Degenerate Nonlinear Programs

Mihai Anitescu

$$
\min f(x)
$$

At points x^{*} at which the quadratic growth (QG) condition holds

$$
f(x) \geq f\left(x^{*}\right)+\sigma\left\|x \Leftrightarrow x^{*}\right\|^{2} \quad x \in B\left(x^{*}, r\right)
$$

- Steepest descent: $f(x) \rightarrow f\left(x^{*}\right)$ Q-linearly.
- Newton method $x \rightarrow x^{*}$ Q-linearly.

Constrained Optimization

$$
\min _{x \in D} f(x)
$$

Do the same good algorithmic properties hold when feasible quadratic growth is satisfied?

$$
f(x) \geq f\left(x^{*}\right)+\sigma\left\|x \Leftrightarrow x^{*}\right\|^{2}, \quad \forall x \in D \cap B\left(x^{*}, r\right)
$$

Motivation: The study of convergence properties under very general conditions may result in more robust algorithms for large-scale programming. The ability of maintaining a good local rate of convergence when the traditional analysis assumptions are only marginally satisfied.

Rates of Convergence

- $x^{k} \rightarrow x^{*}$ R-linearly if $\lim \sup \sqrt[k]{\left\|x^{k} \Leftrightarrow x^{*}\right\|} \rightarrow c<1$.
- $x^{k} \rightarrow x^{*}$ Q-linearly if $\lim \sup \frac{\left\|x^{k+1}-x^{*}\right\|}{\left\|x^{k}-x^{*}\right\|} \rightarrow c<1$.
- $x^{k} \rightarrow x^{*}$ superlinearly if $\lim \sup \frac{\left\|x^{k+1}-x^{*}\right\|}{\left\|x^{k}-x^{*}\right\|}=0$.

minimize $\quad f(x)$ subject to $\quad h_{j}(x)=0 \quad i=1 \ldots r$

$$
g_{j}(x) \leq 0 \quad j=1, \ldots m
$$

$x \in \mathbb{R}^{n}, f, g, h$ are sufficiently smooth.

KKT conditions

The Lagrangian:

$$
\begin{aligned}
\mathcal{L}(x, \mu, \lambda) & =f(x)+\sum_{i=1}^{m} \mu_{i} h_{i}(x)+\sum_{i=1}^{r} \lambda_{j} g_{j}(x) \\
& =f(x)+\mu^{T} h(x)+\lambda^{T} g(x)
\end{aligned}
$$

Stationary point of NLP : A point x for which there exist $\lambda \in \mathbb{R}^{m}, \mu \in \mathbb{R}^{r}$ such that

$$
\nabla_{x} \mathcal{L}(x, \lambda, \mu)=0, \quad h(x)=0, \quad g(z) \leq 0, \quad(\lambda)^{T} g(z)=0
$$

KKT theorem: under certain constraint qualification conditions, the solution x^{*} of the NLP is a stationary point of the NLP.

The active set of a feasible $x \in \mathbb{R}^{n}$:

$$
\mathcal{A}(x)=\left\{j \mid 1 \leq j \leq m, g_{j}(x)=0\right\}
$$

Steepest Descent Direction for an NLP

Unconstrained Optimization:

$$
d=\Leftrightarrow \nabla f(x)=\arg \min \left\{\frac{1}{2} d^{T} d+\nabla f(x)^{T} d\right\}
$$

Constrained Optimization: d is the solution of the Quadratic Program (QP) with linearized constraints:

$$
\begin{array}{lll}
\text { minimize } & \nabla f(x)^{T} d+\frac{1}{2} d^{T} d \\
\text { subject to } & h_{i}(x)+\nabla h_{i}(x)^{T} d=0 & i=1, \ldots, r \\
& g_{j}(x)+\nabla g_{j}(x)^{T} d \leq 0, & j=1, \ldots, m .
\end{array}
$$

The QP is feasible whenever x is feasible, regardless of the satisfiability of first-order conditions. d is unique (if QP is feasible) and $d=0$ iff x is a stationary point of the NLP.

$$
\begin{array}{rc}
\min & f(x)=\frac{x^{2}}{2} \\
\text { subject to } & h(x)=x^{6} \sin \frac{1}{x}
\end{array}
$$

- $x=\frac{1}{ \pm k \pi}, k \in \mathbb{N}, k \neq 0$ are stationary points accumulating to zero.
- The direction of steepest descent $d=0$. Thus QG alone will not induce $x^{k} \rightarrow x^{*}=0$, even when started arbitrarily close to x^{*}.
- The feasible set needs to satisfy a constraint qualification.
- For steepest descent, the issue of isolated stationary points is fundamental.

Traditional Constraint Qualifications (KKTT holds)

- Linear Independence CQ (LICQ):

$$
\nabla h_{i}\left(x^{*}\right), i=1, \ldots, r \quad \text { and } \nabla g_{j}\left(x^{*}\right), j \in \mathcal{A}\left(x^{*}\right)
$$

are linearly independent. λ^{*} satisfying KKT is unique.

- Linear Constraint CQ: $h(x)$ and $g(x)$ are linear.
- NLP not satisfying LICQ are called degenerate.

Mangasarian-Fromowitz Constraint Qualification

- Mangasarian Fromowitz CQ (MFCQ): $\nabla h_{j}\left(x^{*}\right), 1 \leq j \leq r$ are linearly independent and

$$
\begin{array}{ll}
\exists p \in R^{n} \quad \text { such that } & \nabla_{x} h_{j}\left(x^{*}\right)^{T} p=0, j=1, \ldots m \\
& \nabla_{x} g_{i}\left(x^{*}\right)^{T} p<0, i \in \mathcal{A}\left(x^{*}\right) .
\end{array}
$$

- MFCQ holds \Leftrightarrow The set $\mathcal{M}\left(x^{*}\right)$ of the multipliers satisfying KKT is bounded.
- The critical cone:

$$
\begin{aligned}
\mathcal{C}= & \left\{u \in \mathbb{R}^{n} \mid \nabla h_{i}\left(x^{*}\right)^{T} u=0,1 \leq i \leq r,\right. \\
& \left.\nabla g_{i}\left(x^{*}\right)^{T} u \leq 0, i \in \mathcal{A}\left(x^{*}\right), \nabla f(x)^{T} u=0\right\}
\end{aligned}
$$

Second-Order Sufficient Conditions

- Traditional SOSC (second-Order Sufficient Conditions) that x^{*} be a strict local minimum: LICQ and

$$
u^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) u>0, \forall u \in \mathcal{C} .
$$

- Relaxed SOSC (in Fiacco): MFCQ and

$$
\exists\left(\mu^{*}, \lambda^{*}\right) \in \mathcal{M}\left(x^{*}\right), \text { such that } u^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) u>0, \forall u \in \mathcal{C} .
$$

- Shapiro SOSC: MFCQ and

$$
\begin{aligned}
& \forall u \in \mathcal{C}, \exists\left(\mu^{*}, \lambda^{*}\right) \in \mathcal{M}\left(x^{*}\right), \text { such that } \\
& u^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) u>0 .
\end{aligned}
$$

- Shapiro SOSC \Leftrightarrow Quadratic Growth and MFCQ !

SOSC for isolated stationary points

- Traditional SOSC ensures it via implicit function theorem, if $\lambda_{\mathcal{A}\left(x^{*}\right)}^{*}>0$ (strict complementarity).
- Robinson SOSC: MFCQ and

$$
\forall\left(\mu^{*}, \lambda^{*}\right) \in \mathcal{M}\left(x^{*}\right), \forall u \in \mathcal{C} \quad u^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}, \mu^{*}\right) u>0 .
$$

The L_{∞} penalty function using the steepest descent direction induces Q-linear convergence to $x^{*}(\mathrm{M})$.

- Quadratic growth $+\mathrm{MFCQ} \Rightarrow x^{*}$ is an isolated stationary point (M) ! The steepest descent direction will not be zero in $B\left(x^{*}, r\right)$. Thus linear convergence may be achievable even in these very general conditions.

Superlinear Convergence for Traditional SOSC

Assume $\mathcal{A}\left(x^{*}\right)=\{1, \ldots, m\}$. LICQ and strict complementarity ensure that the Newton step for the KKT

$$
\nabla L(x, \lambda)=0, \quad g(x)=0
$$

is well defined near x^{*}, λ^{*}.

$$
\begin{gathered}
\left(\begin{array}{cc}
\nabla_{x x} \mathcal{L}\left(x^{k}, \lambda^{k}\right) & \nabla g\left(x^{k}\right) \\
\nabla g\left(x^{k}\right) & 0
\end{array}\right)\binom{\Delta x}{\Delta \lambda}=\binom{\Leftrightarrow \nabla_{x} \mathcal{L}\left(x^{k}, \lambda^{k}\right)}{\Leftrightarrow g\left(x^{k}\right)}= \\
x^{k+1}=x^{k}+\Delta x, \quad \lambda^{k+1}=\lambda^{k}+\Delta \lambda
\end{gathered}
$$

Then $\left(x^{k} \lambda^{k}\right) \rightarrow\left(x^{*}, \lambda^{*}\right)$ quadratically.

Superlinear Convergence for Relaxed SOSC

- Starting with (x, λ) near $\left(x^{*}, \lambda^{*}\right)$ that satisfies the Relaxed SOSC and strict complementarity. Then the stabilized Newton method

$$
\left(\begin{array}{cc}
\nabla_{x x} \mathcal{L}\left(x^{k}, \lambda^{k}\right) & \nabla g\left(x^{k}\right) \\
\nabla g\left(x^{k}\right) & \Leftrightarrow \mu^{k}
\end{array}\right)\binom{x^{k+1} \Leftrightarrow x^{k}}{\lambda^{k+1} \Leftrightarrow \lambda^{k}}=\binom{\Leftrightarrow \nabla_{x} \mathcal{L}\left(x^{k}, \lambda^{k}\right)}{\Leftrightarrow g\left(x^{k}\right)}=
$$

- Then $\left(x^{k}, \lambda^{k}\right) \rightarrow\left(x^{*}, \lambda^{*}\right)$ superlinearly if $\mu^{k}=\Omega\left\|\left(x^{k}, \lambda^{k}\right) \Leftrightarrow\left(x^{*}, \lambda^{*}\right)\right\|$.
- By Schur Complement and since there exists a positive definite augmented Lagrangian, the system is nonsingular.
- The method has been extended to cases without strict complementarity, for stronger second-order conditions of the Lagrangian.

The L_{∞} exact penalty function

- For simplicity, only inequality constraints will be considered.
- Need a measure that will balance feasibility and optimality (see Sven's Filter SQP). This will measure progress along a given direction.
- The L_{∞} penalty function

$$
P(x)=\max \left\{g_{0}(x), g_{1}(x), \ldots g_{m}(x)\right\}
$$

Here $g_{0}(x) \equiv 0$.

- x^{*} is an unconstrained minimum of the penalized objective function $\phi(x)=f(x)+c_{\phi} P(x)$.
- However, $\phi(x)$ becomes nondifferentiable.

Descent Directions for $\phi(x)$

$$
\begin{array}{ll}
\operatorname{minimize} & \nabla f(x)^{T} d+\frac{1}{2} d^{T} H d+c_{\phi} \zeta \\
\text { subject to } & g_{j}(x)+\nabla g_{j}(x)^{T} d \leq \zeta, \quad j=0,1,2 \ldots m,
\end{array}
$$

- If λ is a multiplier, $c_{\phi}=\lambda_{0}+\sum_{i=1}^{m} \lambda_{i}$ and $\lambda_{0} \zeta=0$ (this QP is always feasible).
- If $H=I$ and

$$
c_{\phi}>2 \gamma+\sum_{i=1}^{m} \lambda_{i}^{*}, \quad \forall \lambda^{*} \in \mathcal{M}\left(x^{*}\right)
$$

then $\zeta=0$ and d is the steepest descent direction. With MFCQ $\mathcal{M}\left(x^{*}\right)$ is bounded.

- With MFCQ, the feasible set has an interior and the steepest descent QP is always feasible.

L_{∞} SQP algorithm near x^{*}

SQP: Sequential Quadratic Programming.

1. Set $k=0$, choose x^{0}.
2. Compute d^{k} from

$$
\begin{array}{ll}
\text { minimize } & \nabla f\left(x^{k}\right)^{T} d+\frac{1}{2} d^{T} d \\
& g_{j}\left(x^{k}\right)+\nabla g_{j}\left(x^{k}\right)^{T} d \leq 0, \quad j=1, \ldots, m .
\end{array}
$$

3. Choose α^{k} from a line search procedure, and set $x^{(k+1)}=x^{k}+\alpha^{k} d^{k}$.
4. Set $k=k+1$ and return to Step 2.

Step size selection

(a) Minimization rule Here α^{k} is chosen such that

$$
\phi\left(x^{k}+\alpha^{k} d^{k}\right)=\min _{\alpha \geq 0}\left\{\phi\left(x^{k}+\alpha d^{k}\right) \cdot\right\}
$$

(b)

Here a fixed scalar $s>0$ is selected, and α^{k} is chosen such that

$$
\phi\left(x^{k}+\alpha^{k} d^{k}\right)=\min _{\alpha \in[0, s]}\left\{\phi\left(x^{k}+\alpha d^{k}\right)\right\}
$$

(c) Here fixed scalars s, τ, and σ with $s>0, \tau \in(0,1)$, and $\sigma \in\left(0, \frac{1}{2}\right)$ are chosen and we set $\alpha^{k}=\tau^{m_{k}} s$, where m_{k} is the first nonnegative integer m for which

$$
\phi\left(x^{k}\right) \Leftrightarrow \phi\left(x^{k}+\tau^{m} s d^{k}\right) \geq \sigma \tau^{m} s\left(d^{k}\right)^{T} d^{k} .
$$

It can be shown that the Armijo rule yields a stepsize after a finite number of iterations.

If x^{*} satisfies MFCQ and the Quadratic Growth Condition

$$
f(x) \geq f\left(x^{*}\right)+\sigma\left\|x \Leftrightarrow x^{*}\right\|^{2}, \quad \forall x \text { feasible in } B\left(x^{*}, r\right)
$$

If x^{0} is sufficiently close to x^{*}, with x^{k} generated by the steepest descent algorithm with an exact L_{∞} penalty function with sufficiently large c_{ϕ},

- $x^{k} \rightarrow x^{*}$ R-linearly.
- $\phi\left(x^{k}\right) \rightarrow \phi\left(x^{*}\right)$ Q-linearly.
- x^{*} is an isolated stationary point of the NLP.

Shapiro SOSC \nRightarrow Relaxed SOSC

- The example

$$
\begin{array}{rlrl}
\min z & & \\
\text { sbj.to: } g_{0}(x, y, z) & =(x \Leftrightarrow 1)^{2} \Leftrightarrow 2(y \Leftrightarrow 1)^{2} \Leftrightarrow z & \leq 0 \\
g_{1}(x, y, z) & =\Leftrightarrow \frac{1}{2}\left((x \Leftrightarrow 1)^{2}+(y \Leftrightarrow 1)^{2}\right) & & \\
& +3(x \Leftrightarrow 1)(y \Leftrightarrow 1) \Leftrightarrow z & \leq 0 \\
g_{2}(x, y, z) & =\Leftrightarrow 2(x \Leftrightarrow 1)^{2}+(y \Leftrightarrow 1)^{2} \Leftrightarrow z & \leq 0 \\
g_{3}(x, y, z) & =\Leftrightarrow \frac{1}{2}\left((x \Leftrightarrow 1)^{2}+(y \Leftrightarrow 1)^{2}\right) & \\
& \Leftrightarrow 3(x \Leftrightarrow 1)(y \Leftrightarrow 1) \Leftrightarrow z & \leq 0 .
\end{array}
$$

- Each constraint is obtained from the other by rotating the (x, y) plane with $\frac{\pi}{4}$.

Example

- At $(1,1,0)$, the NLP satisfies satisfies both Quadratic Growth and MFCQ.
- However,

$$
u^{T} \nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}\right) u>0, \forall u \in \mathcal{C} .
$$

is not satisfies by any feasible λ^{*}.

- For this example there will be no locally convex augmented Lagrangian

For

any $\lambda^{*} \in \mathcal{M}\left(x^{*}\right)$,

$$
\nabla_{x x} \mathcal{L}\left(x^{*}, \lambda^{*}\right)+\frac{1}{\mu} \nabla g\left(x^{*}\right) \nabla g\left(x^{*}\right)^{T} \nsucceq 0
$$

Lancelot: The Augmented Lagrangian Approach

- The feasible set is represented by

$$
g_{i}(x)+t_{i}=0, t_{i} \geq 0 \text { for } i=1, \ldots, m
$$

- A penalty term (with parameter μ) is added to the objective

$$
\begin{array}{cl}
\min & f(x)+\sum_{i=1}^{4}\left[\lambda_{i}\left(g_{i}(x)+t_{i}\right)+\frac{1}{\mu}\left(g_{i}(x)+t_{i}\right)^{2}\right] \\
\text { subject to } & t_{i} \geq 0, \quad i=1, \ldots, m .
\end{array}
$$

- Take $\lambda, \mu \Rightarrow \operatorname{get} x(\lambda, \mu)$ subject to trust-region constraints \Rightarrow update λ, μ.
- Desired outcome: μ bounded bellow and trust region inactive.
- In our example: Inactive trust region \Rightarrow positive semidefinite augmented Lagrangian $\Rightarrow \mu \rightarrow 0$ (or otherwise would approach one of the solution

The necessary conditions for Lancelot

$$
\begin{aligned}
& \left.\nabla_{(x, t)(x, t)} L\right|_{\left(x^{*}, 0\right)}= \\
& \left(\begin{array}{cc}
F_{x x x}+\sum_{i=1}^{4}\left(\lambda_{i} G_{x x}+\frac{2}{\mu} \nabla g_{i}\left(x^{*}\right) \nabla g_{i}\left(x^{*}\right)^{T}\right) & \frac{2}{\mu} \nabla g\left(x^{*}\right) \\
\frac{2}{\mu} \nabla g\left(x^{*}\right)^{T} & \frac{2}{\mu} I_{4}
\end{array}\right)
\end{aligned}
$$

is positive semidefinite on the subspace $t=0$, which implies

$$
0 \preceq F_{x x}+\sum_{i=1}^{4}\left(\lambda_{i} G_{x x x}+\frac{2}{\mu} \nabla g_{i}\left(x^{*}\right) \nabla g_{i}\left(x^{*}\right)^{T}\right)=\left(\begin{array}{cc}
\sum_{i=1}^{4} \lambda_{i} Q_{i} & 0 \\
0 & \frac{2}{\mu}
\end{array}\right)
$$

Since $\lambda \rightarrow \lambda^{*}, \mu \rightarrow 0$. Thus Lagrangian methods lose the advantage of bounded parameters over barrier approaches.

Iteration	(New) Penalty Parameter	Trust Region Radius $\left\\|\left\\|\\|_{\infty}\right.\right.$
16	$1 \mathrm{e}-2$	$3.81 \mathrm{e}-02$
43	$1 \mathrm{e}-4$	$1.1 \mathrm{e}-02$
85	$1 \mathrm{e}-6$	$1.35 \mathrm{e}-03$
141	$1 \mathrm{e}-8$	$4.22 \mathrm{e}-05$
203	$1 \mathrm{e}-10$	$5.28 \mathrm{e}-06$
241	$1 \mathrm{e}-12$	$1.70 \mathrm{e}-06$
268	$1 \mathrm{e}-14$	1.93
283	$1 \mathrm{e}-16$	4.41 e 02
323	$1 \mathrm{e}-18$	2.19 e 04
336	STOP	

Table 1: Reduction of the penalty parameter μ for LANCELOT

Observed Rate of Convergence for LINE

Iteration	$\frac{\phi\left(x^{k}\right)-\phi\left(x^{*}\right)}{\phi\left(x^{k+1}\right)-\phi\left(x^{*}\right)}$
4	4.00
9	4.00
14	3.99
19	3.99
24	4.00
27	4.00

Table 2: Rates of convergence for the L_{∞} penalty algorithm

Nonlinear solver	$\left\\|x^{\text {final }}-x^{*}\right\\|_{2}$	Iterations	Message at termination
DONLP2	$1.45 \mathrm{e}-16$	4	Success
FilterSQP	$5.26 \mathrm{e}-09$	28	Convergence
LANCELOT	$8.65 \mathrm{e}-07$	336	Step size too small
LINF	$1.05 \mathrm{e}-08$	28	Step size too small
LOQO	$1.60 \mathrm{e}-07$	200	Iteration limit
LOQO	$5.50 \mathrm{e}-07$	1000	Iteration limit
MINOS	$4.76 \mathrm{e}-06$	27	Point cannot be improved
SNOPT	$3.37 \mathrm{e}-07$	3	Optimal Solution Found

Table 3: All tolerances set to 1e-16, except DONLP2

DONLP2 $<$ FSQP $<$ LINF $<$ LOQO $<$ SNOPT $<$ LANCELOT $<$ MINOS

Tumerical runs observations

- Given the differences NLP solvers use as a measure for tolerance, the basis for comparison was the best achievable outcome (best shot).
- The fact that NLP solvers with augmented Lagrangian perform worse is somewhat expected, in light of our analysis.
- Note that LINF does only slightly worse than FSQP, though it does not use second-order information (nor it attempts to estimate it). This also shows that the problem is not in itself ill-conditioned.
- For FilterSQP, linear convergence was observed.
- For LOQO, increasing the number of iterations limit did not improve the results.
- Tolerances smaller than 10^{-16} may be a problem (LOQO). Some of the algorithms were well defined for 10^{-20} and the outcomes were almost identical with the ones for 10^{-16}.For tolerances in the range $10^{-12}-10^{-15}$ similar results are obtained.

- If a constraint is added twice, the minimizer (and the central path) of the original barrier $f(x) \Leftrightarrow \mu \ln \left(\Leftrightarrow g_{1}(x)\right) \Leftrightarrow \mu \ln \left(\Leftrightarrow g_{2}(x)\right)$ shifts to satisfy

$$
\nabla f\left(x_{s}(\mu)\right) \Leftrightarrow \frac{2 \mu}{g_{1}\left(x_{s}(\mu)\right)} \nabla g_{1}\left(x_{s}(\mu)\right) \Leftrightarrow \frac{\mu}{g_{2}\left(x_{s}(\mu)\right)} \nabla g_{2}\left(x_{s}(\mu)\right)=0
$$

- However, the steepest descent QP has the same solution d even though the constraint is added twice:

$$
\begin{array}{ll}
\operatorname{minimize} & \nabla f(x)^{T} d+\frac{1}{2} d^{T} d \\
\text { subject to } & g_{j}(x)+\nabla g_{j}(x)^{T} d \leq 0, \quad j=1,2,2
\end{array}
$$

- Also, the penalty function $P(x)=\max \left\{g_{0}(x), g_{1}(x), \ldots g_{m}(x)\right\}$ is invariant to adding a constraint twice.
- Since the SQP is invariant to constraint repetition, it is reasonable to expect that it will be more robust than the interior point approach.
\square
- We show that Quadratic Growth and MFCQ induce linear convergence of the L_{∞} exact penalty method.
- We construct an example for which QG and MFCQ hold, but for which no locally convex augmented Lagrangian exists.
- We show that the SQP approach is more robust than Lagrangian methods, and possibly more robust than interior-point methods (for NLP).
- Any extension of these results would require unbounded multipliers, or some particularity of the constraint functions (convexity).
- The L_{∞} penalty algorithm is not the answer when ill-conditioning is present (small maximum curvature on some of the critical cone directions). The problem of superlinear convergence under these assumptions is open.

- Under the Traditional SOSC, a locally perturbed NLP will have a unique primal dual solution $(x(p), \lambda(p))$, which is Lipschitzian with respect to p.
- Under Robinson SOSC, the primal perturbed solution is unique $x(p)$, and Lipschitzian with respect to the perturbation. The dual solution is Lipschitzian at $p=0,\left\|\mathcal{M}(p) \Leftrightarrow \mathcal{M}\left(x^{*}\right)\right\|=O(\|p\|)$ (as sets).
- Under Shapiro SOSC, the primal perturbed solution is not necessarily unique and is Lipschitzian at x^{*} (as a set) with respect to the perturbation only for classes of perturbations (Maurer's example).

