Solving nonconvex problems of nonsmooth dynamics by convex relaxation

Mihai Anitescu
Argonne National Laboratory

Nonsmooth multi-rigid-body dynamics

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to predict the position and velocity evolution of a group of rigid particles subject to certain constraints and forces.

- non-interpenetration.
- collision.
- joint constraints
- adhesion
- Dry friction - Coulomb model.
- global forces: electrostatic, gravitational.
\square These we cover in our approach.

Areas that use NRMD

- granular and rock dynamics.
- masonry stability analysis.
- simulation of concrete obstacle response to explosion.
- tumbling mill design (mineral processing industry).
- interactive virtual reality.
- robot simulation and design.

Model Requirements and Notations

- MBD system : generalized positions q and velocities v. Dynamic parameters: mass $M(q)$ (positive definite), external force $k(t, q, v)$.
- Non interpenetration constraints: $\Phi^{(j)}(q) \geq 0,1 \leq j \leq n_{\text {total }}$ and compressive contact forces at a contact.
- Joint (bilateral) constraints: $\Theta^{(i)}(q)=0,1 \leq i \leq m$.
- Frictional Constraints: Coulomb friction, for friction coefficients $\mu^{(j)}$.
- Dynamical Constraints: Newton laws, conservation of impulse at collision.

```
Normal velocity: v
Normal impulse: c n
```


Contact Model

- Contact configuration described by the (generalized) distance function $d=\Phi(q)$, which is defined for some values of the interpenetration. Feasible set: $\Phi(q) \geq 0$.
- Contact forces are compressive, $c_{n} \geq 0$.
- Contact forces act only when the contact constraint is exactly satisfied, or

$$
\Phi(q) \text { is complementary to } c_{n} \text { or } \Phi(q) c_{n}=0, \text { or } \Phi(q) \perp c_{n}
$$

Coulomb Friction Model

- Tangent space generators: $\widehat{D}(q)=\left[\widehat{d}_{1}(q), \widehat{d}_{2}(q)\right]$, tangent force multipliers: $\beta \in R^{2}$, tangent force $D(q) \beta$.
- Conic constraints: $\|\beta\| \leq \mu c_{n}$, where μ is the friction coefficient.
- Max Dissipation Constraints: $\beta=\operatorname{argmin}_{\|\widehat{\beta}\| \leq \mu c_{n}} v^{T} \widehat{D}(q) \widehat{\beta}$.
- v_{T}, the tangential velocity, satisfies $\left|v_{T}\right|=\lambda=-v^{T} \widehat{D}(q) \frac{\beta}{\|\beta\|}$. λ is the Lagrange multiplier of the conic constraint.
- Discretized Constraints: The set $\widehat{D}(q) \beta$ where $\|\beta\| \leq \mu c_{n}$ is approximated by a polygonal convex subset: $D(q) \tilde{\beta}, \tilde{\beta} \geq 0$, $\|\tilde{\beta}\|_{1} \leq \mu c_{n}$. Here $D(q)=\left[d_{1}(q), d_{2}(q), \ldots, d_{m}(q)\right]$.

For simplicity, we denote $\tilde{\beta}$ the vector of force multipliers by β.

Defining the friction cone

For one contact:

$$
\begin{aligned}
F C^{(j)}(q)= & \left\{c_{n}^{(j)} n^{(j)}+\beta_{1}^{(j)} t_{1}^{(j)}+\beta_{2}^{(j)} t_{2}^{(j)} \mid\right. \\
& \left.c_{n}^{(j)} \geq 0, \sqrt{\left(\beta_{1}^{(j)}\right)^{2}+\left(\beta_{2}^{(j)}\right)^{2}} \leq \mu^{(j)} c_{n}^{(j)}\right\}
\end{aligned}
$$

The total friction cone:

$$
\begin{aligned}
F C(q)= & \left\{\sum_{j=1,2, \ldots, p} c_{n}^{(j)} n^{(j)}+\beta_{1}^{(j)} t_{1}^{(j)}+\beta_{2}^{(j)} t_{2}^{(j)}\right. \\
& \sqrt{\left(\beta_{1}^{(j)}\right)^{2}+\left(\beta_{2}^{(j)}\right)^{2}} \leq \mu^{(j)} c_{n}^{(j)} \\
& \left.c_{n}^{(j)} \geq 0 \perp \Phi^{(j)}(q)=0, j=1,2, \ldots, p\right\}
\end{aligned}
$$

We have

$$
F C(q)=\sum_{j=1,2, \ldots, p, \Phi^{(j)}(q)=0} F C^{(j)}(q)
$$

Acceleration Formulation

$$
\begin{array}{rll}
M(q) \frac{d^{2} q}{d t^{2}}-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{(i)}-\sum_{j=1}^{p} & \left(n^{(j)}(q) c_{n}^{(j)}\right. & \left.+D^{(j)}(q) \beta^{(j)}\right)=k\left(t, q, \frac{d q}{d t}\right) \\
\Theta^{(i)}(q)=0, & & i=1 \ldots m \\
\Phi^{(j)}(q) \geq 0, & \text { compl. to } & c_{n}^{(j)} \geq 0, \quad j=1 \ldots p \\
\beta=\operatorname{argmin}_{\widehat{\beta}^{(j)}} v^{T} D(q)^{(j)} \widehat{\beta}^{(j)} & \text { subject to } & \left\|\widehat{\beta}^{(j)}\right\|_{1} \leq \mu^{(j)} c_{n}^{(j)}, j=1 \ldots p
\end{array}
$$

Here $\nu^{(\mathbf{i})}=\nabla \Theta^{(\mathbf{i})}, n^{(j)}=\nabla \Phi^{(j)}$.
It is known that these problems do not have a classical solution even in 2 dimensions, where the discretized cone coincides with the total cone.Painleve's paradox

A Painleve paradox example

$p=r-\frac{l}{2}\binom{\cos (\theta)}{\sin (\theta)}$
Constraint: $\hat{n} p \geq 0$ (defined everywhere).
$\hat{n} \ddot{p}=-g+f_{N}\left(\frac{1}{m}+\frac{l}{2 I}\left(\cos ^{2}(\theta)-\mu \sin (\theta) \cos (\theta)\right)\right)$
$\hat{n} \ddot{p_{a}}=-g-\frac{f_{N}}{m}$

Painleve Paradox: No classical solutions!

Continuous formulation in terms of friction cone

$$
\begin{aligned}
M \frac{d v}{d t} & =f_{C}(q, v)+k(q, v)+\rho \\
\frac{d q}{d t} & =v \\
\rho & =\sum_{j=1}^{p} \rho^{(j)}(t) \\
\rho^{(j)}(t) & \in F C^{(j)}(q(t)) \\
\Phi^{(j)}(q) & \geq 0 \\
\left\|\rho^{(j)}\right\| \Phi^{(j)}(q) & =0, \quad j=1,2, \ldots, p
\end{aligned}
$$

However, we cannot expect even that the velocity is continuous!. So we must consider a weaker form of differential relationship

Measure Differential Inclusions

We must now assign a meaning to

$$
M \frac{d v}{d t}-f_{c}(q, v)-k(t, q, v) \in F C(q)
$$

Definition If ν is a measure and $K(\cdot)$ is a convex-set valued mapping, we say that v satisfies the differential inclusions

$$
\frac{d v}{d t} \in K(t)
$$

if, for all continuous $\phi \geq 0$ with compact support, not identically 0 , we have that

$$
\frac{\int \phi(t) \nu(d t)}{\int \phi(t) d t} \in \bigcup_{\tau: \phi(\tau) \neq 0} K(\tau)
$$

Weaker formulation for NRMD

Find $q(\cdot), v(\cdot)$ such that

1. $v(0)$ is a function of bounded variation (but may be discontinuous).
2. $q(\cdot)$ is a continuous, locally Lipschits function that satisfies

$$
q(t)=q(0)+\int_{0}^{t} v(\tau) d \tau
$$

3. The measure $d v(t)$, which exists due to v being a bounded variation function, must satisfy, (where $f_{c}(q, v)$ is the Coriolis and Centripetal Force)

$$
\frac{d(M v)}{d t}-k(t, v)-f_{c}(q, v) \in F C(q(t))
$$

4. $\Phi^{(j)}(q) \geq 0, \forall j=1,2, \ldots, p$.

Linearization method

For time-stepping scheme, the geometrical constraints are enforced by linearization.

$$
\begin{aligned}
& \nabla \Phi\left(q^{(l)}\right)^{T} v^{(l+1)} \geq 0 \Longrightarrow \Phi^{(j)}\left(q^{(l)}\right)+\gamma h_{l} \nabla \Phi\left(q^{(l)}\right)^{T} v^{(l+1)} \geq 0 \\
& \nabla \Theta\left(q^{(l)}\right)^{T} v^{(l+1)}=0 \Longrightarrow \Theta^{(j)}\left(q^{(l)}\right)+\gamma h_{l} \nabla \Theta\left(q^{(l)}\right)^{T} v^{(l+1)}=0
\end{aligned}
$$

Here $\gamma \in(0,1] . \gamma=1$ corresponds to exact linearization.

Time-stepping scheme

Euler method, half-explicit in velocities, linearization for constraints. Maximum dissipation principle enforced through optimality conditions.

$$
\begin{array}{rrr}
M\left(v^{l+1}-v^{(l)}\right)-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{(i)}-\sum_{j \in \mathcal{A}} & \left(n^{(j)} c_{n}^{(j)}+\right. & \left.D^{(j)} \beta^{(j)}\right)=h k \\
\nu^{(i)^{T}} v^{l+1}=-\gamma \frac{\Theta^{(i)}}{h}, & i=1,2, \ldots, m \\
\rho^{(j)}=n^{(j)^{T}} v^{l+1} \geq-\gamma \frac{\Phi^{(j)}(q)}{h}, & \text { compl. to } & c_{n}^{(j)} \geq 0, \quad j \in \mathcal{A} \\
\sigma^{(j)}=\lambda^{(j)} e^{(j)}+D^{(j) T} v^{l+1} \geq 0, & \text { compl. to } & \beta^{(j)} \geq 0, \quad j \in \mathcal{A} \\
\zeta^{(j)}=\mu^{(j)} c_{n}^{(j)}-e^{(j)^{T}} \beta^{(j)} \geq 0, & \text { compl. to } & \lambda^{(j)} \geq 0, \quad j \in \mathcal{A}
\end{array}
$$

Here $\nu^{(\mathrm{i})}=\nabla \Theta^{(\mathrm{i})}, n^{(j)}=\nabla \Phi^{(j)}$. h is the time step. The set \mathcal{A} consists of the active constraints. Stewart and Trinkle, 1996, MA and Potra, 1997: Scheme has a solution although the classical formulation doesn't!

Matrix Form of the Integration Step

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccccc}
M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\
\tilde{\nu}^{T} & 0 & 0 & 0 & 0 \\
\tilde{n}^{T} & 0 & 0 & 0 & 0 \\
\tilde{D}^{T} & 0 & 0 & 0 & \tilde{E} \\
0 & 0 & \tilde{\mu} & -\tilde{E}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
v^{(l+1)} \\
\tilde{c}_{\nu} \\
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]+\left[\begin{array}{c}
-M v^{(l)}-h k \\
\Upsilon \\
\Delta \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\tilde{\rho} \\
\tilde{\lambda}
\end{array}\right]} \\
\\
{\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\zeta}
\end{array}\right]} \\
\tilde{\zeta}
\end{array}\right]\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\lambda}
\end{array}\right]=0, \quad\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\zeta}
\end{array}\right] \geq 0, \quad\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right] \geq 0 .
$$

Regularity Conditions: Friction cone assumptions

Define ϵ cone

$$
{ }^{\epsilon} \widehat{F C}(q)=\sum_{\Phi^{(j)}(q) \leq \epsilon} F C^{(j)}(q)
$$

Pointed friction cone assumption: $\exists K_{\epsilon}, K_{\epsilon}^{*}$, and $t(q, \epsilon) \in^{\epsilon} \widehat{F C}(q)$ and $v(q, \epsilon) \in^{\epsilon} \widehat{F C}^{*}(q)$, such that, $\forall q \in R^{n}$, and $\forall \epsilon \in[0, \bar{\epsilon}]$, we have that

- $t(q, \epsilon)^{T} w \geq K_{\epsilon}\|t(q, \epsilon)\|\|w\|, \forall w \in^{\epsilon} \widehat{F C}(q)$.
- $n^{(j)^{T}} v(q, \epsilon) \geq \mu \sqrt{t_{1}^{(j)^{T}} v(q, \epsilon)+t_{2}^{(j)^{T}} v(q, \epsilon)}+K_{\epsilon}^{*}\|v(q, \epsilon)\|$, $j=1,2, \ldots, p$.

Convergence result

(Stewart) Assume
H1 The functions $n^{(j)}(q), t_{1}^{(j)}(q), t_{2}^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.

H 2 The mass matrix M is positive definite.
H3 The external force increases at most linearly with the velocity and position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence $h_{k} \rightarrow 0$ where

- $q^{h_{k}}(\cdot) \rightarrow q(\cdot)$ uniformly.
- $v^{h_{k}}(\cdot) \rightarrow v(\cdot)$ pointwise a.e.
- $d v^{h_{k}}(\cdot) \rightarrow d v(\cdot)$ weak $*$ as Borel measures. in [0,T], and every such subsequence converges to a solution $(q(\cdot), v(\cdot))$ of MDI.

Solving the LCP

Is it possible to obtain an algorithm that has modest conceptual complexity?

- Lemke's method after reduction to proper LCP works, but for larger scale problems alternatives to it are desirable. Works well for tens of bodies, most of the time.
- Interior Point methods work for the frictionless problem (since matrices are PSD), but their applicability to the problem with friction depends on the convexity of the solution set.
- Is the solution set of the complementarity problem convex?

Nonconvex solution set

Force Balance:

$$
\begin{aligned}
& \sum_{j=1}^{6} c_{n}^{(j)} n^{(j)}-h m g\binom{n}{\mathbf{0}_{3}}=0 \\
& \mu c_{n}^{(j)} \geq 0 \quad \perp \quad \lambda^{(j)} \geq 0, \quad j=1,2, \ldots, 6
\end{aligned}
$$

Nonconvex solution set

The following solutions

1. $c_{n}^{(1)}=c_{n}^{(3)}=c_{n}^{(5)}=\frac{h m g}{3}, c_{n}^{(2)}=c_{n}^{(4)}=c_{n}^{(6)}=0$, $\lambda^{(1)}=\lambda^{(3)}=\lambda^{(5)}=0, \lambda^{(2)}=\lambda^{(4)}=\lambda^{(6)}=1$,
2. $c_{n}^{(1)}=c_{n}^{(3)}=c_{n}^{(5)}=0, c_{n}^{(2)}=c_{n}^{(4)}=c_{n}^{(6)}=\frac{h m g}{3}$,
$\lambda^{(1)}=\lambda^{(3)}=\lambda^{(5)}=1, \lambda^{(2)}=\lambda^{(4)}=\lambda^{(6)}=0$.
The average of these solutions satisfies $c_{n}^{(j)}=\frac{h m g}{6}, \lambda^{(j)}=\frac{1}{2}$, for $j=1,2, \ldots, 6$, which violate

$$
\mu c_{n}^{(j)} \geq 0 \perp \lambda^{(j)} \geq 0, \quad j=1,2, \ldots, 6
$$

The average of these solutions, that both induce $v=0$, violates,

$$
\beta_{1}^{(2)} \geq 0 \quad \perp \quad \lambda^{(2)} \geq 0
$$

For any $\mu>0$ the LCP matrix is no $P *$ matrix, polynomiality unlikely.

The convex relaxation

Define $\Theta^{(l)}=-M v^{(l)}-h k^{(l)}$. We solve the following LCP

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\
\tilde{\nu}^{T} & 0 & 0 & 0 & 0 \\
\tilde{n}^{T} & 0 & 0 & 0 & -\tilde{\mu} \\
\tilde{D}^{T} & 0 & 0 & 0 & \tilde{E} \\
0 & 0 & \tilde{\mu} & -\tilde{E}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
v^{(l+1)} \\
\tilde{c}_{\nu} \\
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]+\left[\begin{array}{c}
\Theta^{(l)} \\
\Upsilon \\
\Delta \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]^{T}\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right]=0, \quad\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right] \geq 0, \quad\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right] \geq 0 .}
\end{aligned}
$$

The LCP is actually equivalent to a strongly convex QP.

The new convergence result with convex subproblems

H1 The functions $n^{(j)}(q), t_{1}^{(j)}(q), t_{2}^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M is positive definite.
H3 The external force increases at most linearly with the velocity and position.

H4 The uniform pointed friction cone assumption holds.
Then there exists a subsequence $h_{k} \rightarrow 0$ where

- $q^{h_{k}}(\cdot) \rightarrow q(\cdot)$ uniformly.
- $v^{h_{k}}(\cdot) \rightarrow v(\cdot)$ pointwise a.e.
- $d v^{h_{k}}(\cdot) \rightarrow d v(\cdot)$ weak $*$ as Borel measures. in [0,T], and every such subsequence converges to a solution $(q(\cdot), v(\cdot))$ of MDI. Here $q^{h_{k}}$ and $v^{h_{k}}$ is produced by the relaxed algorithm.

$$
h_{k}=\frac{0.1}{2^{k}}, \mu=0.3
$$

$$
h_{k}=\frac{0.1}{2^{k}}, \mu=0.75
$$

k	$h_{k}\left\\|y_{Q P}-y_{L C P}\right\\|_{2}$
0	$5.6314784 \mathrm{e}-002$
1	$1.7416198 \mathrm{e}-002$
2	$6.7389905 \mathrm{e}-003$
3	$2.1011170 \mathrm{e}-003$
4	$7.6112319 \mathrm{e}-004$
5	$2.6647317 \mathrm{e}-004$
6	$9.2498029 \mathrm{e}-005$
7	$3.2649217 \mathrm{e}-005$

k	$h_{k}\left\\|y_{Q P}-y_{L C P}\right\\|_{2}$
0	$1.5736018 \mathrm{e}+000$
1	$7.2176724 \mathrm{e}-001$
2	$1.4580267 \mathrm{e}-001$
3	$9.2969637 \mathrm{e}-002$
4	$5.5543025 \mathrm{e}-003$
5	$4.3982975 \mathrm{e}-003$
6	$3.7537593 \mathrm{e}-003$
7	$3.7007014 \mathrm{e}-004$

No convergence, but small absolute error.

Granular matter

- Sand, Powders, Rocks, Pills are examples of granular matter.
- The range of phenomena exhibited by granular matter is tremendous. Size-based segregation, jamming in grain hoppers, but also flow-like behavior.
- There is still no accepted continuum model of granular matter.
- Direct simulation methods (discrete element method) are still the most general analysis tool, but they are also computationally costly.
- The favored approach: the penalty method which works with time-steps of microseconds for moderate size configurations.

Brazil nut effect simulation

- Time step of 100 ms , for 50 s . 270 bodies.
- Convex Relaxation Method. One QP/step. No collision backtrack.
- Friction is 0.5 , restitution coefficient is 0.5 .
- Large ball emerges after about 40 shakes. Results in the same order of magnitude as MD simulations (but with 4 orders of magnitude larger time step).

Brazil nut effect simulations performance

Number of active contacts

Conclusions and remarks

- We have shown that we find solutions to measure differential inclusions by solving quadratic programs, as opposed to LCP with possible nonconvex solution set.
- PATH is very robust for the original formulation when problem and friction is small but fails for larger problems. However, PATH is successfull in solving the QP.
- This is a major progress for solving very large scale problems, since it opens the possibility of applying a variety of algorithms, including iterative algorithms.

