
'

&

$

%

Rate of convergence results for NLP

elastic mode algorithms for MPCC

Mihai Anitescu

Argonne National Laboratory

1



'

&

$

%

�� ��Justification and Objective

• It has recently been shown that certain classical nonlinear

programming algorithms work well for mathematical programs

with complementarity constraints (Leyffer,02); (Fletcher,

Leyffer, Sholtes and Ralph, 02); (Anitescu,00).

• We are interested in analyzing the rate of convergence of certain

classical algorithms for nonlinear programming.

• In this work, in order to deal with the possible infeasibility of the

subproblem, we use the elastic mode: the nonlinear constraints are

relaxed.
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�� ��NLP Problem with some linear constraints

minx f(x)

subject to gi(x) ≤ 0, i = 1, 2, . . . , ni

hj(x) = 0, j = 1, 2, . . . , ne

We assume that

1. gi(x) is linear for i = 1, 2, . . . , li,

2. hj(x) is linear for j = 1, 2, . . . , le.
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�� ��Regularity assumptions for linear constraints

[B1] The set F is feasible, where

F = {x |gi(x) ≤ 0, i = 1, 2, . . . , li, hj(x) = 0, j = 1, 2, . . . , le } ,

[B2] The preceding representation of F is minimal: ∇xhj(x) are linearly

independent, j = 1, 2, . . . , le, and ∃d such that ∇hj(x)
T d = 0,

j = 1, 2, . . . , ne and ∇gi(x)
T d < 0, i = 1, 2, . . . , ni.

These assumptions can be invoked without loss of generality, since a

minimal representation always exists if the set F is feasible. If F is

infeasible, the whole problem is infeasible.
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�� ��An SQP algorithm

Define c̃∞ > 0, x0, k = 0, σ ∈ (0, 1
2 ), τ ∈ (0, 1), s > 0.

QP Find the solution d = dk of the quadratic program.

minimized
1
2d

T d+ ∇f(xk)T d

subject to h̃(xk) + ∇h̃(xk)T d = 0

g̃(xk) + ∇g̃(xk)T d ≤ 0

Find the smallest integer m = mk that satisfies

ψ∞(xk + τmsdk) − ψ∞(xk) ≥ στmsdkT

dk.

Define xk+1 = xk + τmksdk, and k = k + 1.

Go to QP.
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�� ��MFCQ and feasibility of the linearization

(MFCQ)
(1) ∇hj(x

∗), j = 1, 2, . . . , ni, are linearly independent ,

(2) ∃d such that ∇hj(x
∗)T d = 0,∇gi(x

∗)T d < 0, i ∈ A(x∗)

• If (MFCQ) holds at x∗, the SQP algorithm will produce feasible

QPs in a neighborhood of x∗.

• Otherwise, the problems may be infeasible and we may have to do

something about it. Like the elastic mode.
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�� ��Elastic mode relaxation for NLP

(NLP (c))

minx,u,v,w f̃(x) + c1
(

eT
m−li

u+ eT
r−le

(v + w)
)

subject to

g̃i(x) ≤ 0, i = 1, 2, . . . , li,

g̃i(x) ≤ ui, i = li + 1, . . . ,m,

h̃j(x) = 0, j = 1, 2, . . . , le

−vj ≤ h̃j(x) ≤ wj , j = le + 1, . . . , r

u, v, w ≥ 0,
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�� ��An adaptive elastic mode approach

If the QP is infeasible or its Lagrange multipliers are too large then

NLPC: Find the solution (xc1 , uc1 , vc1 , wc1) of the relaxed NLP

If ||(uc1 , vc1 , wc1)|| = 0, then xc1 solves NLP. Stop.

otherwise c1 = c1 +K,return to NLPC.
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�� ��Solving NLP by SQP

MFCQ doesn’t hold ⇒ SQP may fail because of empty linearized

constraint set. However, if we assume:

• There exists a Lagrange Multiplier λ∗ at x∗, but the

Lagrange Multiplier set may be unbounded.

• The quadratic growth condition holds

max {f(x) − f(x∗), g1(x), g2(x), . . . , gm(x)} ≥ σ ||x− x∗||
2

• f, g are twice continuously differentiable.

• Note that quadratic growth is the weakest
possible second-order condition!
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�� ��Convergence results

Then,

1. For sufficiently large but finite values of the penalty parameter c1,

we have that the points (x∗, 0m−li , 0r−le , 0r−le) is a local minimum

of NLP(c) at which both MFCQ and the quadratic growth

condition are satisfied.

2. For the same value c1 we (x∗, 0m−li , 0n−le , 0n−le) are isolated

stationary points of NLP(c).

3. For the same value of c1, and if the elastic mode is initialized

sufficiently close to (x∗, 0m−li , 0r−le , 0r−le), and for sufficiently

large penalty parameter c̃∞, the sequence xk of iterates converges

R-linearly.
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�� ��Mathematical Programs with Complementarity

�� ��Constraints, MPCC

minimizex f(x)

subject to g(x) ≤ 0

h(x) = 0

Fk1(x) ≤ 0 k = 1 . . . nc

Fk2(x) ≤ 0 k = 1 . . . nc

Compl. constr. Fk1(x)Fk2(x) = 0 k = 1 . . . nc

Equivalent formulation replaces the equality constraints by (1)

Fk1(x)Fk2(x) ≤ 0, k = 1, 2, . . .K or (2)
∑K

k=1 Fk1(x)Fk2(x) ≤ 0.

MPCCs do not satisfy MFCQ anywhere and QPs may be

infeasible.
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�� ��Indices associated to a feasible point

• Indices at which strict complementarity holds

I(x) = {(k, i) ∈ {1, 2, . . . , nc} × {1, 2} | Fk,i(x) = 0, Fk,2−i+1 < 0}

• Degenerate complementarity indices

D(x) = {(k, i) ∈ {1, 2, . . . , nc} × {1, 2} | Fk,i(x) = Fk,2+i−1(x) = 0}
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�� ��Lagrange Multipliers of MPCC

(RNLP) minx f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , ne

FD(x) ≤ 0

FI(x) = 0.

where MPEC-LICQ: All constraints of RNLP that are active at x∗

are linearly independent =⇒ the Lagrange multiplier set of MPCC is

nonempty at x∗ (Scheel and Sholtes).
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�� ��Extending the results for MPCC

The results of the previous theorem hold if we assume that (MPCC)

satisfies the following conditions, at a solution x∗:

• The Lagrange multiplier set of (MPCC) not empty. MPEC-LICQ

(which is very common and introduced later is sufficient for )

• The quadratic growth condition is satisfied at x∗.

• The data of (MPCC) are twice continuously differentiable.

• Note that now only the nonlinear constraints are relaxed.
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�� ��Numerical Experiments with SNOPT

Runs done on NEOS for the MacMPEC collection (Leyffer).

Problem Var-Con-CC Value Status Feval Elastic

gnash14 21-13-1 -0.17904 Optimal 27 Yes

gnash15 21-13-1 -354.699 Optimal 12 None

gnash16 21-13-1 -241.441 Optimal 7 None

gnash17 21-13-1 -90.7491 Optimal 9 None

gne 16-17-10 0 Optimal 10 Yes

pack-rig1-8 89-76-1 0.721818 Optimal 15 None

pack-rig1-16 401-326-1 0.742102 Optimal 21 None

pack-rig1-32 1697-1354-1 0.751564 Optimal 19 None

SNOPT implements the elastic mode as analyzed here.
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�� ��Possible problems for the elastic mode approach

• For adaptive elastic mode, if c1 is too small, the algorithm cannot

be allowed to progress to convergence, since we cannot spend an

infinite amount of work on a subproblem.

• Superlinear convergence results are hard to achieve with a positive

definite matrix and unclear if a BFGS update will converge for

such degenerate problems.

• For stronger conditions, superlinear convergence results have been

obtained by (Fletcher, Leyffer, Sholtes and Ralph, 90)

(FLSR).
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�� ��Slack formulation of MPCC

It has been shown that slack formulations are “easier” than nonslack

formulations No loss of generality (FLSR).

minimize f(x)

subject to gi(x) ≤ 0 i = 1, 2, . . . , ni

hj(x) = 0 j = 1, 2, . . . , nj

xk1 ≤ 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc

∑nc

k=1 x1kx2k ≤ 0

(1)

For simplicity, assume that, x∗k1 = 0, k = 1, 2, . . . , nc,,

x∗k2 = 0, k = 1, 2, . . . , nd, x
∗
k2 < 0, k = nd+1, . . . , nc.
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�� ��MPEC-LICQ and RNLP multiplier

MPEC-LICQ:
∇xgi(x

∗)|i∈A(x∗) , ∇xhj(x
∗)|

j=1,2,...,ne
, ek1|j=1,2,...,nc

,

ek2|j=1,2,...,nd
, are linearly independent

If RNLP satisfies LICQ at a solution x∗, it has a Lagrange Multiplier

that satisfies: (ν̃, π̃, µ̃, η̃), that satisfies

ν̃ ≥ 0, µ̃k1 ≥ 0, µ̃k2 ≥ 0, k = 1, 2, . . . , nd

∇f(x∗) =
∑

i∈A
ν̃i∇gi(x

∗) +
∑ne

i=1 ∇hj(x
∗)π̃j

+
∑nd

k=1 (µ̃k1ek1 + µ̃k2ek2) +
∑nc

k=nd+1 µ̃k1ek1

18



'

&

$

%

�� ��Fundamental multiplier of MPCC

If LICQ holds, the following is the multiplier of MPCC of minimum 1

norm.

ν∗ = ν̃

π∗ = π̃

µ∗
k1 = µ̃k1 ≥ 0, k = 1, 2, . . . , nd

µ∗
k2 = µ̃k2 ≥ 0, k = 1, 2, . . . , nd

µ∗
k1 = µ̃k1 − η∗x∗k2 ≥ 0, k = nd + 1, . . . , nc

η∗ = max
{

0,maxk=nd+1,...,nc

{

µ̃k1

x∗
k2

}}

.
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�� ��Second-order conditions for MPCC

(MPEC−SOSC)

LICQ holds at x∗ and sT∇2
xxL

∗s > 0, ∀s ∈ CRNLP

where ∇2
xxL

∗ is the Hessian of the Lagrangian

evaluated at (x∗, ν̃, π̃, µ̃, η̃) and CRNLP

is the critical cone of RNLP
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�� ��Assumptions (FLSR)

[A1] f, g, h are twice continuously differentiable.

[A2] MPCC satisfies MPEC-LICQ at the solution x∗.

[A3] MPCC satisfies MPEC-SOSC at the solution x∗.

[A4] ν̃i > 0, i ∈ A(x∗), πj 6= 0, j = 1, 2, . . . , ne, and either µ̃k1 > 0 or

µ̃k2 > 0 for k = 1, 2, . . . , nd. At least one constraint in a

degenerate pair is strongly active

[A5] When a QP is solved, the QP solver picks a linearly independent

basis.
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�� ��Assumptions

However, in addition to these, (FLSR) use one of the following

assumptions.

[A6] At some point the SQP algorithm encounters a point that satisfies

strict complementarity exactly.

[A7] All the QPs encountered are feasible.

22



'

&

$

%

�� ��Algorithm (1): Quadratic Programs

(QP )

mind ∇f(x)T d+ 1
2d

TWd

sbj. to gi(x)
T d+ ∇gi(x)

T d ≤ 0, i = 1, 2, . . . , ni

hj(x)
T d+ ∇hj(x)

T d = 0, j = 1, 2, . . . , ne

(QPC)

mind,dζ
∇f(x)T d+ 1

2d
TWd+ c∞(ζ + dζ)

sbj. to

−ζ − dζ ≤

gi(x)
T d+ ∇gi(x)

T d ≤ 0, i = 1, 2, . . . , li

gi(x)
T d+ ∇gi(x)

T d ≤ ζ + dζ , i = li + 1, . . . , li

hj(x)
T d+ ∇hj(x)

T d = 0, j = 1, 2, . . . , le

hj(x)
T d+ ∇hj(x)

T d ≤ ζ + dζ , j = le + 1, . . . , le

ζ + dζ ≥ 0

Here W is the Hessian of the Lagrangian.
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�� ��Algorithm(2): Logical flow and elastic mode

x0 = x, c∞ = c0, k = 0.

NLP: Solve (QP).

If
∑ni

i=li+1 νi +
∑ne

j=le+1 |πj | ≤ cµ and (QP) is feasible

xk+1 = xk + dk, k = k + 1, return to NLP.

Else

NLPC: solve (QPC).

xk+1 = xk + dk, ζk+1 = ζk + δζ , k = k + 1.

If

√

||dk|| +
∣

∣

∣

∣

∣

∣
δk
ζ

∣

∣

∣

∣

∣

∣
≤ ζk,

c∞ = c∞cγ , k = k + 1 return to NLPC.

End If

End If
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�� ��The elastic mode applied to MPCC

Is equivalent to applying the unrelaxed QP to to MPCC(c):

(MPCC(c))

minimize f(x) + c∞ζ

subject to

−ζ ≤

gi(x) ≤ 0 i = 1, 2, . . . , li

gi(x) ≤ ζ i = li + 1, . . . , ni

hj(x) = 0 j = 1, 2, . . . , le

hj(x) ≤ ζ j = le + 1, . . . , ne

xk1 ≤ 0 k = 1, 2, . . . , nc

xk2 ≤ 0 k = 1, 2, . . . , nc

∑nc

k=1 xk1xk2 ≤ ζ

ζ ≥ 0
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�� ��Properties of MPCC(c)

Define the following quantity with respect to the components of the

fundamental multiplier:

ν0 =

ni
∑

i=li+1

ν∗i +

ne
∑

j=le+1

(

|π∗
j |

)

+ η∗.

Lemma Assume that MPCC satisfies MPCC-LICQ and MPCC-SOSC.

Assume that c∞ satisfies c∞ ≥ ν0. Then

1. MPCC(c) satisfies Robinson’s constraint qualification at (x∗, 0)

(MFCQ and Robinson SOSC).

2. In addition, if c∞ = ν0, then the Lagrange multiplier set of

MPCC(c) at (x∗, 0) has a unique element.

3. If c < ν0, then x∗ is not a stationary point of MPCC(c).
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�� ��Main Result

Recall that once elastic mode is entered, one never returns to the

original problem.

Theorem Assume that [A1]–[A5] hold. Assume that the point xk0 is

sufficiently close to x∗ and either

i) Elastic mode is never entered (thus QP is feasible) or

ii) Elastic mode is entered and (QPC) is solved for all k ≥ k0 and

c ≥ ν0. Then xk converges to x∗ superlinearily and the primal-dual

solution of (QP) in case i) and (QPC) in case ii) converges

superlinearily to the solution of (MPCC) or (MPCC(c)),

respectively.
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�� ��Anatomy of the result

• If elastic mode is never entered, the superlinear convergence result

follows from (FLSR).

• If elastic mode is entered and c = ν0, the Lagrange Multiplier is

unique and the result follows from (Bonnans,1994).

• If elastic mode is entered and c > ν0, then, sufficiently close to the

solution, either

– ζk = 0 for all k ≥ k0 and QPC gives the same solution as QP

(which is now feasible) and results follows from FLSR,

replacing [A7]

– or xk satisfies the complementarity exactly, and all subsequent

iterates satisfy ζk = 0 and the complementarity conditions.

Results follows from FLSR, replacing [A6]

28



'

&

$

%

�� ��Distance to constraint set results

Using (Wright,1998), since Robinson’s constraint qualification holds,

we find that there exist c0 > 0, c1 > 0, such that

c0(||x− x∗|| + ζ) ≤ ||d|| + ||dζ || ≤ c1(||x− x∗|| + ζ).

• If c < ν0, then the test

√

||dk|| +
∣

∣

∣

∣

∣

∣
δk
ζ

∣

∣

∣

∣

∣

∣
≤ ζk will eventually be

satisfied.

• If c ≥ ν0, the test will be passed if xk is sufficiently close to x∗.

We therefore have a valid adaptation mechanism for the elastic mode.
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�� ��Conclusions

• We have shown that SQP with the elastic mode can solve

mathematical programs with complementarity constraints for finite

value of the penalty parameter.

• We have used results from Fletcher,Leyffer, Sholtes and

Ralph to show that an exact Hessian SQP converges superlinearily

to the solution, without using the assumption that either the

subproblems are feasible or that one runs into a point satisfying the

complementarity constraints (which was essential in FLCR).

• In practical terms, infeasibility of the subproblems does not stop

FilterSQP (which uses subproblems like the ones described here,

but not elastic mode), since infeasibility restoration also seems to

have the effect of inducing either complementarity or feasibility of

the iterates, though this is neither guaranteed nor disproved.
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