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Uncertainty quantification (characterization?) of 
parametric equations

Consider the parametric nonlinear equation

Question: How can I compute (or at least, efficiently approximate) the 
solution mapping            (and its distribution if        has a PDF)?
Sensitivity approach: Assume                   is linear and    Gaussian
Monte Carlo answer: 
– Use parameter PDF and sample

– Followed by “histogram” or other post processing. 
Difficulties: Monte Carlo is slow and sensitivity approach is restrictive to 
relatively small uncertainty. 
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Discussion of Objectives

Can we derive an uncertainty characterization method that is more 
general than sensitivity and quicker than Monte Carlo?
There are several promising avenues (including combinations of them)
– Randomized Quasi Monte Carlo?
– Higher order sensitivity
– Stochastic Finite Element

In this work we investigate the promise of Stochastic Finite Element
We concentrate on the parametric aspect alone (that is, approximating the 
mapping            and not its distribution (i.e. we look at the “hard” part, since 
with a good model, there is no need for further interaction with model)
We discuss issues appearing in evaluating uncertainty in NR with respect to 
crossections and other parameters. 
Contributions: Theoretical fundamentals for SFEM Galerkin approach and 
uncovered potential of collocation approach. 
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Stochastic Finite Element (SFEM) Notions and Notations

The average operator

The orthogonal polynomials

Typical multidimensional polynomial families are created by tensor 
products of Legendre, Laguerre, Chebyshev …

The stochastic connection leads to the name of polynomial chaos
Stochastic finite dimensional approximation space 

Note that PDF of outcome can be done now without using model!
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SFEM approximation procedures

The model equation 
The Galerkin (projection) approach to approximate            enforces that 
the residual be orthogonal to the SFEM space

The collocation approach (which is a deterministic sampling, or 
response surface approach). 
– Choose sample points                                       generally tensor 

product of “good” one-dimensional points (Chebyshev zeros, Gauss-
Legendre nodes, etc..)

– Compute the exact solution at these points 
– Collocate the approximate solution at these point
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Comparison of the two approaches

Galerkin: 
– Pros: 

• Works even if the problem is discontinuous or nonsmooth. 
• Exponential convergence with increasing degree of polynomials if

the problem is smooth. 
– Cons: 

• Needs to solve coupled nonlinear system of equations. 
• For complicated functions F, equations are hard to set up and 

need quadrature (since the averages cannot be exactly computed)
Collocation: 
– Pros

• The problems to be solved are decoupled
• Easy to implement and setup. 

– Cons
• Its convergence properties are not understood for nonsmooth

cases or incomplete tensor subset. 
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Galerkin approach for constrained optimization

SFEM formulation

Result: For sufficiently large K, under suitable assumptions, (SO(K)) 
has well posed constraint and the objective function is bounded 
below.
We can then solve the SFEM equation by optimization techniques. 
Result: Under suitable assumptions, the solution converges to the 
solution of (O) as K increases.



810:49:15 

Optimization-Galerkin formulation of symmetric 
eigenvalue problems

Note that this problem  can be exactly represented, even when multiple 
parameters are involved, modulo a series of quadratures, (if not, Galerkin is 
hard to formulate and may need quadrature
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Galerkin Numerical Example for n=1000

Mimics the minimum eigenvalue
problem for a one-dimensional 
diffusion equation, with uncertainty in 
absorption, akin to neutronics problems 
(where uncertainty in parameters also 
enters the matrix linearly)
For K=4 The SCO formulation was 
solved in 7 seconds by KNITRO (one 
eig operation on same computer takes 
13 seconds!)
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Galerkin Numerical Example, eigenvector behavior
At first sight, approximation is awful (left 
panel) but                                             
has typical value of  is 1%!
The problem is the occasional 
degeneracy of the eigenvalue problem 
(though we have not encountered this 
case for keff calculations yet).  
If we sample eigenvector at 5 (well-
chosen ☺) points, and interpolate 
linearly, we get  an error that is typically 
larger by a factor of 3-4.
This shows that black-box 
approaches (collocation, Monte 
Carlo,..), even enhanced with AD, 
may be unadvisable.
Sensitivity approaches would not be 
applicable for such eigenvector 
uncertainty problems!
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Galerkin formulation, generalized nonsymmetric
eigenvalue problems—embedded optimization form

Embed an optimization problem – allows us to use previous results and 
define a power-method-like iteration (note that rescaling is far more 
complicated here!!—it is a projection, details in paper)
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Results for keff for two-group 1D diffusion model 

Direct coupling only, correlated fission uncertainty and uncertainty in
Model takes 40s to compute; about the time to take 100 samples. 
If the goal is computation of distribution (for which 100 samples would be 
insufficient to compute distribution with such accuracy), method more 
competitive than Monte Carlo, but less spectacular than preceding 
example. 
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Further (interesting) observation: 

Nonlinearity is invisible along the coordinate directions, but it is very 
significant along the correlated directions 
This shows that first-order derivative approximation may miss substantial 
information. 
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Keff for 4 group diffusion model--Collocation Approach 

Method Number of 
Parameters=
Nr. Calibration 
Samples

RMSE 
Error

Extra Calibration 
Samples/Equivalent
Monte Carlo Sample 
Reduction

Sensitivity 12 0.3352

0.1320

0.0301

1/1

Collocation degree 1 12 1/6.5

Collocation degree 2 78 6.5/121

11 crossections, direct transfer only. 
The error is estimated by averaging it over 100 random samples.
The upshot is not that sensitivity is not useful, but that, given a certain 
budget of information, we may be better off from including info from 
more than one point (including sensitivity for higher order approaches)
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How did we choose the collocation points and 
polynomials?

Tensor Legendre polynomials of homogeneous degree up to d

The collocation points are the simplex Chebyshev tensor roots

For large dimension m, one must prune the polynomials (cannot choose either 
simplex or full tensor), since it is subject to curse of dimensionality … though 
people have been doing 50 variables in UQ in aerodynamics. 
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Conclusions and future work

SFEM Galerkin models are very robust (though not inexpensive to 
compute), and work even in cases of nonsmooth problems where 
sampling-based or sensitivity methods would fail. 
For smooth models, SFEM collocation models can be very 
competitive, faster and more accurate than sensitivity approaches even 
for the same computational budget. 
To apply the work to 1000s of parameters, the set of parameters must be 
reduced by using correlation information. 
SFEM problems still have open questions
– Well-posedness of constraints for less than small variation 

assumption for either Galerkin and collocation.
– Choice of collocation points that results in well conditioning of the 

linear of the collocation for incomplete basis sets.


