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�� ��Context and goals

• Recently, there have been several approaches to solve Mathematical
Programs with Complementarity Constraints (MPCC) by using
nonlinear programming techniques (General: Anitescu 2000 ,
Fletcher and al 2002;, Structured smoothing: Fukushima
and Pang 1998, Scholtes 2002).

• However all of them are of the local type: If point is sufficiently
close to a strongly stationary point that satisfies some condition
then algorithm converges to that point.

• Global convergence: If algorithm is applied to a problem class
then any accumulation point is a ? stationary point. If the point
satisfies some condition then it is a ?++ stationary point.

• However, we need to restrict the problem class to get some
significant results.
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�� ��Before anything else: The mixed P property

Let A ∈ R(nc+l)×nc , B ∈ R(nc+l)×nc , and C ∈ R(nc+l)×l. [A B C] is
mixed P partition if

0 �= (y, w, z) ∈ R2nc+l,

Ay +Bw + Cz = 0

⎫⎬
⎭ ⇒ ∃i, 1 ≤ i ≤ nc, such that yiwi > 0.

What is actually needed in this work (and is implied if [A B C] is a
mixed P partition), is

AT θ ≤ 0, BT θ ≤ 0, CT θ = 0 ⇒ θ = 0
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�� ��Optimization of mixed P variational inequalities

(OMPV)

min
x,y,w,z

f(x, y, w, z)

sbj.to g(x) ≤ 0

h(x) = 0

F (x, y, w, z) = 0

y, w ≤ 0

yTw ≤ 0

(OMPV(c))

min
x,y,w,z,ζ1,ζ2

f(x, y, w, z)+ c(ζ1 + ζ2)

sbj.to g(x) ≤ 0

h(x) = 0

−ζ1enc+l ≤ F (x, y, w, z) ≤ ζ1enc+l

y, w ≤ 0

yTw ≤ ζ2

ζ1, ζ2 ≥ 0

We name the problem OMPV because of the mixed P VI:

F (x, y, w, z) = 0 y, w ≤ 0 yTw ≤ 0
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�� ��MPEC stationarity concepts

∇xf(x, y, w, z)T + ∇xh(x)Tλ+

∇xg(x)Tµ+ ∇xF (x, y, w, z)T θ = 0

∇yf(x, y, w, z)T + η̂y + ∇yF (x, y, w, z)T θ = 0

∇wf(x, y, w, z)T + η̂w + ∇wF (x, y, w, z)T θ = 0

∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T θ = 0

g(x) ≤ 0, µ ≥ 0, h(x) = 0, g(x)Tµ = 0

F (x, y, z, w) = 0, y ≤ 0, w ≤ 0, yTw = 0,∑nc

k=1 yk|η̂y,k| = 0,
∑nc

k=1 wk|η̂w,k| = 0

.
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�� ��MPEC stationarity concepts

• Weakly stationary points : no additional requirements.

• C-stationary points: η̂y,k η̂w,k ≥ 0, k = 1, 2, . . . , nc:

• M-stationary points: C-stationary points and η̂y,k ≥ 0 or
η̂w,k ≥ 0, k = 1, 2, . . . , nc

• B-stationary points, for which d = 0 is a solution of the linearized
(OMPV) except yTw ≤ 0

• Strongly stationary points,

yk = 0, wk = 0 ⇒ η̂y,k ≥ 0 and η̂w,k ≥ 0, k = 1, 2, . . . , nc

Sheel and Scholtes 2000 describe in detail the connections.
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�� ��Important concepts about MPCC and OMPV

• Definition (ULSC). A weakly stationary point (x, y, z, w) of
(OMPV) satisfies the upper level strict complementarity (ULSC)
property if there exists an MPCC multiplier that satisfies

yk + wk = 0 ⇒ η̂y,kη̂w,k �= 0, k = 1, 2, . . . , nc.

• Definition (MPCC-LICQ) MPCC-LICQ holds at a feasible
(x, y, z, w), point of (OMPV) if the gradients of all active
constraints of (OMPV) at (x, y, z, w), with the exception of the
complementary constraint yTw ≤ 0, are linearly independent.

Note (Sheel and Scholtes 2000) Under MPCC-LICQ, all
stationarity concepts are the same at a solution point of (OMPV).
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�� ��Assumptions

A1 The mappings f, g, h, F are twice continuously differentiable.

A2 The constraints involving only the parameters x satisfy, for any x,

i) ∇xh(x) has full column rank.

ii) ∃p ∈ Rn such that ∇xh(x)p = 0 and ∇gi(x)p < 0 whenever
gi(x) ≥ 0.

iii) The linearization h(x) + ∇xh(x)d = 0, g(x) + ∇xg(x)d ≤ 0 is
feasible.

A3 The partition [∇yF,∇wF,∇zF ] is a mixed P partition (3).
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�� ��Assumptions about the algorithm

Definition (Global Convergence Safeguard). A nonlinear
programming algorithm (such as FilterSQP) whose outcome is

1. An infeasible point of the nonlinear program at which the
linearization of the constraints is infeasible.

2. A feasible point of the nonlinear program that does not satisfy
MFCQ.

3. A feasible point of the nonlinear program that satisfies MFCQ and
that is a KKT point of the nonlinear program.

Alg1 The nonlinear programming algorithm has a global convergence
safeguard.

Then any accumulation point of a nonlinear programming algorithm
that satisfies Assumption Alg1 and is applied to (OMPV(c)) is a KKT
point!
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�� ��ε stationary point, dual conditions

(x, y, w, z, ζ1, ζ2) is an ε stationary point of (OMPV(c)) if there exists
(λ, µ, θ, ηy, ηw, αc, α1, α2) such that:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇xf(x, y, w, z)T + ∇xh(x)Tλ+

∇xg(x)Tµ+ ∇xF (x, y, w, z)T (θ+ − θ−) = tx

∇yf(x, y, w, z)T + ηy + αcw + ∇yF (x, y, w, z)T (θ+ − θ−) = ty

∇wf(x, y, w, z)T + ηw + αcy + ∇wF (x, y, w, z)T (θ+ − θ−) = tw

∇zf(x, y, w, z)T + ∇zF (x, y, w, z)T (θ+ − θ−) = tz

‖θ+‖1 + ‖θ−‖1 + α1 = c+ tα1; αc + α2 = c+ tα2

µ ≥ 0; ηy, ηw ≥ 0; θ+, θ− ≥ 0; αc, α1, α2 ≥ 0,

‖tx, ty, tw, tz, tα1tα2‖∞ ≤ ε.
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�� ��ε stationary point, primal and compl. conditions
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g(x) ≤ tg

h(x) = th

−ζ1enc+l − t1F ≤ F (x, y, w, z) ≤ ζ1enc+l + t2F

y,w ≤ 0

yTw ≤ ζ2 + tc

ζ1, ζ2 ≥ 0,

⎧⎪⎪⎨
⎪⎪⎩

(ζ1enc+l − F )T θ+ + (F + ζ1enc+l)T θ− = tcF

αc(ζ2 − wT y) = tcc; g(x)Tµ = tcg;

|α2ζ2| ≤ tcp; |α1ζ1| ≤ tcp;
∣∣yT ηy

∣∣ ≤ tcp;
∣∣wT ηw

∣∣ ≤ tcp,

‖tg, th, t1F , t2F , tc, tcc, tcF , tcg, tcp‖∞ ≤ ε.

... piece of cake for interior-point methods
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�� ��The algorithm

Choose c0 > 0, n = 0, K > 1, an integer q ≥ 1 and a sequence εn → 0.
MPCC Find an εn solution (xn, yn, wn, zn, ζn

1 , ζ
n
2 ) of (OMPV(cn)).

If ζcn

1 + ζcn

2 > (εn)
1
q ,

update c : cn+1 = Kcn and n : n = n+ 1.
return to MPCC

Note that, as opposed to Scholtes 2002, we do not need an infinite
number of steps to solve the subproblem.

12



�

�

�

�

�� ��Global Convergence Theorem

Assume that

• (OMPV) satisfies the assumptions A1, A2 and A3.

• (OMPV(cn)) is solved with an NLP algorithm that satisfies
Assumption Alg1 that produces an εn stationary point.

• limn→∞ cnεn = 0.

• The sequence
(
xcn

, ycn

, wcn

, zcn

, ζcn

1 , ζcn

2

)
has an accumulation

point.

Then (1) if the penalty parameter update rule is activated a finite
number of times any accumulation point is a strongly stationary
point of (OMPV) and (2) if the penalty parameter update rule is
activated an infinite number of times, and then any accumulation
point is a C-stationary point of (OMPV).

Note that we may still diverge to ∞ ... but we’ll fix that.
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�� ��Approximate second-order stationary points

Definition (ε, χ second-order stationary point). We say that the
point x̃ = (x, y, z, w, ζ1, ζ2), together with a Lagrange multiplier
λ̃ = (λ , µ, θ+n, θ−n, ηy ,ηw ,αc ,α1 ,α2) is an ε, χ second-order point of
(OMPV(c)) if

1. x̃ = (x, y, z, w, ζ1, ζ2), is an ε stationary point of (OMPV(c)), that
satisfies exactly the primal-dual complementarity involving the
slack variables ηT

y,ky = 0, ηT
w,kw = 0.

2. uT Λc
xx(x̃, λ̃)u > 0 for any u that is at the same time in the null

space of the gradients of the active bound constraints of
(OMPV(c)) and null space of a subset of the χ-active non-bound
constraints of (OMPV(c)).

Note that sufficient conditions can be tested by by active set methods
with rank-revealing factorization.
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�� ��M-stationarity Result

Assume that

• The problem (OMPV) satisfies assumptions A1, A2 and A3

• (OMPV(cn)) is solved with an algorithm that satisfies Assumption
Alg1.

• x̃n = (xn, yn, zn, wn, ζn
1 , ζ

n
2 ) is a εn, χn second-order stationary

point of (OMPV(cn)), for all n = 1, 2, . . . ,∞
• lim

n→∞ cn = ∞, lim
n→∞ εn = 0, lim

n→∞χn = 0 and lim
n→∞ cnεn = 0.

• (x∗, y∗, z∗, w∗, ζ∗1 , ζ
∗
2 ) is an accumulation point of this sequence.

• If (x∗, y∗, z∗, w∗) satisfies MPCC-LICQ,

then (x∗, y∗, z∗, w∗) must be an M-stationary point of (OMPV).
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�� ��Convergence to strongly stationary points

If, in addition to the assumptions of M-stationarity convergence we
have that ULSC holds at the accumulation point (x∗, y∗, z∗, w∗), then
(x∗, y∗, z∗, w∗) is a strongly stationary point and, as a result, a
strongly stationary point.

The result is similar to the results of Fukushima and Pang 98 and
Scholtes 2002, except that it works with approximate points. Sven’s
objection However, if ULSC does not hold a descent direction may
still exist.
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�� ��Is M-stationarity sufficient?

Assume that (x∗, y∗, z∗, w∗) is an M-stationary point of (OMPV).
Then, for any δ > 0, the following exist

1. A perturbation fδ(x, y, w, z)of the objective function
f(x, y, w, z)that satisfies

∥∥∇x̃f
δ(x, y, w, z) −∇x̃f(x, y, z, w)

∥∥ ≤ δ

for all x̃ = (x, y, z, w) in a neighborhood of (x∗, y∗, z∗, w∗).

2. A vector lδF that satisfies
∥∥lδF ∥∥ ≤ δ.

3. A point (xδ, yδ, zδ, wδ) that satisfies∥∥(xδ, yδ, zδ, wδ) − (x∗, y∗, z∗, w∗)
∥∥ ≤ δ and that is a strongly

stationary point (thus a B-stationary point) for the
perturbed problem

17



�

�

�

�

�� ��The perturbed problem

(δOMPV )

min
x,y,w,z

fδ(x, y, w, z)

sbj.to g(x) ≤ 0

h(x) = 0

F (x, y, w, z) = lδF

y, w ≤ 0

(yTw = 0) yTw ≤ 0

M-stationary points my be indistinguishable in finite
arithmetic or for finite tolerance from strongly-stationary
points!
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�� ��Finishing global convergence: keep iterates finite

A4 The penalty function ψ(x, y, w, z) = ||F (x, y, w, z)||∞ + yTw has
bounded level sets over the set defined by the constraints
g(x) ≤ 0, h(x) = 0, y ≤ 0, w ≤ 0.

A5 The objective function f(x, y, w, z) is bounded below over the same
set.

Alg2 For any fixed value of c, the algorithm that is applied for solving
the problem (OMPV(c)) decreases the merit function
f(x, y, z, w) + cψ(x, y, z, w).

The merit function
Ψ(x, y, w, z, c) = 1

c (f(x, y, w, z) −Bf ) + ψ(x, y, w, z) is always
decreasing (even at penalty update) and has bounded level
sets ⇒ convergence to C-stationary points is guaranteed!
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�� ��The obstacle problem

(OBST)

min
x,y,w,z

f(x, z)

sbj.to g(x) ≤ 0

−A(x)z + φ(x) = y

k(φ(x) − A(x)z) + χ(x) − z = w

y,w ≤ 0

(yTw = 0) yTw ≤ 0

We proved that the obstacle problem satisfies assumptions
A1, A2, A3, A4 !!! So not so outlandish after all.
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�� ��A graph of the obstacle problem

Packaging with rigid parabolic obstacle.
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�� ��The obstacle problem test set (THANKS SVEN!!)

All of them satisfy Assumption A5

• The incidence set identification problem The contact region
must be as close as possible to a prescribed shape.

• The packaging problem with compliant obstacle. Minimize
the area of the membrane, while keeping the membrane in contact
with the obstacle over at least a prescribed region.

• The packaging problem with rigid obstacle. Same as before
but the obstacle is rigid.
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�� ��Algorithmic choices for our numerical simulations

1. We use knitro to solve OMPV(c), the relaxed problem. knitro
was not proven to satisfy Alg1, but we can test for ε stationarity
and knitro provided one for any problem.

2. q = 2, K = 10, c0 = 10, and εn = 10−312−n. We put
εn=opttol=feastol.

3. Stopping Criteria ζn
1 + ζn

2 ≤ 1e− 7.

4. Note that cn ≤ 10n+1, means that cnεn → 0, as required by
our results!!
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�� ��Detecting C-stationarity and M-stationarity

• We construct what we hope are good MPEC multipliers:

η̂w,k = ηw,k + cyk, η̂y,k = ηy,k + cwk, k = 1, 2, . . . , nC .

• We define

Cstat = min
k=1,2,...,nC

η̂w,kη̂y,k, Mstat = max
k=1,2,...,nC

min{η̂w,k, η̂y,k}.

• If Cstat ≥ 0 we go to a C-stationary point; if Mstat ≤ 0, we have
also an M-stationary point (Note that the MacMPEC library
uses nonnegativity constraints, as opposed to
nonpositivity as used here).
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�� ��Numerical Results

Problem Obj Uc Ut Cstat Mstat Feval KFeval

is-1-8 2.352e-08 0 5 4.10e-11 2.89e-09 204 390

is-1-16 8.639e-06 1 6 9.38e-08 7.85e-06 451 4001

is-1-32 5.904e-06 2 7 3.36e-08 5.52e-05 2906 1097

is-2-8 4.517e-03 1 6 5.12e-08 2.84e-07 302 1712

is-2-16 3.006e-03 1 6 1.27e-06 1.02e-03 434 4001

is-2-32 1.774e-03 2 5 1.01e-05 3.54e-03 2083 4001

pc-1-8 6.000e-01 1 5 6.32e-14 1.40e-03 75 4001

pc-1-16 6.169e-01 1 7 3.82e-21 5.65e-07 297 4001

pc-1-32 6.529e-01 2 6 9.60e-18 8.93e-05 4999 3081

pc-2-8 6.731e-01 1 5 1.01e-19 3.03e-06 78 1421

pc-2-16 7.271e-01 2 5 3.60e-16 1.77e-03 289 1358

pc-2-32 7.826e-01 2 6 1.84e-16 1.22e-04 645 1350

pr-1-8 7.879e-01 1 6 9.28e-18 1.03e-06 193 81

pr-1-16 8.260e-01 2 5 1.68e-16 1.14e-05 218 54

pr-1-32 8.508e-01 2 5 1.95e-17 1.17e-03 644 3040

pr-2-8 7.804e-01 1 6 3.20e-18 1.46e-06 183 33

pr-2-16 1.085e+00 3 6 2.32e-15 1.73e-05 342 208

pr-2-32 1.135e+00 3 6 1.36e-14 1.59e-04 661 2792

Note C-stationarity always satisfied, M-stationarity almost true.
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�� ��M-stationary points under finite tolerance

• The problem pr-1-32, for index k = 19 we have

y19 = 1.039e−05, w19 = 1.42e−04, η̂y,19 = 0.14, η̂w,19 = 1.17e−03

• In absence of any additional information (such as whether
MPCC-LICQ holds, which cannot be tested for AMPL), it is
difficult to decide whether the algorithm converges to an
M-stationary point at which descent is still possible, or whether it
converges to a strongly stationary point.

• However, if MPCC-LICQ holds, then one should somehow take
advantage of Sven’s point. But how to do that before
convergence, is not clear.
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�� ��The performance plot
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�� ��Conclusions

• We proved that an elastic mode approach are guaranteed to
converge to C-stationary points of the optimization of mixed P
variational inequalities. To my knowledge, the first that does
not assume any other constraint qualification at the
solution.

• We proved that several variants of the obstacle problem satisfy our
convergence assumptions.

• We have shown that M-stationary points can be confounded with
strongly stationary points in finite arithmetic. This does not
mean that they will be but in some of our examples they were.

• We have shown that our elastic mode approach with knitro

solving the relaxed problem is superior to knitro alone at solving
the problem.
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�� ��Still to do

• Can one robustly marry this approach with an active-set approach
to take advantage of MPCC-LICQ (if it holds) sufficiently close to
the solution?

• Can convergence to M-stationarity hold under weaker conditions?
For example MPCC-MFCQ (see Jane Ye’s talk from Sunday)?
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