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Nonsmooth multi-rigid-body dynamics

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to

predict the position and velocity evolution of a group of rigid particles

subject to certain constraints and forces.

• non-interpenetration, contact.

• collision (mentioned, but not emphasized).

• joint constraints

• adhesion

• Dry friction – Coulomb model.

• global forces: electrostatic,gravitational.

These we cover in our approach.
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Applications that use NRMD

• Civil and Environmental EngineeringRock dynamics, Masonry

stability analysis. Concrete response to earthquake and explosion,

Avalanches.

• Materials ProcessingTumbling mill design (mineral ore). Drug

manufacturing design. Granular materials (TRISO nuclear fuel

manufacturing).

• Physically-Based SimulationGaming. Interactive virtual reality.

Robot simulation and design.
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Complementarity

• Definition (⊥),

a ⊥ b ⇔ a, b ≥ 0, ab = 0

• Two vectors are complementary if they are complementary

componentwise.

• The linear complementarity problem (LCP).

s = Mx + q, s ≥ 0, x ≥ 0, sT x = 0.

• Most familiar example: optimality conditions for quadratic

programming, M.

min
x≥0

1

2
xT Mx + qT x
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�Contact Model

• Contact configuration described by the (generalized) distance
functiond = Φ(q), which is defined for some values of the
interpenetration. Feasible set:Φ(q) ≥ 0.

• Contact forces are compressive,cn ≥ 0.

• Contact forces act only when the contact constraint is exactly
satisfied, or

Φ(q) is complementaryto cn or Φ(q)cn = 0, or Φ(q) ⊥ cn.
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Can Φ be differentiable everywhere?

(x,y)

H
x

y

R

• Signed distance:d12(q) = |y| − R − H
2 is not differentiable

everywhere!

• It is, however, differentiable over the setd12(q) ≥ −ǫ for any
ǫ < R + H

2 . We are OK if the infeasibility is not too large.

• Our analysis works by assuming that the gap function (signed
distance function) is differentiable in a neighborhood of the feasible
set. This is true for smooth convex bodies (MA & al, 1996).
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�Coulomb Friction Model

• Tangent space generators:D̂(q) =
[
d̂1(q), d̂2(q)

]
, tangent force

multipliers:β ∈ R2, tangent forceD(q)β.

• Conic constraints: ||β|| ≤ µcn, whereµ is the friction coefficient.

• Max Dissipation Constraints: β = argmin||bβ||≤µcn
vT D̂(q)β̂.

Polyhedral approximation:
{

D̂(q)β | ||β|| ≤ µcn

}
≈

{
D(q)β̃ | β̃ ≥ 0,

∣∣∣
∣∣∣β̃

∣∣∣
∣∣∣
1
≤ µcn

}
,

whereD(q) = [d1(q), d2(q), . . . , dm(q)].
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Strong Form

M(q)
d2q

dt2
−

mX

i=1

ν
(i)

c
(i)
ν −

pX

j=1

“
n(j)(q)c

(j)
n +D

(j)(q)β(j)
”

= k(t, q,
dq

dt
)

Θ(i)(q) = 0, i = 1 . . . m

Φ(j)(q) ≥ 0, compl. to c
(j)
n ≥ 0, j = 1 . . . p

β = argminbβ(j)v
T
D(q)(j) bβ(j) subject to

˛̨
˛
˛̨
˛bβ(j)

˛̨
˛
˛̨
˛
1
≤ µ

(j)
c
(j)
n , j = 1 . . . p

M(q) : the PD mass matrix,k(t, q, v) : external force,Θ(i)(q) : joint constraints.

It is known that these problems do not have a classical solution even in 2

dimensions, where the discretized cone coincides with the total cone:Painleve’s

paradox – no strong solutions

: unknowns
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A Painleve paradox example

^
.

^

µ=0.75

θ=72

l=2

ω=0

I=
m

16

16(cos     -    cos     sin    )  =  -2θ θ θ
2

µ

r

p

p

t

n

θ

(Baraff)

fN

p = r − l
2


 cos(θ)

sin(θ)




Constraint: n̂p ≥ 0 (defined everywhere).
n̂p̈ = −g + fN ( 1

m
+ l

2I
(cos2(θ) − µ sin(θ) cos(θ)))

n̂p̈a = −g − fN

m

Painleve Paradox: No classical solutions!
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Time-stepping, the linear complementarity problem (LCP)

Euler method, half-explicit in velocities, linearizationfor constraints.

Maximum dissipation principle enforced through optimalityconditions.

M(vl+1 − v(l)) −

m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 = 0, i = 1, 2, . . . , m

ρ(j) = n(j)T

vl+1 ≥ 0, compl. to c(j)
n ≥ 0, j ∈ A

σ(j) = λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

ζ(j) = µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

ν(i) = ∇Θ
(i), n(j) = ∇Φ(j), h: time step, A : activeconstraints.

Stewart and Trinkle, 1996 (LCP)MA and Potra,1997 (solvable LCP).

We use the same notation for impulses that replace forces.: unknowns
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�Is the LCP solvable?

2
666666664

M −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0

3
777777775

2
666666664

v(l+1)

c̃ν

c̃n

β̃

λ̃

3
777777775

+

2
666666664

−Mv(l)
− hk

0

0

0

0

3
777777775

=

2
666666664

0

0

ρ̃

σ̃

ζ̃

3
777777775

2
664

c̃n

β̃

λ̃

3
775

T 2
664

ρ̃

σ̃

ζ̃

3
775 = 0,

2
664

c̃n

β̃

λ̃

3
775 ≥ 0,

2
664

ρ̃

σ̃

ζ̃

3
775 ≥ 0.

Yes, with Lemke, ifM is positive definite, MA & FP, 1997.In addition collision

with compression-decompression can be modeled by LCPwith the same matrix

and are also solvable.
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Energy Properties (Stability)

Assumptions

• The Mass matrixM is constant.

• The collisions do not increase the kinetic energy.

• The number of collisions is finite.

• The external force is inertial + at most linear growth:

k(t, v, q) = fc(q, v) + k1(t, v, q), wherevT fc(q, v) = 0,

||k1(t, q, v)|| ≤ A(1 + ||q|| + ||v||).

Thenv(l),h is uniformly bounded.
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Significance and comparison with other methods

• The most popular competitors are “spring and dashpot” regularization

approaches, a.k.a compliance approaches. One integrates explicitly

the regularization with time step in region of stability.

• Compliance approaches are easier to implement, but they canbe

slow, and the regularization parameter tuning may be very difficult.

• That (and the finite termination) explains the popularity ofthe LCP

approach in gaming applications, where the variety of usersdoes not

mesh well with the extra parameters in regularization approaches.

• There is one industrial implementation (KARMA, the Epic Games

Unreal Engine subcomponent) and one open source (q12.org), both

seemingly with large number of users.
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�Related Research

• Time stepping methods of this type originate with the work of

Moreau, early 70’s, though most (all?) of those developments are

NLCPs, not guaranteed to be solvable, expressed in languageof

projections. The key here: work with optimality conditions (S & T

96).

• Other LCP approaches use accelerations as primary variables

(Glocker and Pfeiffer, (1992), Baraff(1993), Pang and Trinkle,

(1996)). They need the existence of a strong solution, and an extra

derivative of the data, but work well in many applications.

• Piecewise differential algebraic equation approaches (DAE) (Haug et

al., 1988),create difficult nonlinear systems and can get stuck at

points of inconsistency.

• Differential variational inequalities (DAVINCI).
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About convergence of the scheme

• For this class of time stepping methods,Stewart (1998)proved

convergence to a Measure Differential Inclusion MDI ash → 0, and

satisfaction of the Coulomb Friction law for one contact, orseveral

contacts at points of continuity of the velocity.

• Note that one has to accommodatediscontinuous velocitydue to

Painleve paradoxes and collisions, though the strong form contains
dv
dt

.

• We use a similar technique for proving convergence of our convex

relaxation method.
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Can the LCP approach be extended for

• Stiff systems ?

• Constraint stabilization?

• Fixed time step ?

• Efficient computation of the subproblems?

while preserving the linearity, the solvability and the stability?

The “numerical analysis” of LCP time-stepping schemes is done by

exploiting the the stability of the solution of LCP with respect to

perturbations, as an extension to DAE approaches. We describe the

results.

16



�

�

�

�
Acommodating stiffness

Define

M̂ =
[
M

(
q(n)

)
− h2 ∇qk

(
q(n), v(n)

)
− h∇vk

(
q(n), v(n)

)]
,

k̂ = k
(
q(n), v(n)

)
−∇vk

(
q(n), v(n)

)
v(n)

and replacêM → M , in the LCP matrix and̂k → k in the right hand side

(linear implicit approach).Then

• If the external force is linear spring and damper, resultingproblem is

solvable LCP and the scheme is unconditionally stable.MA & FP,

2002,

• Can extend to nonlinear spring and damper with small modifications.
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�Constraint stabilization: Linearization method

Projection methods are expensive. Our solution: enforce geometrical

constraints by linearization.

∇Φ(q(l))T v(l+1) ≥ 0 =⇒ Φ(j)(q(l)) + γhl∇Φ(q(l))T v(l+1) ≥ 0.

∇Θ(q(l))T v(l+1) = 0 =⇒ Θ(j)(q(l)) + γhl∇Θ(q(l))T v(l+1) = 0.

Hereγ ∈ (0, 1]. γ = 1 corresponds to exact linearization.
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Modified time-stepping scheme

M(vl+1 − v(l)) −

m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 = −γ
Θ(i)

h
, i = 1, 2, . . . , m

ρ(j) = n(j)T

vl+1 ≥ −γ
Φ(j)(q)

h
, compl. to c(j)

n ≥ 0, j ∈ A

σ(j) = λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

ζ(j) = µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Result: If we start feasible the geometrical constraint infeasibility

maxi,j

{∣∣Θ(i)
∣∣ , Φ(j)−

}
is bounded above byO(h2), as opposed toO(h)

(MA, Andrew Miller and G.D.Hart, 2003), (MA and G.D. Hart, 2004).

19



�

�

�

�
Elliptic body simulation

−8 −6 −4 −2 0 2 4 6 8
0

2

4

6

8

10

12

14

16
Ellipse Simulation

We present ten frames of the simulation of an elliptic body that is dropped

on the table. There is an initial angular velocity of3, the body has axes 4

and 8 and is dropped from a height of8.
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Infeasibility behavior unstabilized versus stabilized metod

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Time

Constraint infeasibility unstabilized

m
et

er
s

0 2 4 6 8 10 12 14 16 18 20
0

0.01

0.02

0.03

0.04

0.05

0.06
Constraint infeasibility stabilized

Time

m
et

er
s

We see that drift becomes catastrophic for the unstabilizedmethod,

whereas remains in a narrow range for the stabilized method.

Constraint stabilization is accomplished!
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�Constraint Stabilization

• Despite the fact that we have the term1
h

the scheme is still stable (for

h fixed but arbitrary).

• For solvability, we need a stronger condition,pointed friction cone

assumption, though weaker than linear independence of constraints.

• Note that in the case of DAE, even the postprocessing method

(Ascher, 1998)needs one additional linear system (with same

matrix).

• The method was implemented inGraspIt!, a dynamical grasp

simulation tool by Andrew Miller at Columbia.

• The scheme can be modified to include partial elasticity and seems to

work fine, though we did not prove the same stability results (MA,

(2003)).
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Defining the active set

• Moreau: No backtracking and

A =
{

j ∈ {1, 2, . . . , p} |Φ(j)(q) ≤ 0
}

• Original LCP method: SameA with backtracking.

• The stabilized method: No backtracking and

A =
{

j ∈ {1, 2, . . . , p} |Φ(j)(q) ≤ ǫ
}

• Key: Because velocity is uniformly bounded, the effective active set
in the second case, is asymptotically the same with the one before,
due to

h∇ΦT v + Φ ≥ 0.

• Our method can progress with fixed time step, which is highly
desirable for dense groups of bodies.
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Solving the LCP, h=0.05, PATH (Lemke)

Problem Bodies Initial Contacts µ Average CPU time (s)

1 10 21 0.2 0.04

2 10 21 0.8 0.03

3 21 52 0.2 0.28

4 21 52 0.8 0.20

5 36 93 0.2 0.81

6 36 93 0.8 0.82

7 55 146 0.2 2.10

8 55 146 0.8 2.07

9 210 574 0.0 0.80

10 210 574 0.2 174.29

11 210 574 0.8 MAXIT
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Solving the LCP

QuestionIs it possible to obtain an algorithm that has modest conceptual

complexity and approach large scale problems?

• Lemke’s methodafter reduction to proper LCP works, but for larger

scale problems alternatives to it are desirable.PATH Works well for

tens of bodies, most of the time, and very well for up to 20

bodies–OK for gaming.

• Interior Point methodswork for the frictionless problem (since

matrices are PSD), but their applicability to the problem with friction

depends on the convexity of the solution set.

• Is the solution set of the complementarity problem convex? From

practical experience, this is the key property that separates “hard”

problems from “easy” problems.
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�Nonconvex solution set

r1

r2

r3

r4

r5r6p1 p4
n

C

Force Balance:

∑6
j=1 c

(j)
n n(j) − hmg


 n

03


 = 0.

µc
(j)
n ≥ 0 ⊥ λ(j) ≥ 0, j = 1, 2, . . . , 6.
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�Nonconvex solution set

The following solutions

1. c
(1)
n = c

(3)
n = c

(5)
n = hmg

3 , c
(2)
n = c

(4)
n = c

(6)
n = 0,

λ(1) = λ(3) = λ(5) = 0, λ(2) = λ(4) = λ(6) = 1,

2. c
(1)
n = c

(3)
n = c

(5)
n = 0, c

(2)
n = c

(4)
n = c

(6)
n = hmg

3 ,
λ(1) = λ(3) = λ(5) = 1, λ(2) = λ(4) = λ(6) = 0.

The average of these solutions satisfiesc
(j)
n = hmg

6 , λ(j) = 1
2 , for

j = 1, 2, . . . , 6, which violate

µc(j)
n ≥ 0 ⊥ λ(j) ≥ 0, j = 1, 2, . . . , 6,

The average of these solutions,that both inducev = 0, violates,

β
(2)
1 ≥ 0 ⊥ λ(2) ≥ 0.

For anyµ > 0 the LCP matrix is noP∗ matrix, polynomiality unlikely.
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�The convex relaxation



M −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 −µ̃

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0







v(l+1)

c̃ν

c̃n

β̃

λ̃




+




θ(l)

Υ

∆

0

0




=




0

0

ρ̃

σ̃

ζ̃







c̃n

β̃

λ̃




T 


ρ̃

σ̃

ζ̃


 = 0,




c̃n

β̃

λ̃


 ≥ 0,




ρ̃

σ̃

ζ̃


 ≥ 0,

The LCP is actually equivalent to a QP–but is the method any good?A
fixed point iteration approach based on the above was proved to converge
for smallµ and pointed friction cone (MA and G.D.Hart, (2004b)).
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Defining the friction cone (no joints)

The total friction cone:

FC(q) =
{∑

j=1,2,...,p c
(j)
n n(j) + β

(j)
1 t

(j)
1 + β

(j)
2 t

(j)
2

∣∣∣√(
β

(j)
1

)2

+
(
β

(j)
2

)2

≤ µ(j)c
(j)
n ,

c
(j)
n ≥ 0 ⊥ Φ(j)(q) = 0, j = 1, 2, . . . , p

}
.

We have

FC(q) =
∑

j=1,2,...,p, Φ(j)(q)=0

FC(j)(q).

Pointed friction cone:if 0 ∈ FC(q) can be realized only by

c̃n = β̃1 = β̃2 = 0.
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�Continuous formulation in terms of friction cone

M dv
dt

= fC(q, v) + k(q, v) + ρ

dq
dt

= v.

ρ =
∑p

j=1 ρ(j)(t).

ρ(j)(t) ∈ FC(j)(q(t))

Φ(j)(q) ≥ 0,
∣∣∣∣ρ(j)

∣∣∣∣ Φ(j)(q) = 0, j = 1, 2, . . . , p.

However, we cannot expect even that the velocity is continuous!. So we

must consider a weaker form of differential relationship
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�Measure Differential Inclusions

We must now assign a meaning to

M
dv

dt
− fc(q, v) − k(t, q, v) ∈ FC(q).

Definition If ν is a measure andK(·) is a convex-set valued mapping, we

say thatv satisfies the differential inclusions

dv

dt
∈ K(t)

if, for all continuousφ ≥ 0 with compact support, not identically 0, we

have that ∫
φ(t)ν(dt)∫

φ(t)dt
∈

⋃

τ :φ(τ) 6=0

K(τ).
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�Weaker formulation for NRMD

Find q(·), v(·) such that

1. v(0) is a function of bounded variation (but may be discontinuous).

2. q(·) is a continuous, locally Lipschitz function that satisfies

q(t) = q(0) +

∫ t

0

v(τ)dτ

3. The measuredv(t), which exists due tov being a bounded variation

function, must satisfy, (wherefc(q, v) is the Coriolis and Centripetal

Force)
d(Mv)

dt
− k(t, v) − fc(q, v) ∈ FC(q(t))

4. Φ(j)(q) ≥ 0,∀j = 1, 2, . . . , p.
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Regularity Conditions: Friction cone assumptions

Defineǫ cone
ǫF̂C(q) =

∑

Φ(j)(q)≤ǫ

FC(j)(q).

Pointed friction cone assumption:∃ Kǫ, K∗
ǫ , andt(q, ǫ) ∈ǫ F̂C(q) and

v(q, ǫ) ∈ǫ F̂C
∗
(q), such that,∀q ∈ Rn, and∀ǫ ∈ [0, ǭ], we have that

• t(q, ǫ)T w ≥ Kǫ ||t(q, ǫ)|| ||w||, ∀w ∈ǫ F̂C(q).

• n(j)T

v(q, ǫ) ≥ µ

√
t
(j)T

1 v(q, ǫ) + t
(j)T

2 v(q, ǫ) + K∗
ǫ ||v(q, ǫ)||,

j = 1, 2, . . . , p.
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The new convergence result with convex subproblems

H1 The functionsn(j)(q), t
(j)
1 (q), t

(j)
2 (q) are smooth and globally

Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrixM is positive definite.

H3 The external force increases at most linearly with the velocity and
position.

H4 The uniform pointed friction cone assumption holds.

Thenthere exists a subsequencehk → 0 where

• qhk(·) → q(·) uniformly.

• vhk(·) → v(·) pointwise a.e.

• dvhk(·) → dv(·) weak * as Borel measures. in [0,T], and every such
subsequence converges to a solution(q(·), v(·)) of MDI. Hereqhk

andvhk is produced by the relaxed algorithm.
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The convergence result

• Mimics the similar result for the original scheme (Stewart,(1998)),

including decrease of energy ...

• ... but says nothing of the Coulomb Law.

• In a regime with small tangential velocity it can be show thatthe

difference of the two schemes is small.

• In some sense, it is the natural integration procedure basedon the

microscopic modeling of friction with a large time step.
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−3 LCP algorithm versus optimization−based algorithm

time
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LCP method         
Optimization method

Sliding particle

hk = 0.1
2k

, µ = 0.3

k hk

˛̨
˛
˛̨
˛yQP − yLCP

˛̨
˛
˛̨
˛
2

0 5.6314784e-002

1 1.7416198e-002

2 6.7389905e-003

3 2.1011170e-003

4 7.6112319e-004

5 2.6647317e-004

6 9.2498029e-005

7 3.2649217e-005

hk = 0.1
2k

, µ = 0.75

k hk

˛̨
˛
˛̨
˛yQP − yLCP

˛̨
˛
˛̨
˛
2

0 1.5736018e+000

1 7.2176724e-001

2 1.4580267e-001

3 9.2969637e-002

4 5.5543025e-003

5 4.3982975e-003

6 3.7537593e-003

7 3.7007014e-004

No convergence, but

small absolute error.
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�Granular matter

• Sand, Powders, Rocks, Pills are examples of granular matter.

• The range of phenomena exhibited by granular matter is tremendous.

Size-based segregation, jamming in grain hoppers, but alsoflow-like

behavior.

• There is still no accepted continuum model of granular matter.

• Direct simulation methods (discrete element method) are still the

most general analysis tool, but they are also computationally costly.

• The favored approach: the penalty method which works with

time-steps of microseconds for moderate size configurations.
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�Brazil nut effect simulation

• Time step of 100ms, for 50s. 270 bodies.

• Convex Relaxation Method.One QP/step. No collision backtrack.

• Friction is0.5, restitution coefficient is0.5.

• Large ball emerges after about 40 shakes. Results in the sameorder

of magnitude as MD simulations (but with 4 orders of magnitude

larger time step).
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Brazil nut effect simulations performance
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A fuel microsphere.
Triple coated with
UO2 center.

There are about 
400000 pebbles in the
reactor at one time 
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The pebble bed nuclear reactor

• One of the great hopes of achieving low maintenance passively safe

reactors.

• The fuel consists of tennis-ball-size pebbles filled withUO2,

• The fuel is in continuous motion and the fuel pebbles are either

recycled or replaced.

• Cooled with helium through the inter-pebble voids.

• Prototype to be completed by 2015 by INL.

• Initial simulation of loading withBogdan Gavrea, UMBC.
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In progress

• Trapezoidal scheme, though fixed time-stepping property islost.

• Nonsmooth bodies withfixed time step.

• Using projected gradient type approaches to accelerate thesolution of

the quadratic program.
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�Conclusions and remarks

• We have described recent progress in the use of hard constraint time

stepping schemes for multi-rigid body dynamics with contact and

friction (NRMD).

• We have shown that we find solutions to measure differential

inclusions by solving quadratic programs, as opposed to LCPwith

possible nonconvex solution set.

• There remain quite a few challenges, but the large number of

applications that can be impacted are worth the investigation in these

areas.
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