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�� ��Complementarity Constraints in Optimal Control

• Switching is an essential part of many dynamical systems.

• That can be modeled by complementarity constraints. The latter
can appear from first-principles modeling as well (in Friction
Problems).

• Therefore when doing optimal control on such dynamical systems,
one will obtain a mathematical program with complementarity
constraints.

• Prompted by the success of the elastic mode in solving
mathematical programs with complementarity constraints, we have
proceeded to a discretize and optimize, brute force approach in
which to leverage these advances.
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�� ��Organization

• Elastic Mode and Math Program with Complementarity
Constraints

• A brute force application to control with contact collision and
friction.

• Maybe brute force is not the best idea and some
problem-specific modeling may be necessary... Theoretical
analysis and results.
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�� ��NLP Problem with some linear constraints

minx f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

We assume that

1. gi(x) is linear for i = 1, 2, . . . , li,

2. hj(x) is linear for j = 1, 2, . . . , le.
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�� ��Elastic mode relaxation for NLP

(NLP (c))

minx,u,v,w f̃(x) + c1

(
eT
m−li

u + eT
r−le

(v + w)
)

subject to

g̃i(x) ≤ 0, i = 1, 2, . . . , li,

g̃i(x) ≤ ui, i = li + 1, . . . , m,

h̃j(x) = 0, j = 1, 2, . . . , le

−vj ≤ h̃j(x) ≤ wj , j = le + 1, . . . , r

u, v, w ≥ 0,
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�� ��An adaptive elastic mode approach

If the QP is infeasible or its Lagrange multipliers are too large then

NLPC: Find the solution (xc1 , uc1 , vc1 , wc1) of the relaxed NLP
If ||(uc1 , vc1 , wc1)|| = 0, then xc1 solves NLP. Stop.

otherwise c1 = c1 + K,return to NLPC.

SNOPT uses that, with an active set algorithm for solving
relaxed NLP.
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�� ��Math Progs with Complementarity Constraints, MPCC

minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , nj

xk1 ≤ 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc∑nc

k=1 x1kx2k ≤ 0

(1)

• The slack formulation is general and has certain algorithmic
advantages over allowing the functions that enter the
complementarity constraints to be nonlinear.

• The problem does not satisfy MFCQ at any feasible point.
Linearization of the constraints may be infeasible arbitrarily close
to the solution.
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�� ��Applying the elastic mode to MPCC

• Under very weak assumptions (existence of a Lagrange multiplier),

the relaxed problem has the same solution as the unrelaxed

problem (2000).

• Superlinear convergence can be achieved if MPEC-LICQ

holds, and certain strong second-order conditions. (2003).

• If the problem has certain structure, one can even obtain

global convergence (2004).

• The performance of SNOPT on these problems is

remarkable (Fletcher and Leyffer, 2003).
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�� ��Discretize and Optimize Control with Switching
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Figure 1: Three-robot coordination, with contact, collision and friction
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�� ��Performance

Table 1: test examples in set B

Problem Nr Def Nt K Nv Ntc

B1 2 2 100 16 10665 7080

B2 3 2 50 16 9392 6564

B3 3 2 50 16 9392 6564

Table 2: computational results of examples in set B

Problem Gs Gt LB

B1 9.78 3157.97 8.94

B2 9.48 4116.81 8.94

B3 9.39 4834.96 8.94
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�� ��Intermediate conclusions

• SNOPT (with a few tricks) is used for this problem, and it does
provide a reasonable solution. That is consistent with previous
conclusions about elastic mode.

• The computational complexity of these problems grows very fast,
and outcome tends to be highly protocol dependent.

• With David Stewart, we felt there was a need to further explore
the nature of the difficulties.
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�� ��Example

min
x0

(x(2) − 5/3)2 +
∫ 2

0

x(t)2 dt

subject to
dx

dt
∈ (1 + α) − Sgn(x), x(0) = x0

• The ∈ symbol (differential inclusion) accommodates the potential
situation where the system “stays” in the manifold (that is x=0
happens for an nonzero amount of time). That does not happen in
this case.

• But if the ODE is solved, first, we get x(t) = α(t + x0/(2 + α)) for
t ≥ −x0/(2 + α). The objective function is differentiable,
(even analytical) with respect to x0!!.

12



�

�

�

�

�� ��Discretize and Optimize

For the objective function, it is straightforward. For the differential
inclusions

xk+1 ∈ xk + h (1 + α) − h Sgn(xk + θ(xk+1 − xk)). (2)

• If θ = 1, we have backward Euler.

• If θ = 0 we have forward Euler.

• The backward Euler scheme mimics the hard constraint approach
developped by several authors recently for multibody dynamics
with contact and friction.

• To make the problem differentiable optimization, we model the
signum function with complementarity constraints.
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�� ��The behavior of the objective function
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�� ��Observations

• There is no hope of convergence, arbitrarily close to the
actual solution !!

• The problem is the incorect sensitivity jump due to the transition.

• So we either detect and track all transitions, or we do some
modeling.
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�� ��Smoothing example, for h = 0.01
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�� ��For smoothing the example

• We use tanh(x/σ) to approximate the sgn(x).

• Note that the size of the smoothing parameter does matter.

• Even stiff systems integrated implicitly are not immune to
this behavior.
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�� ��Our smoothing approach

.

dx

dt
∈

⎧⎪⎪⎨
⎪⎪⎩

{f1(x)}, ψ(x) < 0,

{f2(x)}, ψ(x) > 0,

co{f1(x), f2(x)}, ψ(x) = 0.

(3)

We can approximate this by the smoothed system

dxσ

dt
= ϕσ(ψ(xσ)) f2(xσ) + (1 − ϕσ(ψ(xσ))) f1(xσ). (4)

Here

ϕσ(w) =
∫ w

−∞
θσ(r′) dr′ (5)

where θσ(r) = (1/σ)θ(r/σ) and θ ≥ 0,

18



�

�

�

�

�� ��Our theoretical setup

Consider.
dx

dt
= f(x), x(t0) = x0, (6)

where f may have switching branches but satisfies a one-sided Lipschitz
constant L as in

yi ∈ f(xi) for i = 1, 2 implies (y2 − y1)T (x2 − x1) ≤ L ‖x2 − x1‖2.
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�� ��Smoothing and discretization

We consider the smoothed differential equation.

dxσ

dt
= fσ(xσ), xσ(t0) = x0.

and its fixed step Euler discretization.

xk+1
σ = xk

σ + h fσ(xk
σ)

We denote by xh(t) the interpolated numerical scheme.
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�� ��Main result

Assume that h = o(σ). Then, away from the transition points
we have that

∂xh
σ(t)

∂x0

σ→0−→ ∂x(t)
∂x0

. Observations

• The proof is horrendous, since when the solution stays in the
discontinuity manifold, the sensitivities of the constraint systems,
which include projections, need to pop out of the proof.

• A similar result holds for adjoints, and their jump is computable.

• Under regularity assumptions of the objective function, the minima
themselves will converge.

• We are now investigating infinite dimensional optimal control.
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�� ��The Michael Schumacher problem (simplified)

The simplified dynamics of a sports car.

ẋ = v (7)

v̇ = a(t) t(θ) + F n(θ), (8)

θ̇ = s(t) (t(θ)Tv), (9)

F ∈ −µNSgn(n(θ)T v). (10)

µ is the coefficient of friction and N is the normal contact force
(assumed constant). Track constraints.

x ∈ C = { (x, y) | |y − ycl(x)| ≤ w/2 } (11)
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Track equation.

ycl(x) =

⎧⎪⎪⎨
⎪⎪⎩

sin(x), x ≤ π,

π − x, π ≤ x ≤ 2π,

−π − sin(x), 2π ≤ x.

(12)

Control constraints

|a(t)| ≤ amax for all t, (13)

|s(t)| ≤ smax for all t. (14)

Objective function

g(T, x(T )) = α‖x(T ) − xtgt‖2 + T.
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σ N objective T # iter’ns CPU time

0.1 250 5.544654 5.53393 303 14.1

500 5.549708 5.53877 531 53.3

1000 5.552177 5.54111 349 53.3

2000 5.553451 5.54239 420 227.0

0.05 500 5.590849 5.58285 1501 153.5

1000 5.409497 5.39842 977 242.2

2000 5.409183 5.39813 643 300.8

0.025 1000 5.353886 5.34289 1240 184.5

2000 5.354256 5.34321 1759 913.2

4000 5.354451 5.34341 1368 1552.8
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�� ��Trajectory of “race-car”
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�� ��Computed optimal control functions and velocities
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�� ��Convergence..

We do not have a criterion that we do not encounter the case we were
warning against, but the plots stay the same with varying σ and
N . So we seem to converge.
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�� ��Conclusions

• In spite of their modeling appeal simplicity, optimize and discretize
approaches are not well suited for optimal control with switching
dynamics, such as contact and friction even if they can be
integrated stably.

• We presented an example of such a problem for which the
derivatives do not converge as time step goes to 0. The example
has sequences of local minimizers that converge to points
arbitrarily close to the local minimum sought.

• We proved that in the case of parametric control this difficulty is
eliminated if the problem is smoothed and the time step is taken to
0 faster than the smoothing parameter.

• We presented a simplified example of the Michael Schumacher
problem.
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