682 0.74488 8.27050 14.8587 5.1038 13.2208 



Comparison with experimental data PBR 



Packing statistics 
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Multi-core multithreaded parallelism 

  Trend in CPU: add multi-core. Today, dual cores. Tomorrow: 
4,8,16, .. 

 Multi-cores allow at least nt threads (or fibers) to run in parallel: 

                With nc cores, maximum ncx  expected speedup (ex. <2x speedup in dual 
core) 

  In Win/Posix/Linux, multithreading C++ API is done in similar 
ways. 

  Thread switching is almost instant (unlike process multitask 
switching) 

  All RAM memory can be shared among threads 



Multi-core multithreaded parallelism 

 Problems caused by memory sharing in 
multithreading: 

 Race conditions: since OS can switch threads 
‘randomly’, the order of execution of parallel 
instructions can be non-deterministic  
 need of synchronization tricks (ex. semaphores) 

 Resource locking: double write access to the same 
address of shared RAM must be avoided!  need 
of mutexes, or spinlocks, or semaphores 



Multi-core multithreaded parallelism 

 A basic multi-threaded variant of our iterative solver 
can be easily implemented on multi-core CPU systems 

 At each iteration, the loop over all constraints (the 
expensive part) is subdivided to multiple threads:  

 Each update of constraint multiplier requires the update 
of the speed vector v  (only for 6+6 elements relative to 
the two connected bodies), so there is the risk that two 
threads want to update the speed of the same body… 
–  This ‘conflict’ risk is low if nb >> nt 

–  Problem can be solved using spinlock or mutex  
–  Nondeterministic algorithms? (no-sync) 



Multi-core multithreaded parallelism 

 Multithreaded version of the algorithm 
 PHASE 1.a:   

•  All contacts are divided among 
nt threads 

•  Very simple: computations 
never overlap write addresses! 

i-th contact 



Multi-core multithreaded parallelism 

PHASE 1.b:   

Th
re

ad
  1

 
Th

re
ad

  2
 

i-th constraint 

•  All constraints are divided 
among nt threads 

•  Very simple: computations 
never overlap write addresses! 



Multi-core multithreaded parallelism 

PHASE 2.a: contacts •  All contacts are divided among nt 
threads 

•  The results are 6+6 block-stores in 
speed vector, so there is the risk of 
WRITE CONFLICT! 



Multi-core multithreaded parallelism 

PHASE 2.b: bilateral •  The results are 6+6 block-
increments in speed vector, so there 
is the risk of WRITE CONFLICT! 

[similar to PHASE 2.a – do not show graphs] 



Multi-core multithreaded parallelism 

  PHASE 2.c: 

 Here just remember that 

v(l)+ h M    -1 f 

•  All variables (bodies) are divided 
among nt threads 

•  Very simple: computations never 
overlap write addresses! 



Multi-core multithreaded parallelism 
 PHASE 3  (to be repeated for a set number of iterations): 

•  All contacts are divided among nt 
threads 

This first sub-step is easy: 
computations never overlap 
write addresses 



Multi-core multithreaded parallelism 

 PHASE 3  (to be repeated for iterations): •  All contacts are divided among nt 
threads 

This second sub-step is easy: it is 
the projection onto friction cone 



Multi-core multithreaded parallelism 

 PHASE 3  (to be repeated for iterations): •  All contacts are divided among nt 
threads 

This third sub-step is easy 



Multi-core multithreaded parallelism 
 PHASE 3  (to be repeated for iterations): •  All contacts are divided among nt 

threads 

This fourth sub-step is similar to phases 2.a/2.b: 
results are 6+6 block-stores in speed vector, so 
there is the risk of WRITE CONFLICT! 



Multi-core multithreaded parallelism 

 PHASE 3  (to be repeated for  iterations): •  All constraints are divided among 
nt threads 

(we do not discuss the loop on bilateral 
constraints because it is the same as the four 
steps detailed before) 



Multi-core multithreaded parallelism 
 How to avoid the possible write-conflicts in shared memory, introduced 
in Phases 2.a, 2.b and 3 (fourth step) ?  
 SOLUTION 0 
 Do nothing, and just tolerate the risk of non-atomic updates of floating point 
values.  
(Maybe I’ve been lucky: this never caused problems so far… Anyway, remember 
Murphy’s laws, etc. ) 
 SOLUTION 1 
 Introduce a shared single mutex (called ‘critical section’ in Windows API) to be 
raised each time the v  vector is written by some thread. 
 +  simple implementation 
--  each single thread will halts all threads even when not needed 
 SOLUTION 2 
 Allocate nb mutexes, each per body.  
 +   simple implementation, good performance 
 --   will waste RAM when dealing with thousands of bodies 



Multi-core multithreaded parallelism 
 How to avoid the possible write-conflicts in shared memory, 
introduced in Phases 2.a, 2.b and 3 (fourth step) ?  
 SOLUTION 3 
 Allocate a fixed amount of mutexes into an hash-table. When a thread 
need to write in a body, it quickly transforms the body index into an hash-
table index using an hash function, then blocks the corresponding mutex into 
that bucket. 
 If the number of mutexes in the hash table is an order of magnitude larger than the 
number of parallel threads, it is unlikely that we get ‘false conflict’, and performance is as 
good as if we have as many mutexes as bodies. 

 +   good performance, do not waste RAM 
 --   not so easy to implement 

Body 1 
Body 2 
Body 3 
Body 4 

Body 997 
Body 998 
Body 999 
Body 1000 

….. 

Ex: no conflict 

Hash table 
of mutexes 

Body 1 
Body 2 
Body 3 
Body 4 

Body 997 
Body 998 
Body 999 
Body 1000 

….. 

Ex: conflict 
(one thread will wait for the other) 

Hash table 
of mutexes 

Body 1 
Body 2 
Body 3 
Body 4 

Body 997 
Body 998 
Body 999 
Body 1000 

….. 

Ex: false conflict 
 (one thread will wait for the other) 

Hash table 
of mutexes 

Hashing fx (thread 2) 
Hashing fx (thread 1) 



GP-GPU stream-kernel parallelism 
 GPU, Graphical Processor Units = many “stream 

processors”  
 Clusters of “multiprocessors” ( hundreds of parallel 

threads)  
 Recent GPU have floating-point capability claimed IEEE 

single 

 Can be used for general purpose parallel 
computation  
(GP-GPU = General Purpose GPU) 

 Nvidia offers CUDA as a programming 
API-SDK to exploit GPU multiprocessors 
for scientific computing! (G80 family) 

 Nvidia sells cheap TESLA boards, a 
low-cost way to get 1TeraFlop parallel 
computing power. 



GP-GPU stream-kernel parallelism 

 Performance: > 1000 GFLOPS with recent GPU 
processors   

From Nvidia CUDA docs, 2007 



GP-GPU stream-kernel parallelism 

 SIMD (non-VonNeumann) architecture:  
            Single Instruction  (“kernel”)  on.. 

            Multiple Data   (“stream”)  

 Our iterative method for multibody can be implemented as SIMD 

  High internal memory bandwidth (>80 GB/s),  
but CPU GPU bottleneck (max 3.7 GB/s upload, 2 GB/s 
download) 



GP-GPU stream-kernel parallelism 

 We adopt the CUDA  SDK to 
develop C++ code which can 
easily exploit the capabilities of 
the G80 boards from NVIDIA. 

–  With CUDA, one can write 
‘kernels’ (functions executed in 
parallel) in C-like language.  

–  Kernels are executed in ‘blocks’ 
of parallel threads. 

–  Multiple blocks can be arranged 
in ‘grids’  



GP-GPU stream-kernel parallelism 
 Memory issues.. 
 Not all memory write/reads are cost-less 
 On G80 boards : 
-   Global memory:  >1Gb of DRAM  (but >100 clock cycles of write/read 

latency) 
-   Shared memory: few kBytes per multiprocessor, but no latency 

-  Shared memory has limitations: 
 A shared memory cache per thread block  blocks cannot communicate 
 Shared memory cache is limited in size   (16kBytes on G80 boards) 



GP-GPU stream-kernel parallelism 

 Relevant design constraints 
–  How many threads per thread block?  Max 512 

(hardware limit) 
Too many threads: waste the shared memory cache.  
Too few threads: multiprocessors cannot hide global memory 

latency. 
Suggested:  128 threads per block or more.   

–  How many thread blocks per grid?  
At least as many as available multiprocessors (ex. 12 on 

8800 GT) 
Suggested: 100 blocks per grid or more. 



Examples 

  Benchmark: contacts between articulated objects   (contacts + bilateral 
joints) 

Note: real-time simulation 



Examples 
  Benchmark: contacts between many polytopes and high friction 

coeff. 

High stacks of objects: a 
typical difficult benchmark.  

Even smallest CCP errors 
may compromise stability.  

 Many iterations needed, 
otherwise unstable and falls. 
Indicates need for 
preconditioning or warm 
starting; subject of future 
research. 

100 iterations: STABLE 

Few iterations: UNSTABLE 



Examples 

 Refueling in a PBR nuclear 
reactor  

- Up to 300’000 uranium-graphite pebbles 

- Dense bidisperse granular flow problem: 
hard to simulate 

- Our method requires hours on 1CPU 
where other approach (DEM) requires 
weeks on 64 .  

- Currently, we are doing 30,000 pebbles 
in about 2 hrs CPU on windows Laptop, 
maximum 120,000 contacts and 
+500,000 impulse variables. 

For details on PBR reactors, see Bazant et al. (MIT) 



Some open problems 

 Slow convergence for high mass ratios (many 
iterations needed for reasonable precisions). 

 How to introduce a more advanced friction model? 
Ex: different static and kinematic friction coefficients, 
etc. 
Note: anisotropic friction would be easy. 

 How to precondition (to make the number of iterations 
constant for same penetration error and vastly 
increasing number of bodies?) though warm starting 
may contribute a lot here.  

 Collisions with restitution: not discussed here.. 



Future work 

 Optimization of C++ source, aiming at simulations with 
500’000 bodies on a single PC. 

 Implementation on parallel machines. Multithreading.  

 Persistent contact manifold, for warm starting the 
method 

 Recent GP-GPU processors should be exploited for 
massive low-cost parallelism (SIMD stream-kernel 
architecture) 



Conclusions 
 Approach based on Time Stepping Methods  

 Solution by means of fixed point iteration, with no 
polygonal cone approximation.  

 Fast, robust, matrix-less iterative scheme  

 Fits well in real-time scenarios, since can be stopped 
early with a good solution.  

 Tested with more than 500’000 constraint multipliers, 
scales well.  

 Implemented in a C++ multibody simulation 
middleware Chrono::Engine (developer by Tasora) 
(http://www.deltaknowledge.com/chronoengine) 



Introduction 
  Example: a walking robot, simulated using our approach 



Introduction 
  Unilateral constraints, friction, impacts are frequent in mechanisms 
  They result in discontinuities  in velocity non-smooth dynamics 

Example: packaging device Example: radial gripper with 3D cams  

Traditional ODE / DAE solvers 
require smoothness! 



Introduction 

 Multi rigid body systems, n degrees of freedom  

Only bilateral 
constraints: 

DAE / ODE:  
Solve for unknown accelerations at each 
time step using linear systems 

O(n3) computational complexity   [Gauss] 

O(n) computational complexity with recent 
methods [A.Tasora, D.Baraff] 



Introduction 

   .. Adding also non-
smooth constraints 
(es.friction): 

ODE or DAE + regularization methods  
(trick: approximate with stiff force fields) 

Stiffness: too small time steps! 

“Time Stepping Methods” , 
“Vector Measure Differential Inclusions” 

 DCP: Differential-Complementarity Problem 

Embed complementarity problem, each step 

How to solve complementarity problems?  

ODE or DAE + “stop-and-restart” methods 

Impracticable for complex systems! 

N
O 

N
O 

O
K 

Handle large steps, multiple discontinuities  



Goal 

 Develop a solver for complementarity problems in time 
stepping methods with full cone formulation  

 Must be able to handle thousands or millions of 
constraints 

 Iterative solver, matrix-less, linear-time, linear-space 

 Robust: must handle ill-posed 
and redundant constraints 

 Efficient, fast, real-time if possible 



Goal 
 Why not use off-the-shelf LCP (Linear Complementarity) solvers 

(PATH)? 
 Most LCP solvers (Lemke, Dantzig) are based on exact simplex 

methods with NP-hard complexity class. Risk of combinatorial 
explosion! 

Example (D.Stewart): Polyhedral approximation of friction cones, to feed into typical LCP solvers 

Need for a custom iterative non-
linear complementarity solver 

 We prefer an approximate O(n) 
iterativem method 

  LCP require finitely-generated 
approximations of NL convex 
sets, see the friction cones: 

 We want no polyhedral  
approximations, within a matrix-
free method for very large scal 
ecomputation – not available 



Team 

 Mihai Anitescu 

 Alessandro Tasora 
–  University of Parma,  
–  Author of 

ChronoEngine 

 Dan Negrut, 
–  University of 

Wisconsin 
–  Former ADAMS 

developer 



Nonsmooth contact dynamics 
 Differential problem with equilibrium constraints – DPEC. 

Friction Model 



It is a hybrid system – where is the 
switching?  

 When bodies enter contact (collision, plastic in the 
previous formulation) 

 Stick-Slip transition. 



Pause: Constraint Stabilization 

 Compared to original scheme 

 Allows fixed time steps for plastic collisions. 
 How do we know it is achieved? Infeasibility is one 

order better than accuracy (O(h^2)) 



General: Theory 

 Answer 2: Simple, but first result of this nature for conic 
constraints—and HIGHLY EFFICIENT 



Conic Complementarity IS NATURAL in 
Coulomb Models. 

  Coulomb model. 

 Most previous approaches discretize friction cone to use LCP… 
 Question 2: Can we still get convergence but not do that? 



The algorithm 

 Development of an efficient algorithm for fixed point iteration: 

   avoid temporary data, exploit sparsity. Never compute explicitly the N matrix! 

   implemented in incremental form. Compute only deltas of multipliers. 

   O(n) space requirements and   supports premature termination 

   for real-time purposes: O(n) time 



The algorithm is specialized, for minimum 
memory use! 

   



Simulating the PBR nuclear reactor 

 The PBR nuclear reactor: 
- Fourth generation design 
- Inherently safe, by Doppler 
broadening of fission cross 
section 

- Helium cooled > 1000 °C 
- Can crack water (mass 
production 
of hydrogen) 

- Continuous cycling of 360’000  
graphite spheres in a pebble 
bed 

Granular  
flow 



Options and challenges for methods with no 
smoothing 

  Piecewise DAE (Haug, 86) 
–  Plus : Uses well understood DAE technology 
–  Minus: The density of switches, switching consistency, and 

Painleve are problems. 
  Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & 

Trinkle, 1995) 
–  Plus: No consistency problem.  
–  Minus: Density of switches and Painleve. 

  Velocity-impulse time-stepping. (Moreau, 196*, 198*,199*, Stewart 
and Trinkle, 1996, Anitescu & Potra, 1997) 
–  Plus: No consistency, or Painleve. Some have fixed time 

stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06). 
–  Minus: Nonzero restitution coefficient is tough—but its value is 

disputable in any case 



New large scale computational opportunity 
Graphical Processing Unit  



IBM BlueGene/L—GPU 
comparison 

  Entry model: 1024 dual core nodes 

  5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU) 

  Dedicated OS 

  Dedicated power management solution 

  Require dedicated IT support 

  Price (2007): $1.4 million 

  Same GPU power (2008): 7K!!! 



Brick Wall Example… 

  Times reported are in seconds for one second long simulation 
  GPU: NVIDIA GeForce 8800 GTX 


