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Objective

Simulate the behaviour of a system of rigid bodies subject to contact,

friction and joint constraints with

• (generalized) positions q.

• (generalized) velocities v.

• mass M(q) (positive definite),

• subject to external force k(t, q, v).
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Contact and (Coulomb) Friction Model

• Noninterpenetration Constraints Φ(q) ≥ 0 complementary to cn ≥ 0

(normal impulse/force).

• Tangent space generators: D̂(q) =
[
t̂1(q), t̂2(q)

]
, tangent force

multipliers: β ∈ R2. Tangent force/impulse becomes D̂(q)β.

• Conic constraints: ||β|| ≤ µcn, where µ is the friction coefficient.

• Max Dissipation Constraints: β = argmin||bβ||≤µcn
vT D̂(q)β̂.
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�Acceleration Formulation

M(q)
d2q

dt2
−

mX

i=1

ν
(i)

c
(i)
ν −

pX

j=1

“
n(j)(q)c

(j)
n +D

(j)(q)β(j)
”

= k(t, q,
dq

dt
)

Θ(i)(q) = 0, i = 1 . . . m

Φ(j)(q) ≥ 0, compl. to c
(j)
n ≥ 0, j = 1 . . . p

β = argmin bβ(j)v
T
D(q)(j) bβ(j) subject to

˛̨
˛
˛̨
˛bβ(j)

˛̨
˛
˛̨
˛ ≤ µ

(j)
c
(j)
n , j = 1 . . . p

Here ν(i) = ∇Θ
(i), n(j) = ∇Φ(j).

It is known that these problems do not have a classical solution even in 2

dimensions, where the discretized cone coincides with the total cone.
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Time-stepping scheme

Use Euler method, half-explicit in velocities, linearizing the geometrical
constraints. Fundamental variables: velocities and impulses (h × force).

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 = 0, i = 1..m

ρ(j) = n(j)T

vl+1 ≥ 0, compl. to c(j)
n ≥ 0, j ∈ A

σ(j) = λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

ζ(j) = µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Here ν(i) = ∇Θ(i), n(j) = ∇Φ(j). h is the time step. The set A consists
of the active constraints. (Anitescu and Potra,1997) based on (Stewart
and Trinkle, 1996),
The time-stepping scheme has a solution although the
classical formulation doesn’t!
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�Discretized Friction Model

• di( GC ) is the column cor-

responding to t(αi), αi ∈

[0, π], i = 1, 2, . . . , l, D(q) =

[d1, d2, ...dl].

• To each tangential direction we

attach a force βi ≥ 0, i =

1, 2, . . . , l. We denote by β =

(β1, β2, . . . , βl).

• The frictional constraints be-

come

Polygonal cone approximation to

the Coulomb cone ( 3D).

β = argminbβ≥0v
T D(q)β̂ subject to

∣∣∣
∣∣∣β̂

∣∣∣
∣∣∣
1
≤ µcn.
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Matrix Form of the Integration Step

2
666666664

M −ν̃ −ñ −D̃ 0

ν̃T 0 0 0 0

ñT 0 0 0 0

D̃T 0 0 0 Ẽ

0 0 µ̃ −ẼT 0

3
777777775

2
666666664

v(l+1)

c̃ν

c̃n

β̃

λ̃

3
777777775

+

2
666666664

−Mv(l)
− hk

0

0

0

0

3
777777775

=

2
666666664

0

0

ρ̃

σ̃

ζ̃

3
777777775

2
664

c̃n

β̃

λ̃

3
775

T 2
664

ρ̃

σ̃

ζ̃

3
775 = 0,

2
664

c̃n

β̃

λ̃

3
775 ≥ 0,

2
664

ρ̃

σ̃

ζ̃

3
775 ≥ 0.
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�The need for constraint stabilization

The positions are updated by q(l+1) = q(l) + hlv
(l+1).

Due to the index reduction , the (geometrical) joint and non

interpenetration constraints, which define the feasible set

F =
{

q
∣∣∣Θ(i)(q) = 0, 1 ≤ i ≤ m, Φ(j)(q) ≥ 0, 1 ≤ j ≤ ntotal

}

are replaced by constraints at the velocity level.

This may create constraint drift, in which the constraint infeasibility

keeps growing. In interactive simulation this is particulatly annoying,

since geometrical inconsistency is easy to notice.
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Example of constraint drift
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Comparison of constraint error the original method and modified method

(to be presented later) for a pendulum example. Ratio of infeasibilities

gets to about 103!
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Preventing constraint drift

• Change the approach to a nonlinear and potentially nonconvex

optimization problem.

• Perform a nonlinear projection after each LCP (and eventually

preserving the good energy properties (Anitescu and Potra 2002)). If

there is no friction the projection may be more costly than the LCP.

• Perform one step of an SQP applied to the nonlinear projection

problem (Cline and Pai, 2003). Needs an additional Quadratic

Program/step. Extension of (Ascher, Chin, Reich 1994) from DAE.

• Modify the right hand side of the LCP with an appropriate function

of the infeasibility (parameter-free, (Jean, 1999,w/o analysis) and this

work, (Anitescu and Hart 02)) and (Miller and Christiansen 02) and

(Anitescu, Miller and Hart 03). This approach uses no additional

subproblems or projections.
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Stabilized time-stepping scheme

M(vl+1 − v(l)) −
m∑

i=1

ν(i)c(i)
ν −

∑

j∈A

(n(j)c
(j)
n + D(j)β(j)) = hk

ν(i)T

vl+1 +
Θ(i)(q(l))

hl

= 0, i = 1, . . . , m

n(j)T

vl+1 +
Φ(j)(q(l))

hl

−
(
µ(j)λ(j)

)
≥ 0, compl. to c(j)

n ≥ 0, j ∈ A

λ(j)e(j) + D(j)T vl+1 ≥ 0, compl. to β(j) ≥ 0, j ∈ A

µ(j)c(j)
n − e(j)T

β(j) ≥ 0, compl. to λ(j) ≥ 0, j ∈ A.

Recall, ν(i) = ∇Θ(i), n(j) = ∇Φ(j), q(l+1) = q(l) + hv(l+1).

The term
(
−µ(j)λ(j)

)
coresponds to the convex relaxation algorithm pro-

posed by (Anitescu and Hart, 2002). Stabilization works w or w/o it.
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Why does it work?

Consider the one contact case where we enforce the constraint by a

penalty (smoothing method).

Φ(1)(q) ≥ 0 enforced by penalty force θ(1)(q) = γ(1)
(
Φ

(j)
− (q)

)2

where γ(1) is a very large parameter. Dynamics becomes

dq
dt

= v.

M dv
dt

= k(t, q, v) + θ(1)(q)∇qΦ
(1)(q).

Apply backward Euler, where Φ(1)(q(l+1)) is replaced by its linearization

Φ(1)(q(l+1)) ≈ Φ(1)(q(l)) + hl∇qΦ
(1)(q(l))T v(l+1)

Take the limit as time step hl is fixed and γ(1) → ∞ and ....
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Why does it work (2)?

... we obtain:

q(l+1) = q(l) + hlv
(l+1).

M v(l+1)−v(l)

hl
= k(t(l), q(l), v(l)) +

∑m
j=1 c(j),(l+1)∇qΦ

(j)(q(l+1))

0 ≤ c(j),(l+1) ⊥ Φ(j)(q(l)) + hl∇Φ(q(l))T v(l+1)

which is precisely our scheme.
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Assumption: pointed friction cone assumption

Friction cone: set of all possible constraint reaction impulses:

FC(q) =
{

t = ν̃cν + ñcn + D̃β̃
∣∣∣cn ≥ 0, β̃ ≥ 0,

∣∣∣
∣∣∣β(j)

∣∣∣
∣∣∣
1
≤ µ(j)c(j)

n , ∀j ∈ A
}

• Definition (Pang and Stewart 1999) FC(q) is pointed if

0 = ν̃cν+ñcn+D̃β̃ ∈ FC(q), cn ≥ 0, β̃ ≥ 0 ⇒
(
cν , cn, β̃

)
= 0

• This assumption is essential in ensuring convergence to a differential

inclusions as hl → 0 (Stewart 2000) and solvability of time-stepping

scheme under more general conditions (Pang and Stewart 1999).

• This assumption implies that the configuration is disassemblable at q

(Anitescu, Cremer and Potra 1995).
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Main Result: assumptions and setup

• Definition: The active set A =
{
j|1 ≤ j ≤ n, Φ(j)(q(l)) ≤ ε̂

}
.

• The friction cone is uniformly pointed for all configurations.

• The geometrical data of the problem, are twice continously differ-

entiable in a neighborhood of the feasible set F.

• The external force increases at most linearly in position and velocity.

• The ratio between succesive time steps is uniformly lower bounded
hl

hl−1
≥ 1

ch

• The mass matrix is constant (Newton-Euler body coordinates).

• There is no initial infeasibility and the coefficient of restitution is 0.
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Main result, continued

Then for any fixed time interval T , there exists an H > 0, and a V > 0

and C > 0 such that if hl < H , ∀l, we have that

1. v(l) ≤ V , ∀l.

2. If j /∈ A then Φ(j)(q(l+1)) ≥ 0.

3. The infeasibility, defined as

I(q) = max
1≤i≤m, 1≤j≤ntotal

{
0,

∣∣∣Θ(i)(q)
∣∣∣ , Φ(j)(q)

}

satisfies I(q(l+1)) ≤ C
∣∣∣∣hlv

(l+1)
∣∣∣∣2, ∀l.

a) The last conclusion demonstrates constraint stabilization.

b) H = ∞ if geometrical data has uniformly bounded second deriva-

tives.
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�Main technical tool

minv
1
2vT M (l)v + k̂(l)T

v

subject to n(j)T

v + µ(j)d
(j)T

i v ≥ −Γ(j) − Φ(j)(q(l))
hl

i = 1, 2, . . . , m
(j)
C , j ∈ A

ν(i)T

v = −Θ(i)(q(l))
hl

, i = 1, 2, . . . , m.

• The solution of the LCP for both the original and convex relaxation
scheme is a solution of this QP for some Γ(j) ≥ 0, j ∈ A and k̂(l).

• The QP satisfies MFCQ if and only if the friction cone is pointed.

• There exists a c > 0, such that, for all l,

v(l+1)T

M (l)v(l+1) ≤ v(l)M (l)v(l) + h2
l k

(l)M (l)−1k(l)

+ 2hlv
(l)T

k(l) + c
I(q(l))2

h2
l−1

I(q(l+1)) ≤ ch2
l v

2
l+1, if [q(l), q(l+1)] ∈ N (F )
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Example of non differentiability of the signed distance

(x,y)

H
x

y

R

• Signed distance: d12(q) = |y| − R − H
2 is not differentiable

everywhere!.

• It is, however, differentiable over the set d12(q) ≥ −ε for any

ε < R + H
2 . . We are OK if the infeasibility is not too large.
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Elliptic body simulation

−8 −6 −4 −2 0 2 4 6 8
0
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16
Ellipse Simulation

We present ten frames of the simulation of an elliptic body that is dropped

on the table. There is an initial angular velocity of 3, the body has axes 4

and 8 and is dropped from a height of 8.
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Infeasibility behavior unstabilized versus stabilized metod
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We see that drift becomes catastrophic for the unstabilized method,

whereas remains in a narrow range for the stabilized method.

Constraint stabilization is accomplished!
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Infeasibility comparison for 21 body simulation
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21 disks of radius 3 on a plank starting from the cannoball arrangement at

rest. Stabilized method still has a much lower infeasibility. The time-step

is 50ms, and the LCP is solved in at most 30 ms at every step.
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�Brazil nut effect simulation

• Time step of 100ms, for 50s. 270 bodies.

• Convex Relaxation Method. One QP/step. No collision backtrack.

• Friction is 0.5, restitution coefficient is 0.5.

• Large ball emerges after about 40 shakes. Results in the same order

of magnitude as MD simulations (but with 4 orders of magnitude

larger time step).
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Brazil nut effect simulations performance
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�Conclusions and future work

• We define a method that achieves constraint stabilization while

solving only linear complementarity problem per step.

• Our method does not need to stop and detect collisions explicitly and

can advance with a constant time step and predictable amount of

effort per step.

• The method has been extended to a parametric version that is used in

a robotic grasp simulator (Miller and Christiansen, 2002) and

(Anitescu, Miller and Hart, 2003).

• Future work: Nonsmooth particles and stabilization proof for

nonzero coefficient of restitution. Fast QP Solver. Convergence for

relaxation scheme as h → 0?
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