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Degenerate Nonlinear Programs
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Unconstrained Optimization

min f(x)

At pointsx� at which the quadratic growth (QG) condition holds

f(x) � f(x�) + �jjx� x�jj2 x 2 B(x�; r)

� Steepest descent:f(x)! f(x�) Q-linearly.

� Newton methodx! x� Q-linearly.
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Constrained Optimization

min
x2D

f(x)

Do the same good algorithmic properties hold when feasible quadratic growth is

satisfied?

f(x) � f(x�) + �jjx� x�jj2; 8x 2 D \B(x�; r)

Motivation: The study of convergence properties under very general conditions

may result in more robust algorithms for large-scale programming.Robustness:

The ability of maintaining a good local rate of convergence when the traditional

analysis assumptions are only marginally satisfied.
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Rates of Convergence

� xk ! x� R-linearly if lim sup k
p
jjxk � x�jj ! c < 1.

� xk ! x� Q-linearly if lim sup jjxk+1�x�jj

jjxk�x�jj

! c < 1.

� xk ! x� superlinearly iflim sup jjxk+1�x�jj

jjxk�x�jj

= 0.
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Nonlinear Program (NLP)

minimize f(x)

subject to hj(x) = 0 i = 1:::r

gj(x) � 0 j = 1; :::m

x 2 IRn, f; g; h are sufficiently smooth.
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�KKT conditions

The Lagrangian:

L(x; �; �) = f(x) +

mX
i=1

�ihi(x) +

rX
i=1

�jgj(x)

= f(x) + �Th(x) + �T g(x)

Stationary pointof NLP : A pointx for which there exist� 2 IRm, � 2 IRr such that

rxL(x; �; �) = 0; h(x) = 0; g(z) � 0; (�)T g(z) = 0

KKT theorem: under certain constraint qualification conditions, the solutionx� of

the NLP is a stationary point of the NLP.

The active setof a feasiblex 2 IRn:

A(x) = fjj1 � j � m; gj(x) = 0g
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Steepest Descent Direction for an NLP

Unconstrained Optimization:

d = �rf(x) = argminf
1

2
dTd+rf(x)T dg

Constrained Optimization: d is the solution of the Quadratic Program (QP) with

linearized constraints:

minimize rf(x)T d+ 1
2d

T d
subject to hi(x) +rhi(x)

T d = 0 i = 1; : : : ; r

gj(x) +rgj(x)
T d � 0; j = 1; : : : ;m:

The QP is feasible wheneverx is feasible, regardless of the satisfiability of

first-order conditions.d is unique (if QP is feasible) andd = 0 iff x is a stationary

point of the NLP.

7



'
&

$
%

�
�

�
�

Robinson’s Example

min f(x) = x2
2

subject to h(x) = x6 sin 1
x

� x = 1
�k� , k 2 IN , k 6= 0 are stationary points accumulating to zero.

� The direction of steepest descentd = 0. Thus QG alone will not induce

xk ! x� = 0, even when started arbitrarily close tox�.

� The feasible set needs to satisfy a constraint qualification.

� For steepest descent, the issue of isolated stationary points is fundamental.
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Traditional Constraint Qualifications (KKT holds)

� Linear Independence CQ (LICQ):

rhi(x
�); i = 1; : : : ; r andrgj(x
�); j 2 A(x�)

are linearly independent.�� satisfying KKT is unique.

� Linear Constraint CQ:h(x) andg(x) are linear.

� NLP not satisfying LICQ are calleddegenerate.
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Mangasarian-Fromowitz Constraint Qualification

� Mangasarian Fromowitz CQ (MFCQ):rhj(x�); 1 � j � r are linearly

independent and

9p 2 Rn such that rxhj(x
�)T p = 0; j = 1; : : :m

rxgi(x
�)T p < 0; i 2 A(x�):

� MFCQ holds, The setM(x�) of the multipliers satisfying KKT is bounded.

� Thecritical cone:

C = fu 2 IRnjrhi(x�)Tu = 0; 1 � i � r;

rgi(x
�)Tu � 0; i 2 A(x�); rf(x)Tu = 0g
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�Second-Order Sufficient Conditions

� Traditional SOSC(second-Order Sufficient Conditions) thatx� be a strict local

minimum: LICQ and

uTrxxL(x
�; ��; ��)u > 0; 8u 2 C:

� Relaxed SOSC(in Fiacco): MFCQ and

9(��; ��) 2M(x�); such thatuTrxxL(x
�; ��; ��)u > 0; 8u 2 C:

� Shapiro SOSC: MFCQ and

8u 2 C; 9(��; ��) 2M(x�); such that

uTrxxL(x
�; ��; ��)u > 0:

� Shapiro SOSC, Quadratic Growth and MFCQ !

11



'
&

$
%

�
�

�
�

SOSC for isolated stationary points

� Traditional SOSC ensures it via implicit function theorem, if��A(x�) > 0 (strict

complementarity).

� Robinson SOSC: MFCQ and

8(��; ��) 2M(x�); 8u 2 C uTrxxL(x
�; ��; ��)u > 0:

TheL1 penalty function using the steepest descent direction induces Q-linear

convergence tox� (M).

� Quadratic growth + MFCQ) x� is an isolated stationary point (M)! The

steepest descent direction will not be zero inB(x�; r). Thus linear convergence

may be achievable even in these very general conditions.
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Superlinear Convergence for Traditional SOSC

AssumeA(x�) = f1; : : : ;mg. LICQ and strict complementarity ensure that the

Newton step for the KKT

rL(x; �) = 0; g(x) = 0
is well defined nearx�; ��.

0
@ rxxL(x

k; �k) rg(xk)

rg(xk) 0

1
A

0
@ �x

��
1
A =

0
@ �rxL(x

k; �k)

�g(xk)

1
A =

xk+1 = xk +�x; �k+1 = �k +��

Then(xk�k)! (x�; ��) quadratically.
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Superlinear Convergence for Relaxed SOSC

� Starting with(x; �) near(x�; ��) that satisfies the Relaxed SOSC and strict

complementarity. Then the stabilized Newton method

0
@ rxxL(x

k; �k) rg(xk)

rg(xk) ��k

1
A

0
@ xk+1 � xk

�k+1 � �k
1
A =

0
@ �rxL(x

k; �k)

�g(xk)

1
A =

� Then(xk; �k)! (x�; ��) superlinearly if�k = 
jj(xk; �k)� (x�; ��)jj.

� By Schur Complement and since there exists a positive definite augmented

Lagrangian, the system is nonsingular.

� The method has been extended to cases without strict complementarity, for

stronger second-order conditions of the Lagrangian.
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TheL1 exact penalty function

� For simplicity, only inequality constraints will be considered.

� Need a measure that will balance feasibility and optimality (see Sven’s Filter

SQP). This will measure progress along a given direction.

� TheL1 penalty function

P (x) = maxfg0(x); g1(x); :::gm(x)g:

Hereg0(x) � 0.

� x� is an unconstrained minimum of the penalized objective function

�(x) = f(x) + c�P (x).

� However,�(x) becomes nondifferentiable.
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Descent Directions for�(x)

minimize rf(x)T d+ 1
2d

THd+ c��

subject to gj(x) +rgj(x)
T d � �; j = 0; 1; 2:::m;

� If � is a multiplier,c� = �0 +
Pm

i=1 �i and�0� = 0 (this QP is always feasible).

� If H = I and

c� > 2 +

mX
i=1

��i ; 8�� 2M(x�)

then� = 0 andd is the steepest descent direction. With MFCQM(x�) is

bounded.

� With MFCQ, the feasible set has an interior and the steepest descent QP is

always feasible.
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L1 SQP algorithm nearx�

SQP:Sequential Quadratic Programming.

1. Setk = 0, choosex0.

2. Computedk from

minimize rf(xk)Td+ 1
2d

Td

gj(x
k) +rgj(x
k)T d � 0; j = 1; : : : ;m:

3. Choose�k from a line search procedure, and setx(k+1) = xk + �kdk.

4. Setk = k + 1 and return to Step 2.
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Step size selection

(a) Minimization ruleHere�k is chosen such that

�(xk + �kdk) = min
��0
f�(xk + �dk):g

(b) Limited minimization ruleHere a fixed scalars > 0 is selected, and�k is chosen
such that

�(xk + �kdk) = min

�2[0; s]
f�(xk + �dk)g:

(c) Armijo rule Here fixed scalarss, � , and� with s > 0, � 2 (0; 1), and� 2 (0; 12)

are chosen and we set�k = �mks, wheremk is the first nonnegative integerm for
which

�(xk)� �(xk + �msdk) � ��ms(dk)Tdk:

It can be shown that the Armijo rule yields a stepsize after a finite number of
iterations.
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�Main Theorem

If x� satisfies MFCQ and the Quadratic Growth Condition

f(x) � f(x�) + �jjx� x�jj2; 8x feasible inB(x�; r)

If x0 is sufficiently close tox�, with xk generated by the steepest descent

algorithm with an exactL1 penalty function with sufficiently largec�,

� xk ! x� R-linearly.

� �(xk)! �(x�) Q-linearly.

� x� is an isolated stationary point of the NLP.
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Shapiro SOSC6) Relaxed SOSC

� The example

min z

sbj.to: g0(x; y; z) = (x� 1)2 � 2(y � 1)2 � z � 0

g1(x; y; z) = � 1
2((x� 1)2 + (y � 1)2)

+ 3(x� 1)(y � 1)� z � 0

g2(x; y; z) = �2(x� 1)2 + (y � 1)2 � z � 0

g3(x; y; z) = � 1
2((x� 1)2 + (y � 1)2)

� 3(x� 1)(y � 1)� z � 0:

� Each constraint is obtained from the other by rotating the(x; y) plane with�
4 .
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Example

� At (1; 1; 0), the NLP satisfies satisfies both Quadratic Growth and MFCQ.

� However,

uTrxxL(x
�; ��)u > 0; 8u 2 C:

is not satisfies by any feasible��.

� For this example there will be no locally convex augmented Lagrangian !For

any�� 2M(x�),

rxxL(x
�; ��) +
1

�
rg(x�)rg(x�)T 6� 0
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Lancelot : The Augmented Lagrangian Approach

� The feasible set is represented by

gi(x) + ti = 0; ti � 0 for i = 1; : : : ;m:

� A penalty term (with parameter� ) is added to the objective

min f(x) +
P4

i=1[�i(gi(x) + ti) +
1
�
(gi(x) + ti)
2]

subject to ti � 0; i = 1; : : : ;m:

� Take�, �) getx(�; �) subject to trust-region constraints) update�, �.

� Desired outcome:� bounded bellow and trust region inactive.

� In our example: Inactive trust region) positive semidefinite augmented

Lagrangian) �! 0 (or otherwise would approach one of the solution

augmented Lagrangians)!
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The necessary conditions for Lancelot

r(x;t)(x;t)Lj(x�;0) =0
@ Fxx +

P4
i=1(�iGxx +

2
�
rgi(x
�)rgi(x
�)T ) 2
�
rg(x�)

2
�
rg(x�)T 2
�
I4

1
A

is positive semidefinite on the subspacet = 0, which implies

0 � Fxx +

4X
i=1

(�iGxx +
2

�
rgi(x
�)rgi(x
�)T ) =

0
@

P4
i=1 �iQi 0

0 2
�

1
A

Since�! ��, �! 0. Thus Lagrangian methods lose the advantage of bounded

parameters over barrier approaches.
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Lancelot on our Example

Iteration (New) Penalty Parameter Trust Region Radiusjjjj1
16 1e-2 3.81 e-02

43 1e-4 1.1 e-02

85 1e-6 1.35 e-03

141 1e-8 4.22 e-05

203 1e-10 5.28 e-06

241 1e-12 1.70 e-06

268 1e-14 1.93

283 1e-16 4.41 e02

323 1e-18 2.19 e04

336 STOP

Table 1: Reduction of the penalty parameter� for LANCELOT
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Observed Rate of Convergence for LINF

Iteration �(xk)��(x�)

�(xk+1)��(x�)

4 4.00

9 4.00

14 3.99

19 3.99

24 4.00

27 4.00

Table 2: Rates of convergence for theL1 penalty algorithm
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�Numerical Results

Nonlinear solver jjxfinal � x

�jj2 Iterations Message at termination

DONLP2 1.45e-16 4 Success

FilterSQP 5.26e-09 28 Convergence

LANCELOT 8.65e-07 336 Step size too small

LINF 1.05e-08 28 Step size too small

LOQO 1.60e-07 200 Iteration limit

LOQO 5.50e-07 1000 Iteration limit

MINOS 4.76e-06 27 Point cannot be improved

SNOPT 3.37e-07 3 Optimal Solution Found

Table 3: All tolerances set to 1e-16, except DONLP2

DONLP2< FSQP< LINF < LOQO< SNOPT< LANCELOT < MINOS
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�Numerical runs observations

� Given the differences NLP solvers use as a measure for tolerance, the basis for
comparison was the best achievable outcome (best shot).

� The fact that NLP solvers with augmented Lagrangian perform worse is
somewhat expected, in light of our analysis.

� Note that LINF does only slightly worse than FSQP, though it does not use
second-order information (nor it attempts to estimate it). This also shows that the
problem is not in itself ill-conditioned.

� For FilterSQP, linear convergence was observed.

� For LOQO, increasing the number of iterations limit did not improve the results.

� Tolerances smaller than10�16 may be a problem (LOQO). Some of the
algorithms were well defined for10�20 and the outcomes were almost identical
with the ones for10�16.For tolerances in the range10�12–10�15 similar results
are obtained.
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SQP versus Interior-Point

� If a constraint is added twice, the minimizer (and the central path) of the original
barrierf(x)� � ln(�g1(x))� � ln(�g2(x)) shifts to satisfy

rf(xs(�))�

2�

g1(xs(�))
rg1(xs(�))�

�

g2(xs(�))
rg2(xs(�)) = 0

� However, the steepest descent QP has the same solutiond even though the
constraint is added twice:

minimize rf(x)T d+ 1
2d

Td

subject to gj(x) +rgj(x)
T d � 0; j = 1; 2; 2

� Also, the penalty functionP (x) = maxfg0(x); g1(x); :::gm(x)g is invariant to
adding a constraint twice.

� Since the SQP is invariant to constraint repetition, it is reasonable to expect that
it will be more robust than the interior point approach.
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�Conclusions

� We show that Quadratic Growth and MFCQ induce linear convergence of the

L1 exact penalty method.

� We construct an example for which QG and MFCQ hold, but for which no

locally convex augmented Lagrangian exists.

� We show that the SQP approach is more robust than Lagrangian methods, and

possibly more robust than interior-point methods (for NLP).

� Any extension of these results would require unbounded multipliers, or some

particularity of the constraint functions (convexity).

� TheL1 penalty algorithm is not the answer when ill-conditioning is present

(small maximum curvature on some of the critical cone directions). The problem

of superlinear convergence under these assumptions is open.
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Perturbation Theory

� Under the Traditional SOSC, a locally perturbed NLP will have a unique primal

dual solution(x(p); �(p)), which is Lipschitzian with respect top.

� Under Robinson SOSC, the primal perturbed solution is uniquex(p), and

Lipschitzian with respect to the perturbation. The dual solution is Lipschitzian at

p = 0, jjM(p)�M(x�)jj = O(jjpjj) (as sets).

� Under Shapiro SOSC, the primal perturbed solution is not necessarily unique

and is Lipschitzian atx� (as a set) with respect to the perturbation only for classes

of perturbations (Maurer’s example).

30


