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Nonsmooth multi-rigid-body dynamics

Nonsmooth rigid multibody dynamics (NRMD) methods attempt to

predict the position and velocity evolution of a group of rigid particles

subject to certain constraints and forces.

• non-interpenetration.

• collision.

• joint constraints

• adhesion

• Dry friction – Coulomb model.

• global forces: electrostatic, gravitational.

These we cover in our approach.
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�Areas that use NRMD

• granular and rock dynamics.

• masonry stability analysis.

• simulation of concrete obstacle response to explosion.

• tumbling mill design (mineral processing industry).

• interactive virtual reality.

• robot simulation and design.
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Contact and (Coulomb) Friction Model

• Noninterpenetration Constraints Φ(q) ≥ 0 complementary to cn ≥ 0

(normal impulse/force). Here q are position parameters.

• Friction force: Here D̂(q) =
[
t̂1(q), t̂2(q)

]
,

β = argmin||bβ||≤µcn
vT D̂(q)β̂.
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�Acceleration Formulation

Data, Unknowns.

M(q)
d2q

dt2
−

mX

i=1

ν
(i)

c
(i)
ν −

pX

j=1

“
n(j)(q)c

(j)
n +D

(j)(q)β(j)
”

= k(t, q,
dq

dt
)

Θ(i)(q) = 0, i = 1 . . . m

Φ(j)(q) ≥ 0, compl. to c
(j)
n ≥ 0, j = 1 . . . p

β
j = argmin bβ(j)v

T
D(q)(j) bβ(j) subject to

˛̨
˛
˛̨
˛β(j)

˛̨
˛
˛̨
˛ ≤ µ

(j)
c
(j)
n , j = 1, . . . , p

Here ν(i) = ∇Θ
(i), n(j) = ∇Φ(j).

M:Mass matrix SPD, k:external and inertial force.

It is known that these problems do not have a classical solution even in 2

dimensions, where the discretized cone coincides with the total cone.
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Time-stepping scheme

Use Euler method, half-explicit in velocities, linearizing the geometrical
constraints. Fundamental variables: velocities and impulses (h × force).

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 = 0, i = 1..m

ρ(j) = n(j)T

vl+1 ≥ 0, compl. to c(j)
n ≥ 0, j ∈ A

σ(j) = λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

ζ(j) = µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Here ν(i) = ∇Θ(i), n(j) = ∇Φ(j). h is the time step. The set A consists
of the active constraints. (Anitescu and Potra,1997) based on (Stewart
and Trinkle, 1996),
The time-stepping scheme has a solution although the
classical formulation doesn’t!
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�Discretized Friction Model

• di( GC ) is the column cor-

responding to t(αi), αi ∈

[0, π], i = 1, 2, . . . , l, D(q) =

[d1, d2, ...dl].

• To each tangential direction we

attach a force βi ≥ 0, i =

1, 2, . . . , l. We denote by β =

(β1, β2, . . . , βl).

• The frictional constraints be-

come

Polygonal cone approximation to

the Coulomb cone ( 3D).

β = argminbβ≥0v
T D(q)β̂ subject to

∣∣∣
∣∣∣β̂

∣∣∣
∣∣∣
1
≤ µcn.

7



�

�

�

�
Matrix Form of the Integration Step

2
666666664

M −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0

3
777777775

2
666666664

v(l+1)

c̃ν

c̃n

β̃

λ̃

3
777777775

+

2
666666664

−Mv(l)
− hk

0

0

0

0

3
777777775

=

2
666666664

0

0

ρ̃

σ̃

ζ̃

3
777777775

2
664

c̃n

β̃

λ̃

3
775

T 2
664

ρ̃

σ̃

ζ̃

3
775 = 0,

2
664

c̃n

β̃

λ̃

3
775 ≥ 0,

2
664

ρ̃

σ̃

ζ̃

3
775 ≥ 0.

Note Replacing 0 by −µ̃ makes the problem PSD!
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How do we expand the reach of the scheme?

1. Collision detection for integrate-detect-restart approaches are costly.

How do we reduce this computational effort?

2. Due to linearization, extra effort may be needed to prevent constraint

drift. Can it be avoided?

3. The LCP may have a nonconvex solution set (Anitescu and Hart,

2002). Can we construct an efficient convex relaxation?

4. How do we modify the approach to include partially elastic or elastic

collisions (e.g. bouncing balls?).
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Example of constraint drift
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Infeasibility for projected velocity method
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Infeasibility for the linearization method

time

Comparison of constraint error the original method and modified method

(to be presented later) for a pendulum example. Ratio of infeasibilities

gets to about 103!
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�Linearization method

Consider penalty method ( main method currently used in practice).

Φ(1)(q) ≥ 0 enforced by penalty force θ(1)(q) = γ(1)
(
Φ

(j)
− (q)

)2

where γ(1) is a very large parameter. This coresponds to our main

competitor, the penalty method.

Dynamics (for the frictionless case becomes)

dq
dt

= v.

M dv
dt

= k(t, q, v) + θ(1)(q)∇qΦ
(1)(q).

Apply backward Euler, where Φ(1)(q(l+1)) is replaced by its linearization

Φ(1)(q(l+1)) ≈ Φ(1)(q(l)) + hl∇qΦ
(1)(q(l))T v(l+1)

Take the limit as time step hl is fixed and γ(1) → ∞ and ....
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�Linearization method

... we obtain:

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)−v(l)

hl
= k(t(l), q(l), v(l)) +

∑m
j=1 c(j),(l+1)∇qΦ

(j)(q(l+1))

0 ≤ c(j),(l+1) ⊥ Φ(j)(q(l)) + hl∇Φ(q(l))T v(l+1) ≥ 0

• Solution to the “do not backtrack at collision” and constraint

stabilization problem: Replace in LCP

∇Φ(q(l))T v(l+1) ≥ 0 =⇒ Φ(j)(q(l)) + γhl∇Φ(q(l))T v(l+1) ≥ 0.

∇Θ(q(l))T v(l+1) = 0 =⇒ Θ(j)(q(l)) + γhl∇Θ(q(l))T v(l+1) = 0.

Here γ ∈ (0, 1]. γ = 1 corresponds to exact linearization.

• This also shows that our methods can be interpreted as linear implicit

approach applied to the penalty method.
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Application: Robotic Grasping Simulator

• GraspIt! Developped by Andrew Miller (Columbia) to accommodate

arbitrary hand and robot designs, in a dynamically sound fashion.

• Implements the LCP algorithm with the linearization approach. Uses

γ = 0.2. Timesteps ≈ 2 ms (relatively small), because Φ can be

computed only for relatively small interpenetration values.

• Has been shown to induce constraint stabilization (prevent constraint

drift) (Anitescu, Miller, Hart, 2003).
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GraspIt simulation results
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Ellipse simulation.
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Robot grasp simulation.

• Note that the smaller the γ, the slower the constraint stabilization.

• On the other hand, the smaller the γ, the smaller the effect of the
infeasibility on the energy. However, this does not seem to affect the
computations in a major way in the cases we have described.
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Treating Partially Elastic Collisions

• A portion of the collision impulse ( Poisson law) or normal velocity (

Newton law) is restituted to the system.

• Newton’s law is more efficient computationally because it can

enforced in one LCP (if collision has occured in the previous step):

Φ(q(l))

h
+ ∇Φ(j)T

(q(l))v(l+1) + eN∇Φ(j)T

(q(l−1))v(l) ≥ 0.

• However, odd results appear if we apply it in connection with the

linearization method. Example: one particle colliding with a wall.
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1
Size of restituted velocity in the uncorected model for e=1

time step
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Treating Partially Elastic Collisions

• A simple fix, which works in most cases, (though not provable) is to

lag the normal velocity by 1.

• For the LCP with linearization, the change becomes

Phi(q(l)

h
∇Φ(j)T

(q(l))v(l+1) + eN∇Φ(j)T

(q(l−2))v(l−1) ≥ 0.

• For one isolated collision it can be shown that this rule captures the

exact behavior in the limit as the time step goes to 0. But no theory

exists in general for this case.
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A convex relaxation approach.

The original scheme may have a nonconvex solution set no matter how

small the friction coefficient. A convex relaxation scheme:

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 +
Θ(i)(q(l))

hl

= 0, i = 1, . . . , m

n(j)T

vl+1 +
Φ(j)(q(l))

hl

− µ(j)λ(j) ≥ 0, compl. to c(j)
n ≥ 0, j ∈ A

λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Recall, ν(i) = ∇Θ(i), n(j) = ∇Φ(j), q(l+1) = q(l) + hv(l+1).

Data, Unknowns, Convex relaxation term.
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�Convex relaxation results

minv
1
2vT M (l)v + k̂(l)T

v

subject to n(j)T

v + µ(j)d
(j)T

i v ≥ −Γ(j) − Φ(j)(q(l))
hl

i = 1, 2, . . . , m
(j)
C , j ∈ A

ν(i)T

v = −Θ(i)(q(l))
hl

, i = 1, 2, . . . , m.

Data, Unknowns.

• The velocity solution of the convex relaxation LCP is a solution of
this QP for Γ(j) = 0, j ∈ A.

• For sufficiently small friction, a fixed point iteration that chooses Γ(j)

as a function of the preceding velocity will converge to the velocity
solution of the original (possibly nonconvex), scheme.

• The distance between solutions of relaxed and unrelaxed scheme
does not exceed Cgeometrymaxj∈A

{
µ(j)λ(j)

}
.
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Sliding particle

hk = 0.1
2k

, µ = 0.3

k hk

˛̨
˛
˛̨
˛yQP − yLCP

˛̨
˛
˛̨
˛
2

0 5.6314784e-002

1 1.7416198e-002

2 6.7389905e-003

3 2.1011170e-003

4 7.6112319e-004

5 2.6647317e-004

6 9.2498029e-005

7 3.2649217e-005

hk = 0.1
2k

, µ = 0.75

k hk

˛̨
˛
˛̨
˛yQP − yLCP

˛̨
˛
˛̨
˛
2

0 1.5736018e+000

1 7.2176724e-001

2 1.4580267e-001

3 9.2969637e-002

4 5.5543025e-003

5 4.3982975e-003

6 3.7537593e-003

7 3.7007014e-004

No convergence, but

small absolute error.
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Time-stepping results

Under some standard assumptions, including pointed friction cone, and

e = 0, for any fixed time interval T , there exists an H > 0, and a V > 0

and C > 0 such that if hl < H , ∀l, for either the original or the relaxed

scheme we have that

1. v(l) ≤ V , ∀l.

2. The infeasibility, defined as

I(q) = max
1≤i≤m, 1≤j≤ntotal

{
0,

∣∣∣Θ(i)(q)
∣∣∣ , Φ(j)(q)

}

satisfies I(q(l+1)) ≤ C
∣∣∣∣hlv

(l+1)
∣∣∣∣2, ∀l.

a) The last conclusion demonstrates constraint stabilization.

b) H = ∞ if geometrical data has uniformly bounded second deriva-

tives.
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�Granular matter

• Sand, Powders, Rocks, Pills are examples of granular matter.

• The range of phenomena exhibited by granular matter is tremendous.

Size-based segregation, jamming in grain hoppers, but also flow-like

behavior.

• There is still no accepted continuum model of granular matter.

• Direct simulation methods (discrete element method) are still the

most general analysis tool, but they are also computationally costly.

• The favored approach: the penalty method which works with

time-steps of microseconds for moderate size configurations.
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�Brazil nut effect simulation

• Time step of 100ms, for 50s. 270 bodies.

• Convex Relaxation Method. One QP/step. No collision backtrack.

• Friction is 0.5, restitution coefficient is 0.5.

• Large ball emerges after about 40 shakes. Results in the same order

of magnitude as MD simulations (but with 4 orders of magnitude

larger time step).
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Brazil nut effect simulations performance
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�Conclusions and future work

• We define a method that achieves constraint stabilization while

solving only one linear complementarity problem per step.

• Our method does not need to stop and detect collisions explicitly.

• The method has been extended to a parametric version that is used in

a robotic grasp simulator (Miller and Christiansen, 2002) and

(Anitescu, Miller and Hart, 2003). A version of it is used by a

commercial simulator.

• Future work: Nonsmooth particles and stabilization proof for

nonzero coefficient of restitution. Fast QP Solver. Convergence for

relaxation scheme as h → 0?
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Assumption: pointed friction cone assumption

Friction cone: set of all possible constraint reaction impulses:

FC(q) =
{

t = ν̃cν + ñcn + D̃β̃
∣∣∣cn ≥ 0, β̃ ≥ 0,

∣∣∣
∣∣∣β(j)

∣∣∣
∣∣∣
1
≤ µ(j)c(j)

n , ∀j ∈ A
}

• Definition (Pang and Stewart 1999) FC(q) is pointed if

0 = ν̃cν+ñcn+D̃β̃ ∈ FC(q), cn ≥ 0, β̃ ≥ 0 ⇒
(
cν , cn, β̃

)
= 0

• This assumption is essential in ensuring convergence to a differential

inclusions as hl → 0 (Stewart 2000) and solvability of time-stepping

scheme under more general conditions (Pang and Stewart 1999).

• This assumption implies that the configuration is disassemblable at q

(Anitescu, Cremer and Potra 1995).
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Main Result: assumptions and setup

• Definition: The active set A =
{
j|1 ≤ j ≤ n, Φ(j)(q(l)) ≤ ε̂

}
.

• The friction cone is uniformly pointed for all configurations.

• The geometrical data of the problem, are twice continously differ-

entiable in a neighborhood of the feasible set F.

• The external force increases at most linearly in position and velocity.

• The ratio between succesive time steps is uniformly lower bounded
hl

hl−1
≥ 1

ch

• The mass matrix is constant (Newton-Euler body coordinates).

• There is no initial infeasibility and the coefficient of restitution is 0.
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Main result, continued

Then for any fixed time interval T , there exists an H > 0, and a V > 0

and C > 0 such that if hl < H , ∀l, we have that

1. v(l) ≤ V , ∀l.

2. If j /∈ A then Φ(j)(q(l+1)) ≥ 0.

3. The infeasibility, defined as

I(q) = max
1≤i≤m, 1≤j≤ntotal

{
0,

∣∣∣Θ(i)(q)
∣∣∣ , Φ(j)(q)

}

satisfies I(q(l+1)) ≤ C
∣∣∣∣hlv

(l+1)
∣∣∣∣2, ∀l.

a) The last conclusion demonstrates constraint stabilization.

b) H = ∞ if geometrical data has uniformly bounded second deriva-

tives.
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�Main technical tool

minv
1
2vT M (l)v + k̂(l)T

v

subject to n(j)T

v + µ(j)d
(j)T

i v ≥ −Γ(j) − Φ(j)(q(l))
hl

i = 1, 2, . . . , m
(j)
C , j ∈ A

ν(i)T

v = −Θ(i)(q(l))
hl

, i = 1, 2, . . . , m.

• The solution of the LCP for both the original and convex relaxation
scheme is a solution of this QP for some Γ(j) ≥ 0, j ∈ A and k̂(l).

• The QP satisfies MFCQ if and only if the friction cone is pointed.

• There exists a c > 0, such that, for all l,

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l) + h2
l k

(l)M (l)−1k(l)

+ 2hlv
(l)T

k(l) + c
I(q(l))2

h2
l−1

I(q(l+1)) ≤ ch2
l v

2
l+1, if [q(l), q(l+1)] ∈ N (F )
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Example of non differentiability of the signed distance

(x,y)

H
x

y

R

• Signed distance: d12(q) = |y| − R − H
2 is not differentiable

everywhere!.

• It is, however, differentiable over the set d12(q) ≥ −ε for any

ε < R + H
2 . . We are OK if the infeasibility is not too large.
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Elliptic body simulation
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Ellipse Simulation

We present ten frames of the simulation of an elliptic body that is dropped

on the table. There is an initial angular velocity of 3, the body has axes 4

and 8 and is dropped from a height of 8.
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Infeasibility behavior unstabilized versus stabilized metod
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We see that drift becomes catastrophic for the unstabilized method,

whereas remains in a narrow range for the stabilized method.

Constraint stabilization is accomplished!
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Infeasibility comparison for 21 body simulation
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21 disks of radius 3 on a plank starting from the cannoball arrangement at

rest. Stabilized method still has a much lower infeasibility. The time-step

is 50ms, and the LCP is solved in at most 30 ms at every step.
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Stabilized time-stepping scheme

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 +
Θ(i)(q(l))

hl

= 0, i = 1, . . . , m

n(j)T

vl+1 +
Φ(j)(q(l))

hl

−
(
µ(j)λ(j)

)
≥ 0, compl. to c(j)

n ≥ 0, j ∈ A

λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Recall, ν(i) = ∇Θ(i), n(j) = ∇Φ(j), q(l+1) = q(l) + hv(l+1).

The term
(
−µ(j)λ(j)

)
coresponds to the convex relaxation algorithm pro-

posed by (Anitescu and Hart, 2002). Stabilization works w or w/o it.
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�The need for constraint stabilization

The positions are updated by q(l+1) = q(l) + hlv
(l+1).

Due to the index reduction , the (geometrical) joint and non

interpenetration constraints, which define the feasible set

F =
{

q
∣∣∣Θ(i)(q) = 0, 1 ≤ i ≤ m, Φ(j)(q) ≥ 0, 1 ≤ j ≤ ntotal

}

are replaced by constraints at the velocity level.

This may create constraint drift, in which the constraint infeasibility

keeps growing. In interactive simulation this is particulatly annoying,

since geometrical inconsistency is easy to notice.
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Preventing constraint drift

• Change the approach to a nonlinear and potentially nonconvex

optimization problem.

• Perform a nonlinear projection after each LCP (and eventually

preserving the good energy properties (Anitescu and Potra 2002)). If

there is no friction the projection may be more costly than the LCP.

• Perform one step of an SQP applied to the nonlinear projection

problem (Cline and Pai, 2003). Needs an additional Quadratic

Program/step. Extension of (Ascher, Chin, Reich 1994) from DAE.

• Modify the right hand side of the LCP with an appropriate function

of the infeasibility (parameter-free, (Jean, 1999,w/o analysis) and this

work, (Anitescu and Hart 02)) and (Miller and Christiansen 02) and

(Anitescu, Miller and Hart 03). This approach uses no additional

subproblems or projections.
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