
Introduction Elastic Formulation: Global Numerical Results Examples Extra

Convergence of Elastic Mode Formulations of
MPECs

M. Anitescu1 P. Tseng2 S. Wright3

1Argonne National Laboratory

2University of Washington

3University of Wisconsin

INFORMS, San Francisco, November 2005

Anitescu, Tseng, Wright

Convergence of Elastic Mode Formulations of MPECs



Introduction Elastic Formulation: Global Numerical Results Examples Extra

Outline and Summary

Outline

• MPECs: Notation, Definitions, Assumptions.

• Elastic Mode Formulations

• Local Relationships between elastic mode formulations and
MPECs

• Elastic-Mode Formulation: Global Convergence:
• Convergence of First-Order Points
• Convergence of Second-Order Points
• Numerical Examples
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Outline and Summary

Study the formulation with complementary variables:

minx f (x) subject to
g(x) ≥ 0, h(x) = 0,
0 ≤ GT x ⊥ HT x ≥ 0,

where

• G and H are n ×m column submatrices of the n × n identity
matrix (with no columns in common): lower bounds;

• f : Rn → R, g : Rn → Rp, and h : Rn → Rq are twice
continuously differentiable.

Theory extends to nonlinear functions 0 ≤ G (x) ⊥ H(x) ≥ 0. We
use bounds because they can be enforced explicitly by algorithms
for the NLP subproblem; this leads to some nice properties.

Anitescu, Tseng, Wright

Convergence of Elastic Mode Formulations of MPECs



Introduction Elastic Formulation: Global Numerical Results Examples Extra

Outline and Summary

Parametrized NLP Formulations
Regularized (Scholtes, 2001):

Reg(t) : minx f (x) subject to
g(x) ≥ 0, h(x) = 0,
GT x ≥ 0, HT x ≥ 0, (GT

i x)(HT
i x) ≤ t, i = 1, 2, . . . ,m.

Elastic Mode for MPEC:

Elastic(c) : minx ,ζ f (x) + cζ + c(GT x)T (HT x) subject to
g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq, 0 ≤ ζ ≤ ζ̄,
GT x ≥ 0, HT x ≥ 0,

Elastic Mode for NLP:

Elastic(c) : minx ,ζ f (x) + cζ subject to
g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq, 0 ≤ ζ ≤ ζ̄,
GT x ≥ 0, HT x ≥ 0, (GT x)T (HT x) ≤ ζ
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Outline and Summary

Questions

1 How are solutions of Elastic(c) related to those of the MPEC?
(Exactness)

2 For a fixed value of c , under what assumptions can we
converge locally to a solution?

3 Can we devise a scheme for updating ck that ensures desirable
properties of the accumulation points?

4 If {(xk , ζk)} is a sequence of approximate first-order
(stationary) points for Elastic(ck), what are the properties of
accumulation points of this sequence?
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Definitions, Notation, Assumptions

But First, Some Definitions
Stationarity for MPEC at a feasible point x∗: Define active sets:

Ig
∆
= {i ∈ {1, 2, . . . , p} | gi (x

∗) = 0},
IG

∆
= {i ∈ {1, 2, . . . ,m} |GT

i x∗ = 0},
IH

∆
= {i ∈ {1, 2, . . . ,m} |HT

i x∗ = 0},

Feasibility ⇒
IG ∪ IH = {1, 2, . . . ,m}

Multiplier tuple (λ, µ, τ, ν) defines MPEC Lagrangian :

L(x , λ, µ, τ, ν) = f (x)− λTg(x)− µTh(x)− τTGT x − νTHT x .

Constraint qualifications: MPEC-LICQ: K is linearly
independent set (ensures that (λ∗, µ∗, τ∗, ν∗) satisfying stationarity
is unique):

K ∆
= {∇gi (x

∗)}i∈Ig ∪ {∇hi (x
∗)}i=1,2,...,q ∪ {Gi}i∈IG ∪ {Hi}i∈IH .
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Definitions, Notation, Assumptions

Stationary points satisfy ...

∇xL(x∗, λ∗, µ∗, τ∗, ν∗) = 0,

0 ≤ λ∗ ⊥ g(x∗) ≥ 0,

h(x∗) = 0,

τ∗ ⊥ GT x∗ ≥ 0,

ν∗ ⊥ HT x∗ ≥ 0,

...AND, from stronger to weaker concept, .
• Strong stationarity: τ∗i ≥ 0 ν∗i ≥ 0, i ∈ IG ∩ IH ,.
• M-stationarity: τ∗i ν∗i ≥ 0 but not both τ∗i , ν∗i negative, for

i ∈ IG ∩ IH .
• C-stationarity: τ∗i ν∗i ≥ 0 for i ∈ IG ∩ IH .

Strong stationarity: there is no direction that decreases f
but stays feasible to first order .
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Definitions, Notation, Assumptions

More Index Sets
At a strongly stationary x∗ define strongly and weakly active
subsets (Denote by superscripts + and 0.)

I+
g

∆
= {i ∈ Ig |λ∗i > 0 for some multiplier},

J+
G

∆
= {i ∈ IG ∩ IH | τ∗i > 0 for some multiplier},

J+
H

∆
= {i ∈ IG ∩ IH | ν∗i > 0 for some multiplier},

I 0
g

∆
= Ig \ I+

g , J0
H

∆
= (IG ∩ IH) \ J+

H J0
G

∆
= (IG ∩ IH) \ J+

G ,

Different flavors of complementarity:

• USC: J+
G = J+

H = IG ∩ IH
• PSC: J+

G ∪ J+
H = IG ∩ IH

• LSC: IG ∩ IH = ∅
Anitescu, Tseng, Wright
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Definitions, Notation, Assumptions

Critical directions for MPEC:

S∗
∆
= {s |∇h(x∗)T s = 0} ∩

{s |∇gi (x
∗)T s = 0 for all i ∈ I+

g } ∩
{s |∇gi (x

∗)T s ≥ 0 for all i ∈ I 0
g } ∩

{s |GT
i s = 0 for all i ∈ IG \ IH} ∩

{s |HT
i s = 0 for all i ∈ IH \ IG} ∩

{s |GT
i s ≥ 0 for all i ∈ J0

G} ∩
{s |GT

i s = 0 for all i ∈ J+
G } ∩

{s |HT
i s ≥ 0 for all i ∈ J0

H} ∩
{s |HT

i s = 0 for all i ∈ J+
H } ∩

{s | min(HT
i s,GT

i s) = 0 for all i ∈ J0
G ∩ J0

H}.}.
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Definitions, Notation, Assumptions

Second-Order Conditions for MPEC

MPEC-SOSC: Let x∗ be strongly stationary. There is σ > 0 such
that for every s ∈ S∗, there are multipliers such that

sT∇2
xxL(x∗, λ∗, µ∗, τ∗, ν∗)s ≥ σ‖s‖2.

Anitescu, Tseng, Wright

Convergence of Elastic Mode Formulations of MPECs



Introduction Elastic Formulation: Global Numerical Results Examples Extra

Recent results for Elastic Mode

Local Results - MA(2005a)-answers Q 1& 2

Theorem

If, the solution point x∗ is strongly stationary, and MPEC-SOSC is
satisfied at x∗, then for c ≥ c0(x

∗, λ∗, µ∗, τ∗, ν∗).

• (x∗, 0) is a local minimum and an isolated stationary point of
the elastic mode NLP problem.

• Elastic (c) satisfies MFCQ so its linearizations are feasible, the
opposite of which were the main failure mode for NLP
algorithms applied to MPEC.

• In addition, if MPEC-LICQ, MPEC-SOSC, and PSC hold then
the elastic mode-Newton method is superlinearily convergent.
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Recent results for Elastic Mode

Global results for mixed P parameterized VI- MA (2005b)

The partition [A B C ] is mixed P partition if

0 6= (y ,w , z) ∈ R2nc+l , Ay + Bw + Cz = 0 ⇒
∃i , 1 6 i 6 nc , such that yiwi > 0.

(OMPV)
min

x ,y ,w ,z
f (x , y ,w , z)

sbj.to g(x) 6 0 (µ)
h(x) = 0 (λ)
F (x , y ,w , z) = 0 (θ)
y ,w 6 0(ηy ,w )
yTw 6 0 (αc)

where the partition [∇yF ,∇wF ,∇zF ] is a mixed P partition for
any x . The obstacle problem has that property.
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Recent results for Elastic Mode

Partial answer to Q 3 & 4

Theorem

For a sequence of points (xk , ζk) that ...

• ... are first-order εk approximate stationary points for Elastic
NLP (ck) such that ckεk → 0, have C-stationary points at all
accumulation points.

• ... are second-order εk , δk approximate stationary points for
Elastic NLP (ck) such that ckεk → 0, and accumulate at x∗

that satisfies MPEC-LICQ, then x∗ is an M-stationary points.

• If, in addition, x∗ satisfies ULSC, then it is a strongly
stationary point.

Since the solves are inexact, the approach is implementable.

Anitescu, Tseng, Wright
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Recent results for Elastic Mode

What is missing ? Better answer to Q 3 & 4

• It is still somewhat unsatisfactory that MPEC-LICQ, that is
sufficient for a solution to be strongly stationary, is not
sufficient for the accumulation point to be (strongly)
stationary for Elastic mode (global convergence).

• The local results prove that: if c sufficiently large and fixed
and if you start sufficiently close to a strongly stationary
point then you converge.

• For robustness and implementability, we would need that If
ck satisfies an update rule and if the problem is solved
inexactly and if the limit point satisfies MPEC-LICQ then
the limit point is a strongly stationary point.

Anitescu, Tseng, Wright
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Formulation and approximately Optimal Points

Elastic Formulation: Global Convergence

Elastic(c) : minx ,ζ f (x) + cζ + c(GT x)T (HT x) subject to
g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq, 0 ≤ ζ ≤ ζ̄,
GT x ≥ 0, HT x ≥ 0,

Anitescu, Tseng, Wright
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Formulation and approximately Optimal Points

Approximate Optimality for Elastic(c)

ε-first-order point: Replace 0 in most of the KKT conditions for
Elastic(c) by ε. However, still require all multipliers to be
nonnegative, and enforce GT x ≥ 0, HT x ≥ 0 exactly.

Second-order point if there is some multiplier tuple satisfying
KKT such that

ũT∇2
(x,ζ)(x,ζ)

Lc(x , ζ, λ, µ−, µ+, τ, ν)ũ ≥ 0,

for all ũ ∈ Rn+1 in the gradient null space of active constraints at
(x , ζ) (µ → (µ+, µ−) from relaxation).

Anitescu, Tseng, Wright
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Formulation and approximately Optimal Points

(ε, δ)-second-order point if for multipliers satisfying the
ε-first-order definition we have

ũT∇2
(x,ζ)(x,ζ)

Lc(x , ζ, λ, µ−, µ+, τ, ν)ũ ≥ −C‖ũ‖2,

for some fixed C and all ũ ∈ Rn+1 that are in the gradient null
space of all active bound constraints (GT x ≥ 0, HT x ≥ 0,
0 ≤ ζ ≤ ζ̄) at (x , ζ), and in the gradient null space of δ-active
nonbound constraints g(x) ≥ −ζep, ζeq ≥ h(x) ≥ −ζeq) at (x , ζ).

Anitescu, Tseng, Wright
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Convergence Results

Sequence of Inexact First-Order Points

Given a sequence of inexact first-order points for Elastic(ck), any
accumulation point satisfying feasibility and CQ for the MPEC is
C-stationary. Formally:

Theorem

{ck} positive, nondecreasing; {εk} is nonnegative with
{ckεk} → 0; (xk , ζk) is an εk -first-order point of Elastic (ck). If x∗

is an accumulation point of {xk} that is feasible for MPEC and
satisfies MPEC-LICQ, then x∗ is C-stationary and ζk → 0 for the
convergent subsequence.

Proof is long but fairly elementary.

Anitescu, Tseng, Wright
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Convergence Results

To avoid the possibility of an infeasible limit, could increase ck

when the current approx solution is not sufficiently feasible.
Assume

• {f (xk)} is bounded below.

• {f (xk) + ckζk + ck(GT xk)T (HT xk)} bounded above.

• The update rule: have sequences {ωk} → 0, {ηk} → ∞,
such that ck+1 ≥ ηk+1 when ζk + (GT xk)T (HT xk) ≥ ωk .

Then any accumulation point of a sequence of εk -first-order points
for Elastic(ck) is feasible.

Anitescu, Tseng, Wright
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Convergence Results

Sequence of Exact Second-Order Points – answer to Q4

{ck} ↑ ∞ and let each (xk , ζk) be a second-order point for
Elastic(ck).

Theorem

Either there is finite termination at some ck (with xk feasible for
MPEC), or else any accumulation point of {xk} is infeasible for
MPEC or else fails to satisfy MPEC-LICQ.

Proof: First show ζk = 0 for k sufficiently large. Then if
(GT

j x∗)(HT
j x∗) > 0 for some j and accumulation point x∗, can

identify a direction of arbitrarily negative curvature over the
subsequence of k’s. (Contradicts second-order assumption.) Key:
Finite exact complementarity ⇒ ck is fixed for k ≥ k0

Other convergence properties are corollaries of the inexact case.
Anitescu, Tseng, Wright
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Convergence Results

Sequence of Inexact Second-Order Points – answer Q4

(xk , ζk) is an (εk , δk)-second-order point of Elastic(ck).

Theorem

Let {ck} nondecreasing, {εk} has {ckεk} → 0, and {δk} → 0.
Assume that acc point x∗ is feasible for MPEC, satisfies
MPEC-LICQ. Then have c∗ such that if ck ≥ c∗, k large, we have

(a) x∗ is M-stationary for MPEC.

(b) {ck} bounded ⇒ x∗ strongly stationary for MPEC.

(c) τk ⊥ GT xk and νk ⊥ HT xk ⇒ finite exact
complementarity (GT xk)T (HT xk) = 0 (for k with xk near
x∗ and ck ≥ c∗).

Anitescu, Tseng, Wright
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Convergence Results

Finite Exact Complementarity: Another Condition

Definition

The strengthened MPEC-LICQ (MPEC-SLICQ) holds at a feasible
point x∗ of MPEC if the vectors in each of the following sets are
linearly independent:

K ∪ {Hj}, for j ∈ IG\IH , K ∪ {Gj}, for j ∈ IH\IG ,

where K is the usual set of active constraint gradients for MPEC.

Under similar conditions to the previous theorem, with
MPEC-SLICQ replacing τk ⊥ GT xk and νk ⊥ HT xk , get finite
exact complementarity.

Anitescu, Tseng, Wright
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Convergence Results

Algorithm Elastic-Inexact
Choose c0 > 0, ε0 > 0, Mε > Mc > 1, and positive sequences
{δk} → 0, {ωk} → 0;
for k = 0, 1, 2, . . .
find an (εk , δk)-second-order point (xk , ζk) of PF(ck) with
Lagrange multipliers (λk , µ−k , µ+k , τ k , νk , π−k , π+k);
if ζk + (GT xk)T (HT xk) ≥ ωk ,
set ck+1 = Mcck ;
else
set ck+1 = ck ;
end (if)
choose εk+1 ∈ (0, εk/Mε].
end (for)

Anitescu, Tseng, Wright
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Numerical Results
Test on elastic-membrane-on-obstacle problems of Outrata,
Kocvara, Zowe, as implemented in MacMPEC by Fletcher and
Leyffer. Three problem sets , six variants of each (linear or
parabolic obstacle, three levels of finite-element discretization for
each):

• Incident set identification (is)

• Packaging problem with pliant obstacle (pc)

• Packaging problem with rigid obstacle (pr).

Implement Elastic-Inexact using filterSQP (Fletcher/Leyffer) as the
NLP solver.

Parameters c0 = 10, ε0 = 10−3, Mε = 15, Mc = 10,
ωk = min{(k + 1)−1, c

−1/2
k }.

Anitescu, Tseng, Wright
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Aim: Observe various features of the analysis: finite exact
complementarity, second-order points for Elastic(ck) at at the
limiting MPEC, constraint qualifications.

Means: Used AMPL scripts for implementation, dumped the
derivative information on disk using “option auxfiles rc” and
loaded it in Matlab using routines developped by Todd Munson.

Thanks to Sven Leyffer, Todd Munson.

Anitescu, Tseng, Wright
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Exact complementarity is satisfied at final point for all problems.
3/16 abnormal terminations:

Problem Termination Message ck Infeas
is-1-8 Optimal 10
is-1-16 Optimal 10
is-1-32 Small Trust Region 10 2.25e–07
is-2-8 Optimal 10
is-2-16 Optimal 10

is-2-32 Optimal 103

pc-1-8 Optimal 10

pc-1-16 Optimal 102

pc-1-32 Optimal 103

pc-2-8 Optimal 102

pc-2-16 Optimal 105

pc-2-32 Local Inf 104 6.06e–12

pr-1-8 Optimal 102

pr-1-16 Optimal 103

pr-1-32 Optimal 106

pr-2-8 Optimal 102

pr-2-16 Optimal 105

pr-2-32 Local Inf 106 5.68e–13

Validates our early satisfaction of exact complementarity .

Anitescu, Tseng, Wright
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Constraint Qualifications and Second-Order Conditions

Define “numerically active” constraints using a tolerance of
δ = 10−6.

Define Jact to be the matrix of numerically active constraint
gradients.

For Q2 spanning the null space of Jact, we measure satisfaction of
MPEC-SLICQ via

χspan
∆
= min

(
min
i /∈IG

‖QT
2 Gi‖2, min

i /∈IH
‖QT

2 Hi‖2

)
,

Satisfaction of second-order conditions measured by examining
eigenvalues of QT

2 LQ2, where L is Hessian Lagrangian at the last
NLP.

Anitescu, Tseng, Wright
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Problem nF mact cond2(Jact) χspan λmin
“
QT

2 HQ2

”
is-1-8 193 181 3.45e+03 1.95e–03 0
is-1-16 763 742 4.39e+04 6.84e–04 0
is-1-32 3042 3020 5.26e+05 3.90e–09 0
is-2-8 184 180 2.17e+03 5.66e–04 1.08e–04
is-2-16 750 745 6.46e+04 8.44e–05 4.10e–07
is-2-32 3032 3025 ∞ 0 -1.48
pc-1-8 228 228 1.96e+02 0 ∞
pc-1-16 970 964 9.38e+03 1.91e–06 5.55e–02
pc-1-32 3997 3972 4.48e+04 1.22e–08 4.88e–01
pc-2-8 233 228 3.40e+03 1.27e–04 1.37e+00
pc-2-16 977 964 1.34e+04 4.34e–06 6.62e–01
pc-2-32 4001 3972 7.82e+04 7.61e–09 2.06e–01
pr-1-8 186 179 1.10e+03 2.96e–17 2.61e–07
pr-1-16 754 739 4.11e+03 1.35e–18 0
pr-1-32 3040 3011 8.99e+07 3.56e–19 4.34e–01
pr-2-8 185 179 3.22e+03 1.47e–18 4.88e–01
pr-2-16 743 739 3.07e+03 1.91e–23 2.12e–01
pr-2-32 3027 3011 7.62e+03 8.92e–24 1.79e–01

MPEC-LICQ is 15/16, approx second-order point 16/16,
MPEC-SLICQ 10/16.

Anitescu, Tseng, Wright

Convergence of Elastic Mode Formulations of MPECs



Introduction Elastic Formulation: Global Numerical Results Examples Extra

Examples

Example 1: Reg(t) does better(?)

min
x

1

2
(x2 − 1)2 subject to 0 ≤ x1 ⊥ x2 ≥ 0,

Elastic(ck) and PF(ck) are both

min
x

1

2
(x2 − 1)2 + ckx1x2 subject to x1 ≥ 0, x2 ≥ 0,

for which ∇2
xxLck

(x , τ, ν) is indefinite, implying that x1 = 0 or
x2 = 0 at second-order points. Possible solutions of Elastic are
xk = (0, 1)—global solution of MPEC—or

xk =

[ 1
ck

+ α

0

]
, for any α ≥ 0

which are all local solutions satisfying MPEC-LICQ but are far
from MPEC solution.Anitescu, Tseng, Wright
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Reg(tk) has solutions

xk(α) =

[
α
1

]
, α ∈ [0, tk ],

which approach MPEC solution.

Anitescu, Tseng, Wright
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Example 2: Elastic may do better.
Define “Robinson” function

F (y)
∆
=

y∫
0

t6 sin(1/t) dt.

and define MPEC:

min
x
−x1 − F (x2) subject to 0 ≤ x1 ⊥ x2 ≥ 0,

MPEC has M-stationary point at x∗ = (0, 0) with multipliers
τ∗ = −1, ν∗ = 0, and strongly stationary points arbitrarily close to
(0, 0) at (0, (2nπ + π)−1)T . But there is direction of
unboundedness along x1 axis.

Elastic(c) has second-order points that coincide with the x2-axis
MPEC strongly stationary points, with additional condition
x2 ≥ 1/c . Other stationary points are not second-order points.

Anitescu, Tseng, Wright
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An NLP algorithm applied to Elastic(c) may find the direction of
unboundedness or one of the x2-axis stationary points, depending
on how initialized etc.

Reg(tk) for {tk} ↑ ∞ has a sequence of second-order sufficient
solutions xk approaching the M-stationary point 0.

Anitescu, Tseng, Wright
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How likely is MPEC-SLICQ to hold?

Unfortunately, the set of h, g for which MPEC-SLICQ holds
everywhere is not dense in the Whitney topology (as is the case for
MPEC-LICQ, Scholtes 2001) ...

x ∈ R3, g vacuous, h(x) = x2
1 − x2 + 1, GT x = x2, HT x = x3

around (0, 1, 0)

.... since we need one more degree of freedom at the solution. We
conjecture that for the problems for which that happens, the set of
MPEC satisfying MPEC-SLICQ is dense in the sense above. for
which that happens, the set of MPEC satisfying MPEC-SLICQ is
dense in the sense above.
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