Using Linear Complementarity Techniques to Model and Simulate Multi-Rigid-Body Dynamics with Contact and Friction

Mihai Anitescu
University of Pittsburgh

Thanks: Florian A. Potra
University of Maryland, Baltimore County

Friction: an essential component of MBD

- Robotics: Prehensile manipulation is not possible without friction. In some devices friction is used as an active element (for example cheap, nonprehensile manipulators).
- Virtual Reality: The lack of it would substantially reduce the believability of a scene.
- The Coulomb Friction Model is the widely used model for static and dynamic friction.
- Unfortunately, Friction creates major difficulties in setting up a consistent model.

Model Requirements and Notations

- MBD system : generalized positions q and velocities v.
- No interpenetration $\Phi^{(j)}(q) \geq 0,1 \leq j \leq n_{\text {total }}$.
- Compressive contact forces at a contact.
- Joint constraints $\Theta^{(i)}(q)=0,1 \leq i \leq m$.
- Coulomb friction, for friction coefficients $\mu^{(j)}$.
- Satisfaction of acceleration based Newton laws.
- Dynamic parameters: mass $M(q)$, external force $k(t, q, v)$.
- Impact resolution.

```
Normal velocity: }\mp@subsup{v}{n}{
Normal impulse:c n
```


Contact Model

- Contact configuration described by the (generalized) distance function $d=\Phi(q)$, which is defined for some values of the interpenetration. Feasible set: $\Phi(q) \geq 0$.
- Contact forces are compressive, $c_{n} \geq 0$.
- Contact forces act only when the contact constraint is exactly satisfied, or
$\Phi(q)$ is complementary to c_{n} or $\Phi(q) c_{n}=0$, or $\Phi(q) \perp c_{n}$.

Tangent Plane

c_{n} is the normal impulse and $\beta=\left(\beta_{1}, \beta_{2}\right)^{T}$ is the tangential impulse; In generalized coordinates, q (Newton-Euler world coordinates):

$$
n(q)=\left(\begin{array}{c}
n \\
r_{1} \times n \\
-n \\
r_{2} \times(-n)
\end{array}\right) d_{i}(q)=\left(\begin{array}{c}
t_{i} \\
r_{1} \times t_{i} \\
-t_{i} \\
r_{2} \times\left(-t_{i}\right)
\end{array}\right), i=1,2
$$

Here F_{c} is the total contact force, $F_{c}=c_{n} n(q)+\widehat{D}(q) \beta$. $\widehat{D}(q)$ are the tangential directions, $\widehat{D}(q)=\left[d_{1}(q), d_{2}(q)\right]$.

Coulomb Friction Model

- The contact force lies in a (circular) cone in 3 D , or $\|\beta\| \leq \mu c_{n}$, where μ is the friction coefficient.
- When sliding exists at a contact, the tangential force is opposed to the sliding velocity, or

$$
\beta=\operatorname{argmin}_{\widehat{\beta}} v^{T} \widehat{D}(q) \widehat{\beta} \quad \text { subject to } \quad\|\widehat{\beta}\| \leq \mu c_{n}
$$

- We have that the tangential velocity at the contact is v_{T} such that

$$
\left|v_{T}\right|=\lambda=-v^{T} \widehat{D}(q) \frac{\beta}{\|\beta\|}
$$

For given c_{n} and v, the frictional impulse maximize dissipation over all feasible frictional contact impulses.

Discretized Friction Model

- $d_{i}(\mathrm{GC})$ is the column corresponding to $t\left(\alpha_{i}\right), \alpha_{i} \in[0, \pi]$, $i=1,2, \ldots, l, D(q)=$ $\left[d_{1}, d_{2}, \ldots d_{l}\right]$.
- To each tangential direction we attach a force $\beta_{i} \geq 0, i=$ $1,2, \ldots, l$. We denote by $\beta=$ $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{l}\right)$.
- The frictional constraints become

Polygonal cone approximation to the Coulomb cone (3D).

$$
\beta=\operatorname{argmin}_{\widehat{\beta} \geq 0} v^{T} D(q) \widehat{\beta}
$$

subject to $\|\widehat{\beta}\|_{1} \leq \mu c_{n}$.

Complementarity Formulation of Frictional Constraints

Continuous Cone: $\beta=\operatorname{argmin}_{\widehat{\beta}} v^{T} \widehat{D}(q) \widehat{\beta}$ subject to $\|\widehat{\beta}\| \leq \mu c_{n}$.
Discretized Cone: $\beta=\operatorname{argmin}_{\widehat{\beta} \geq 0} v^{T} D(q) \widehat{\beta}$ subject to $\|\widehat{\beta}\|_{1} \leq \mu c_{n}$.
Optimality Conditions: There exists a Lagrange multiplier $\lambda \geq 0$ such that

$$
\begin{array}{lll}
\lambda e+D^{T} v \geq 0 & \text { complementary to } & \beta \geq 0 \\
\mu c_{n}-e^{T} \beta \geq 0 & \text { complementary to } & \lambda \geq 0
\end{array}
$$

Here $e=[1,1, \ldots, 1]^{T}$. The Lagrange multiplier $\lambda \approx\left|v_{T}\right|$, the approximations approaches equality as the polygone approaches the circular cone.

Acceleration Formulation

$$
\begin{array}{rll}
M(q) \frac{d^{2} q}{d t^{2}}-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{(i)}-\sum_{j=1}^{p} & \left(n^{(j)}(q) c_{n}^{(j)}\right. & \left.+D^{(j)}(q) \beta^{(j)}\right)=k\left(t, q, \frac{d q}{d t}\right) \\
\Theta^{(i)}(q)=0, & & i=1 \ldots m \\
\Phi^{(j)}(q) \geq 0, & \text { compl. to } & c_{n}^{(j)} \geq 0, \quad j=1 \ldots p \\
\beta=\operatorname{argmin}_{\widehat{\beta}^{(j)}} v^{T} D(q)^{(j)} \widehat{\beta}^{(j)} & \text { subject to } & \left\|\widehat{\beta}^{(j)}\right\| \leq \mu^{(j)} c_{n}^{(j)}, j=1 \ldots p
\end{array}
$$

We use the Coulomb Friction model, nondiscretized. In 2 dimensions the polygonal model and the Coulomb Friction model are equivalent.

$$
\begin{gathered}
\begin{array}{l}
\mathrm{I}=\frac{\mathrm{m}}{16} \quad \mathrm{l}=2 \\
\theta=72 \\
16(\cos 2 \\
\mu=0.75
\end{array} \quad \omega=0 \\
p=r-\frac{l}{2}\left(\begin{array}{c}
\hat{\mathrm{t}} \\
\cos (\theta) \\
\sin (\theta)
\end{array}\right)
\end{gathered}
$$

Constraint: $\hat{n} p \geq 0$ (defined everywhere).
$\hat{n} \ddot{p}=-g+f_{N}\left(\frac{1}{m}+\frac{l}{2 I}\left(\cos ^{2}(\theta)-\mu \sin (\theta) \cos (\theta)\right)\right)$
$\hat{n} \ddot{p_{a}}=-g-\frac{f_{N}}{m}$

Painleve Paradox: No classical solutions!

Approaching Frictional Inconsistency

Asssume that the system has a classical solution. Formulate the Euler method, half-explicit in velocities, with polyhedral approximation to the friction cone. Linearize the geometrical constraints.

$$
\begin{array}{rcc}
M\left(v^{l+1}-v^{(l)}\right)-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{(i)}-\sum_{j \in \mathcal{A}} & \left(n^{(j)} c_{n}^{(j)}+\right. & \left.D^{(j)} \beta^{(j)}\right)=h k \\
\nu^{(i)^{T}} v^{l+1}=0, & i=1 . . m \\
\rho^{(j)}=n^{(j)^{T}} v^{l+1} \geq 0, & \text { compl. to } & c_{n}^{(j)} \geq 0, \quad j \in \mathcal{A} \\
\sigma^{(j)}=\lambda^{(j)} e^{(j)}+D^{(j) T} v^{l+1} \geq 0, & \text { compl. to } & \beta^{(j)} \geq 0, \quad j \in \mathcal{A} \\
\zeta^{(j)}=\mu^{(j)} c_{n}^{(j)}-e^{(j)^{T}} \beta^{(j)} \geq 0, & \text { compl. to } & \lambda^{(j)} \geq 0, \quad j \in \mathcal{A}
\end{array}
$$

Here $\nu^{(\mathbf{i})}=\nabla \Theta^{(\mathbf{i})}, n^{(j)}=\nabla \Phi^{(j)}$. h is the time step. The set \mathcal{A} consists of the active constraints. Forces are replaced by impulses!

Matrix Form of the Integration Step

$$
\begin{gathered}
{\left[\begin{array}{ccccc}
M & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\
\tilde{\nu}^{T} & 0 & 0 & 0 & 0 \\
\tilde{n}^{T} & 0 & 0 & 0 & 0 \\
\tilde{D}^{T} & 0 & 0 & 0 & \tilde{E} \\
0 & 0 & \tilde{\mu} & -\tilde{E}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
v^{(l+1)} \\
\tilde{c}_{\nu} \\
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]+\left[\begin{array}{c}
-M v^{(l)}-h k \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right]} \\
\\
\\
{\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]^{T}\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right]=0, \quad\left[\begin{array}{c}
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right] \geq 0, \quad\left[\begin{array}{c}
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right] \geq 0 .}
\end{gathered}
$$

Linear Complementarity Problems (LCP)

$$
s=\mathcal{M} x+q, s \geq 0, x \geq 0, s^{T} x=0
$$

- Examples: Linear and Quadratic Programming.
- Important classes of matrices: PSD $\left(x^{T} \mathcal{M} x \geq 0, \forall x\right)$ and copositive $\left(x^{T} \mathcal{M} x \geq 0, \forall x \geq 0\right)$.
- LCP's involving copositive matrices do not have a solution in general.
- Let \mathcal{M} be copositive. If, $x \geq 0$ and $x^{T} \mathcal{M} x=0$ implies $q^{T} x \geq 0$, then the LCP has a solution that can be found by Lemke's algorithm.

Theorem

Consider a (mixed) LCP of the form

$$
\begin{array}{r}
\left(\begin{array}{l}
0 \\
0 \\
s
\end{array}\right)=\left(\begin{array}{ccc}
M & -F & -H \\
F^{T} & 0 & 0 \\
H^{T} & 0 & N
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
\lambda
\end{array}\right)+\left(\begin{array}{c}
-k \\
0 \\
0
\end{array}\right) \\
s \geq 0 ; \quad \lambda \geq 0 ; \quad \lambda^{T} s=0 .
\end{array}
$$

If M is a positive definite matrix, N a copositive matrix $\left(x \geq 0 \Rightarrow x^{T} N x \geq 0\right)$ then the above LCP has a solution. Lemke's algorithm will always find a solution λ of the LCP obtained by eliminating x and y. A solution (x, y, λ) of the original LCP can be recovered by solving for x and y in the first two rows of the mixed LCP .

The time-stepping method is guaranteed to have a solution!

Accommodating Stiffness

- The scheme is based on an explicit Euler scheme and as such cannot accomodate stiffness well (such as systems with very large damping or elastic forces).
- A stiff method should also accomodate the case where there are no contacts and joints. So it should also apply to

$$
\begin{aligned}
\frac{d q}{d t} & =v \\
M(q) \frac{d v}{d t} & =k(q, v)
\end{aligned}
$$

- However, we are still interested in an explicit scheme since otherwise the scheme for the case including contacts would translate into a nonlinear complementarity problem.

Example of a run on a stiff problem

- Identical objects, of mass 1 and with $\mu=0.4$.
- Initial distance between objects is 3 .
- An External force $F=20 \cos (t)$ acts on the object in the left.
- Time step 0.05 , integration interval 10 .
- The damper exerts a force $F_{D}=\delta\left(-\dot{x}_{1}+\dot{x}_{2}\right)$ on the first object and $-F_{D}$ on the second object.

Results for $\delta=100$, note instability

Linearly Implicit Schemes

$$
\begin{aligned}
q^{(n+1)} & =q^{(n)}+h v^{(n+1)} \\
M\left(q^{(n)}\right) \frac{v^{(n+1)}-v^{(n)}}{h} & =k\left(q^{(n)}, v^{(n)}\right)+h \nabla_{q} k\left(q^{(n)}, v^{(n)}\right) v^{(n+1)} \\
& +\nabla_{v} k\left(q^{(n)}, v^{(n)}\right)\left(v^{(n+1)}-v^{(n)}\right)
\end{aligned}
$$

or, after solving for $v^{(n+1)}$,

$$
\begin{aligned}
q^{(n+1)}= & q^{(n)}+h v^{(n+1)}, \\
v^{(n+1)}= & {\left[M\left(q^{(n)}\right)-h^{2} \nabla_{q} k\left(q^{(n)}, v^{(n)}\right)-h \nabla_{v} k\left(q^{(n)}, v^{(n)}\right)\right]^{-1} \times } \\
& {\left[M\left(q^{(n)}\right) v^{(n)}+h k\left(q^{(n)}, v^{(n)}\right)-h \nabla_{v} k\left(q^{(n)}, v^{(n)}\right) v^{(n)}\right] }
\end{aligned}
$$

Well-posedness of the method

- Define:

$$
\widehat{M}=\left[M\left(q^{(n)}\right)-h^{2} \nabla_{q} k\left(q^{(n)}, v^{(n)}\right)-h \nabla_{v} k\left(q^{(n)}, v^{(n)}\right)\right]
$$

- Stiff method: replace in the Euler formulation M by $\widehat{M}(k$ by $\widehat{k})$!
- To ensure consistency by applying the theorem, it will be essential to have $\widehat{M} \succ 0$ and not only invertible.
- If $k(q, v)=-\nabla U(q)-\Gamma(v)$, where $\Gamma(v)$ is a damping-type force, then near an equilibrium point one could expect $\nabla_{q q} U(q) \succeq 0$ and $\nabla_{v} \Gamma(v) \succeq 0$.
- However, positive definiteness of \hat{M} cannot generally be ensured for moderate values of h when the linear system has eigenvalues with a large negative real part.

Damping and elastic forces

- Most stiff forces in rigid multibody dynamics originate in springs and dampers attached between two points of the multibody system.
- For that case, we have $k(t, q, v)=k_{s}(t, q, v)+k_{1}(t, q, v)$, where

$$
k_{s}(t, q, v)=-\sum_{i=1}^{n_{\gamma}} \gamma_{i} \phi^{(i)}(q) \nabla_{q} \phi^{(i)}(q)-\sum_{j=1}^{n_{\delta}} \delta_{j} \nabla_{q} \psi^{(j)}(q)\left(\nabla_{q} \psi^{(j)^{T}}(q) v\right)
$$

Here $\gamma_{i}, i=1, \ldots, n_{\gamma}$ are spring constants and $\delta_{j}, j=1, \ldots, n_{\delta}$ are the damper constants. $\phi^{(i)}(q)$ and $\psi^{(j)}(q)$ describe distances between points in the system. $k_{1}(t, q, v)$ are the nonstiff forces.

- We can then approximate, for the purpose of the linearly implicit method

$$
\begin{aligned}
\left.\nabla_{q} k(t, q, v)\right) & \approx-\sum_{i=1}^{n_{\gamma}} \gamma_{i} \nabla_{q} \phi^{(i)}(q) \nabla_{q} \phi^{(i)^{T}}(q), \\
\left.\nabla_{v} k(t, q, v)\right) & \approx-\sum_{j=1}^{n_{\delta}} \delta_{j} \nabla_{q} \psi^{(j)}(q) \nabla_{q} \psi^{(j)^{T}}(q) .
\end{aligned}
$$

Linearly Implicit LCP

$$
\begin{aligned}
& {\left[\begin{array}{ccccc}
\widehat{M} & -\tilde{\nu} & -\tilde{n} & -\tilde{D} & 0 \\
\tilde{\nu}^{T} & 0 & 0 & 0 & 0 \\
\tilde{n}^{T} & 0 & 0 & 0 & 0 \\
\tilde{D}^{T} & 0 & 0 & 0 & \tilde{E} \\
0 & 0 & \tilde{\mu} & -\tilde{E}^{T} & 0
\end{array}\right]\left[\begin{array}{c}
v^{(l+1)} \\
\tilde{c}_{\nu} \\
\tilde{c}_{n} \\
\tilde{\beta} \\
\tilde{\lambda}
\end{array}\right]+\left[\begin{array}{c}
-M v^{(l)}-h \widehat{k} \\
0 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\tilde{\rho} \\
\tilde{\sigma} \\
\tilde{\zeta}
\end{array}\right]} \\
& \\
& \\
& \widehat{M}=M+h^{2} \sum_{i=1}^{n_{\gamma}} \gamma_{i} \nabla_{q} \phi(q) \nabla_{q} \phi^{T}(q)+h \sum_{i=1}^{n_{\delta}} \delta_{i} \nabla_{q} \psi(q) \nabla_{q} \psi^{T}(q) \succ 0 .
\end{aligned}
$$

Properties of the linearly implicit scheme

- The scheme continues to be well defined for any values of h : the LCP is solvable.
- As $\delta \rightarrow \infty$, and $\gamma \rightarrow \infty$ the solution to the linearly implicit LCP approaches the solution of the nonstiff LCP that has the additional equality constraints $\nabla_{q} \phi^{(i)}\left(q^{(l)}\right)^{T} v^{(l+1)}=-h \phi^{(i)}\left(q^{(l)}\right)$ and $\nabla_{q} \psi^{(j)}\left(q^{(l)}\right) v^{(l+1)}(q)=0$, whenever the limit system has a pointed friction cone. Stiff links behave like joints, for large stiffness parameters!
- Denoting $\widehat{w}=\left(v^{(l)}+k h M\left(q^{(l)}\right)^{-1} k_{1}\left(t^{(l)}, q^{(l)}, v^{(l)}\right)\right)^{T}$, we have

$$
\begin{array}{r}
v^{(l+1)^{T}} M\left(q^{(l)}\right) v^{(l+1)}+\sum_{i=1}^{n_{\gamma}} \gamma_{i}\left(\phi^{(i)^{T}}\left(q^{(l)}\right)+h \nabla_{q} \phi^{(i)}\left(q^{(l)}\right)^{T} v^{(l+1)}\right)^{2} \leq \\
+\widehat{w}^{T} M\left(q^{(l)}\right) \widehat{w}+\sum_{i=1}^{n_{\gamma}} \gamma_{i}\left(\phi^{(i)}\left(q^{(l)}\right)\right)^{2}
\end{array}
$$

This ensures the stability of the linear model, as in the unconstrained case.

Collision Assumptions

- The collision within a system of bodies consists of
* Compression Phase: interpenetration is prevented by compression impulses from each constraint involved in the collision (even joints).
* Decompression Phase: A proportion of e_{i} (elasticity coefficient) from the normal compression impulse is restituted to the system by each contact constraint Φ_{i} (Poisson hypothesis). Interpenetration is prevented by decompression impulses.
- The compression/decompression phases following an imminent interpenetration detection are simultaneous for all the bodies involved.

Impact Model: Compression Phase

Collision are instantaneous. Since we have a force-velocity approach, compression can be interpreted as a regular time-step with $h=0$. Same solvability results apply.

$$
\begin{array}{rcc}
M\left(v^{c}-v^{-}\right)-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{c(i)}- & \sum_{j=1}^{p}\left(n^{(j)} c_{n}^{c(j)}\right. & \left.+D^{(j)} \beta^{c(j)}\right)=0 \\
\nu^{(i)^{T}} v^{c}=0, & & i=1 . . m \\
n^{(j)^{T}} v^{c} \geq 0, & \text { compl to } & c_{n}^{c(j)} \geq 0, \quad j=1 . . p \\
\lambda^{c(j)} e^{(j)}+D^{(j) T} v^{c} \geq 0, & \text { compl. to } & \beta^{c(j)} \geq 0, \quad j=1 . . p \\
\mu^{(j)} c_{n}^{c(j)}-e^{(j)^{T}} \beta^{c(j)} \geq 0, & \text { compl. to } & \lambda^{c(j)} \geq 0, \quad j=1 . . p
\end{array}
$$

Impact Model: Decompression Phase

Poisson Hypothesis $F^{r}=\sum_{j=1}^{p} e_{j} n^{(j)} c_{n}^{c(j)}$.

$$
\begin{array}{rcc}
M\left(v^{+}-v^{c}\right)-\sum_{i=1}^{m} \nu^{(i)} c_{\nu}^{x(i)}- & \sum_{j=1}^{p}\left(n^{(j)} c_{n}^{x(j)}\right. & \left.+D^{(j)} \beta^{x(j)}\right)=F^{r} \\
\nu^{(i)^{T}} v^{+}=0, & & i=1 . . m \\
n^{(j)^{T}} v^{+} \geq 0, & \text { compl to } & c_{n}^{x(j)} \geq 0, \quad j=1 . . p \\
\lambda^{x(j)} e^{(j)}+D^{(j) T} v^{+} \geq 0, & \text { compl. to } & \beta^{x(j)} \geq 0, \quad j=1 . . p \\
\mu^{(j)} c_{n}^{x(j)}-e^{(j)^{T}} \beta^{x(j)} \geq 0, & \text { compl. to } & \lambda^{x(j)} \geq 0, \quad j=1 . . p
\end{array}
$$

Decompression Solution for a Particular Case

Assumptions

- (a) The contacts are frictionless.
- (b) All new contacts generated by collision have the same elasticity coefficient ϵ.
- (c) The elasticity coefficients characterizing the other contacts are less than $\epsilon, e_{j} \leq \epsilon, 1 \leq j \leq p$.
- (d) The pre-collision velocities satisfy the contact constraints exactly, $\left(n^{(j)}\left(q^{-}\right)\right)^{T} v^{-}=0$.

Solution and Properties

- (a) Just the compression phase is solved by LCP.
- (b) $v^{+}=(1+\epsilon) v^{c}-v^{-}, c_{n}^{x(i)}=\left(\epsilon-e_{i}\right) c_{n}^{c(i)}$.
- (c) $v^{+{ }^{T}} M v^{+} \leq v^{-} M v^{-}$, the kinetic energy does not increase after the collision (desirable, but not guaranteed for other cases).
- (d) This decompression resolution can be used as a general strategy where computational efficiency is required.

Algorithm

$v=v^{0}, q=q^{0} ;$ time $=0 ;$
while (time $<T$)
$q_{\text {new }}=q+h v ;$
Find $\left(v_{\text {new }}, \tilde{c}_{\nu}, \tilde{c}_{n}, \tilde{\beta}, \tilde{\lambda}\right) \in \mathcal{L}(v, h k)\left(k\right.$ at (q, v), the rest at $\left.q_{\text {new }}\right)$;
if (no collision detected between time and time $+h$)
time $=$ time $+h, q=q_{\text {new }}, v=v_{\text {new }} ;$
else
Estimate the collision data time ${ }_{\text {new }}, q_{\text {new }}$ and v^{-};
Find $\left(v^{c}, \tilde{c}_{\nu}^{c}, \tilde{c}_{n}^{c}, \tilde{\beta}^{c}, \tilde{\lambda^{c}}\right) \in \mathcal{L}\left(v^{-}, 0\right)$;
Find $\left.\left(v^{+}, \tilde{c}_{\nu}^{x}, \tilde{c}_{n}^{x}, \tilde{\beta}^{x}, \tilde{\lambda^{x}}\right) \in \mathcal{L}\left(v^{c}, F^{r}\right)\right)\left(\right.$ or $\left.v^{+}=(1+e) v^{c}-v^{-}\right)$;
time $=$ time $_{\text {new }}, v=v^{+}, q=q_{\text {new }} ;$
end if
end while

LCP contact list

- The initial point is assumed to be feasible for all constraints.
- At each regular (non-collision) step the contact list consists of the union of the set of contacts that the LCP has decided to maintain $\left(v_{n}=0\right)$ at the previous step with the set of contacts that exhibit interpenetration $\left(\Phi^{i}(q)<0\right)$.
- When a collision is detected $\left(\Phi^{i}(q)\right.$ changes sign from + to -$)$, the contacts for which impact is imminent are added to the contact list.
- The decompression phase uses the same contact list as the compression phase.

Conclusions

- We present a complementarity-based model for multi-rigid body with contact and friction that is guaranteed to be solvable for the most common types of stiff forces.
- The model is based on a discretization of the friction cone and can be as close to the Coulomb model as desired.
- Stiffness is accomodated by means of a linearly implicit scheme for the case of damping forces. In the limit, stiff links behave like joints.
- If the mass matrix $M\left(q^{(l)}\right)$ is constant and the elastic forces are linear, then the velocity stays bounded at all times. This recovers the analogue of the stability result for differential equations.
- These conclusions were validated with several simulations, where PATH was used to solve the LCP.

Future work

- Higer order schemes between collisions and discontinuities. Extrapolation is atractive since it comes with a minor loss of stability and it adapts very well to this context.
- Alternative friction models, that solve convex subproblems, while maintaining most physical properties of this model. We are currently working on a mixed penalty complementarity framework.
- Interface this approach with enhanced geometrical approaches that compute signed distance functions and feasible configuration fast.
- If a projection is used, how can energy balance be maintained?
- Can a fixed timestep scheme be used, which solves only one LCP per iteration?

Simulations for the cannonball arrangement, $\mathbf{h}=\mathbf{0 . 0 5}$

Problem	Bodies	Contacts	μ	CPU time (s)
1	10	21	0.2	0.04
2	10	21	0.8	0.03
3	21	52	0.2	0.28
4	21	52	0.8	0.20
5	36	93	0.2	0.81
6	36	93	0.8	0.82
7	55	146	0.2	2.10
8	55	146	0.8	2.07
9	210	574	0.0	0.80
10	210	574	0.2	174.29
11	210	574	0.8	FAIL

