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Motivation: Quasicontinuum (QC) Methods in Material 
Science

QC: multiscale model reduction method 
for the simulation of crystalline solids. 
(Tadmor, Ortiz et a, 96+l)
In regions of small deformation, 
positions of “nonrepresentative” atoms 
are expressed by interpolation of 
positions of “representative” (local if cut-
off) atoms, positioned at nodes of a 
macro mesh. In “interesting regions”
mesh refined to atomic level 
(“nonlocal”).
Nanoindentation calculations carried out 
for ~10^6 atoms with only ~10^4 
representative atoms, excellent 
agreement with full simulations.
The idea: reduction of degrees of 
freedom by interpolation QC mesh and nanoindentation

(Tadmor, Philips, et al.)( ) ( )2 1 1 2, dim dimx Tx x x= <<



Motivation: Density Functional Theory 

One of the workhorses of modern computational chemistry. 
The issue is the resolution of the problem (followed by min wrt.              )

Here, 

DFT approaches differ in the way they approximate kinetic energy and 
exchange energy. In orbital-free (OFDFT) approaches the functionals are 
explicitly available, not so in the generally more accurate Kohn-Sham. 
Simplest OFDFT Thomas-Fermi. Only for validation of model reduction.

The main limitation: number of atoms and electrons that can be simulated
Question: Can a QC-like approach be defined in regions of small 
deformation and result in model reduction with reasonable accuracy?



Partial answer: DFT based local QC (Fago et al., 04)

Each representative atom is surrounded by a DFT box.. The electron-
nucleus interaction is computed by PBC with the infinite crystal deformed 
according to the local interpolation rule. (DNS outside reach).
Problem: the mesh cannot be deformed to the point where DFT boxes 
interact. So the simulation stops with “initiation of nanoindentation”
Secondary problem: The problem does not capture the migration of
electrons that could accompany such defects. 
Challenge: Move reduction beyond PBC.



Why?

DFT is necessary: Accurate potential 
approximation do not exist for many 
new materials and configurations. But 
10^3 atoms all we can do currently (at 
least with KS need 10^7!) 
The “small deformation of crystal in a 
large domain” appears in many 
interesting applications
Surface effects in nanomaterials, 
which is essential component of self-
assembly.
Radiation effects/ radiation damage in 
materials used in nuclear/fusion 
reactors. Simulation of primary knock-
off followed by the “cascade”
(Stoller,00) shows “slightly perturbed 
crystal most places” is a very good 
hypothesis.



Outline

Analysis and variants of interpolation-based (QC like) model reduction in 
material science.
A QC-like model reduction approach for orbital free, density functional 
theory (OFDFT) electronic structure calculations
Numerical validation of the DFT QC-like model reduction. 
Reasonableness of some of the assumptions. 
Conclusions, Future work.
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Formulation of the problem and the material science 
approaches

The problem has a few “representative” degrees of freedom      and a lot of 
“nonrepresentative” degrees of freedom – the essence of scale separation.
Compare with “representative atoms” and “constrained atoms” in “Tadmor et al.”
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The two types of reduced problems

The essential observation is that                     is a very good approximation for 
small perturbations of crystalline structure. 
Approach 1: Interpolate and optimize (energy-based) 

Approach 2: Optimize and Interpolate (force-based)

2 1x Tx≈



General Assumptions for Analysis



Regularity results for RO problems

Compatibility conditions for the constraints



Further assumptions for (RE) problems

The proof of regularity of (RE) requires two further assumptions



Regularity results for (RE) problem



A multiscale approach for electronic density nanoscale 
simulations

, 1, 2 , ,Y pα α = K

Representative variables: The density in the 
representative domains                                .
The interpolation operator is constructed with 
respect to a reference crystalline mesh

The approach allows for deformation of the 
mesh when atoms are also allowed to relax 
(second part, not covered in our presentation).
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The nonlinear variational inequality approach

We substitute the 
interpolation operator in the 
optimality conditions
Example: Thomas-Fermi 
DFT on 11 Hydrogen 
atoms, using less than 50% 
degrees of freedom. 
The bound constraints are 
nonetheless not active in 
our example, and we truly 
have the (RE) approach
Note that the drift in total 
charge cannot be captured 
by PBC.
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The optimization approach

Allows us to use optimization tools, 
with costlier setup but more 
robustness.
The maximum relative error is less 
than 1.5%, remarkable if we 
consider that we have one order of 
magnitude variation. 
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Interpolate and Optimize, one step further

Interpolation gives assembly  rule with precomputable kernels.
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By a separation of scales argument, we can interpolate, in addition to the state 
variables, the functionals as well,.(see nect slide)
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Usefulness of further approximations 
Even if the objective function is 
separable, the 
“nonrepresentative” part must be 
explored. Function evaluation still 
expensive.
This appears in QC as well, but 
handled by the fact that the 
pairwise potential is cut off, and 
only “nearby” nonrepresentative
DOF are explored. 
For many functions, one can 
accurately interpolate the function 
values as well, and the same 
results apply. 
But this must be treated 
differently for different types of 
functions (cut-offs dependence) 
and difficult to formalize.
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Results for the kinetic energy interpolation approach

11 Hydrogen atoms.
There are a few domain 
boundary artifacts but do not 
exceed 2% of peak. 
Investigation in superior 
interpolation techniques is 
warranted . 



Numerical Results: 3D Simulations

Same Hydrogen string problem, but in 
3D:
– Parallel function/gradient 

evaluation
– Parallel optimization solver
– Constant mesh size
– Dimension of problem: 35,672
– Example run on Linux cluster, 

using 13 MPI processes
– Note that both the cost per 

iteration and the number of 
iterations decreases with less 
active subdomains




Numerical Results: 3D Simulations

13 parallel processes
5 active subdomains

13 parallel processes
7 active subdomains

13 parallel processes
13 active subdomains



Example for potential description case

Problem minimize the energy function of 101 atoms with pairwise
Lennard-Jones potential V and representative dof and atom 61 fixed. 
The positions of nonrepresentative DOF are obtained by linear 
interpolation from positions of nearby representative DOF

Problem is solved with SNOPT in through AMPL, solution of (O) takes 
about 10 iterations.
It can be verified from the outset that all assumptions (RECF), (ROCF) 
and (CSC) concerning the constraints are satisfied.
At the solution it turns out that (SOSC) and the assumption that the 
interpolation ansatz is accurate are also satisfied; which means that the 
well posedness of the “interpolate and optimize” (RO) problem is ensured. 
But how about the HT constraint and “optimize and interpolate”?



Verification of the HT assumption
Recall, the assumption stated that 

In top figure we plot the columns 
corresponding to DOF used in linear 
interpolation of 

Note that the match with T is nearly 
perfect and our theory can be applied to 
ensure that (RE) is regular.
But that does not follow solely from the 
atoms being positioned as a smooth 
function of the macroscale! See second 
figure where maximum relative 
interdistance perturbation is 1.6%



Example for electronic structure reconstruction.

1D example: 
– HT assumption is no longer verified at optimality, though convergence 

and stability of the “optimize and interpolate” case (RE) can be 
observed. 

– All assumptions for the “interpolate and optimize” case (RO) are 
satisfied. 

3D example: 
– The (RE) approach was not coded. 
– The (RO) approach satisfies all assumptions except (SOSC) which 

we did not test, since we did not compute Hessians. 
– Note that the novelty here is also in the interpolation rule itself.



Conclusions and future work

We have designed a nonlocal QC-like model reduction for DFT, and we 
have shown that it is accurate. 
We have given conditions for well posedness of the reduced problem, 
and show that they are reasonable for many configurations
To do .. A lot 
– Test the approach for more realistic DFT approaches (OFDFT which

includes gradients terms as well, Kohn Snam).
– Better Interpolations which avoid artifacts at boundary, 
– Inequalities (though properties of reduced problem are reproduced 

faithfully if only rep DOF are constrained in original model). 
– Compress the long range interaction operators kernels using 

multipole or multiresolution, or discuss reduced Poisson Solves.
– Determine weaker conditions of well-posedness for “optimize and 

interpolate”; force-based approaches.
– Does the problem and choice of representative domains dictate the 

interpolation operator? 
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