Methods to Model-Check Parallel Systems Software

by

Olga Shumsky Matlin, William McCune, and Ewing Lusk

{matlin, mccune, lusk}@mcs.anl.gov

Mathematics and Computer Science Division

Technical Memorandum No. 261

April 2003

This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38.
Argonne National Laboratory, with facilities in the states of Illinois and Idaho, is owned by the United States Government and operated by The University of Chicago under the provisions of a contract with the Department of Energy.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor The University of Chicago, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Available electronically at http://www.doe.gov/bridge
Available for a processing fee to U.S. Dept. of Energy and its contractors, in paper, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone: (865) 576-8401
fax: (865) 576-5728
email: reports@adonis.osti.gov
Contents

Abstract 1

1 Introduction 1

2 The Multi-Purpose Daemon 2
 2.1 Ring Establishment Algorithm ... 3
 2.2 Barrier Algorithm .. 3

3 Formalization and Verification of MPD with SPIN 4

4 Formalization and Verification of MPD with Otter 6

5 Results and Comparisons 9
 5.1 Comparison of Formalizations .. 9
 5.2 Performance Comparison .. 9
 5.3 A Note on Model Sizes ... 11

6 Summary 11

References 11
Methods to Model-Check Parallel Systems Software

by

Olga Shumsky Matlin, William McCune, and Ewing Lusk

Abstract

We report on an effort to develop methodologies for formal verification of parts of the Multi-Purpose Daemon (MPD) parallel process management system. MPD is a distributed collection of communicating processes. While the individual components of the collection execute simple algorithms, their interaction leads to unexpected errors that are difficult to uncover by conventional means. Two verification approaches are discussed here: the standard model checking approach using the software model checker SPIN and the nonstandard use of a general-purpose first-order resolution-style theorem prover OTTER to conduct the traditional state space exploration. We compare modeling methodology and analyze performance and scalability of the two methods with respect to verification of MPD.

1 Introduction

Reasoning about parallel programs is surprisingly difficult. Even small parallel programs are difficult to write correctly, and an incorrect parallel program is equally difficult to debug, as we experienced while writing the Multi-Purpose Daemon (MPD), a process manager for parallel programs [2, 3]. Despite MPD's smaller size and apparent simplicity, errors have impeded progress toward code in which we have complete confidence. Such a situation motivates us to explore program verification techniques.

MPD is itself a parallel program. Its function is to start the processes of a parallel job in a scalable way, manage input and output, handle faults, provide services to the application, and terminate jobs cleanly. MPD is the sort of process manager needed to run applications that use the standard MPI [15, 16] library for parallelism, although it is not MPI specific. MPD is distributed as part of the portable and publicly available MPICH [5, 6] implementation of MPI.

Our first attempt to use formal verification to ensure correctness of MPD algorithms [14] employed the ACL2 [11] theorem prover, which allows one to both simulate and verify a model within a single environment. Components of the MPD system, as well as the elements of the Unix socket library on which MPD is based, were formalized in a subset of Lisp. The formalization was based on a so-called oracle [17], which allows analysis of a parallel system in a sequential environment. The oracle specifies an execution interleaving of concurrent processes and is randomly generated for simulations. Verification is conducted with respect to an arbitrary oracle (i.e., an arbitrary execution interleaving); thus, a property proved in such a way holds for all possible executions of a collection of concurrent processes. In this approach parsing simulation results, formulating desired properties of models of MPD algorithms and reasoning about such models proved difficult, leading us to abandon this traditional theorem-proving method of verification and to try instead model-checking techniques. Two such techniques are described here.

The first technique employed the model checker SPIN [7, 8], which supports design and verification of asynchronous distributed communicating systems. Models of such systems are recorded in the special high-level verification language PROMELA, which can also be used to state some correctness properties of the models. Additional correctness properties are specified by using linear temporal logic. The verification engine of SPIN is based on on-the-fly reachability analysis with several optimizations and heuristics, such as partial-order reduction and bistate hashing. The system also includes a simulation environment and a graphical user interface. SPIN
has been used in various settings (see [20] for all of the proceedings of the SPIN workshops). Because the dynamic nature of MPD is easily expressible in the SPIN/PROMELA framework, the tool is a natural choice for verification of our system. However, our early experiences with SPIN [12] suggest that the most natural formalization of certain MPD algorithms in PROMELA leads to performance and scalability challenges. While we have since addressed some of these challenges, as described in Section 3, they led us to explore other ways to formalize and model check MPD algorithms.

Specifically, because of considerable in-house theorem-proving expertise, we were led to explore whether a theorem prover can be successfully adapted for our purposes. We have used the general-purpose first-order resolution and paramodulation theorem prover OTTER [13]. While the tool is widely used, its primary application is in proof search, mainly in mathematics and logic. The input language is that of first-order logic. Otter does, however, contain extensions for evaluable terms, which are essential to our unusual use of the theorem prover for state-space exploration.

The remainder of the paper is structured as follows. In Section 2 we describe MPD in more detail and briefly present the algorithms, along with their correctness properties, for which the verification approaches are evaluated. In Sections 3 and 4 we outline formalizations of the MPD algorithms in PROMELA and the input language of OTTER. In Section 5 we compare and analyze concrete results of specific verification experiments. We conclude with a summary in Section 6.

2 The Multi-Purpose Daemon

The MPD system comprises several types of processes. The daemons are persistent (may run for weeks or months at a time, starting many jobs) and are connected in a ring. Manager processes, started by the daemons to control the application processes (clients) of a single parallel job, provide most of the MPD features and are also connected in a ring. A separate set of managers supports an individual process environment for each user process. A console process is an interface between a user and the daemon ring. A representative topology of the MPD system is shown in Figure 1. The vertical solid lines represent connections based on pipes; the remaining solid lines represent connections based on Unix sockets. The dashed and dotted lines are potential or special-purpose connections.

Each of the daemon, manager, and console process types has essentially the same pattern of behavior. This feature important because it allows us to model these processes in a consistent manner. After initialization, the process enters an infinite, mostly idle, loop, implemented by the Unix socket function select. When a message arrives on one of its sockets, the process calls the appropriate message handler routine and reenters the idle select state. The handler does a small amount of processing, creating new sockets or sending messages on existing ones. The logic of the distributed algorithms executed by the system as a whole is contained primarily in
the handlers, and this is where the difficult bugs appear.

In the following we compare the two verification approaches on two algorithms: a daemon-level ring establishment algorithm and a manager-level barrier algorithm. We present an outline of each algorithm and highlights of the modeling approach.

2.1 Ring Establishment Algorithm

Establishment and maintenance of a ring of daemons are central to the operation of MPD. Informally, daemon ring creation proceeds as follows. The initial daemon establishes a listening port to which subsequent connections are made. The daemon connects to its own listening port, creating a ring of one daemon. The listening port of the first daemon and the name of the host processor are queried from the console. The desired number of daemons is then initiated and directed to enter the ring by connecting to the first daemon. Figure 2 shows the result of inserting a new daemon into an existing ring. After the insertion is completed, the old connection between daemons on the right and left of the new daemon is disconnected (shown in the figure by the dashed line). Note that in the special case of insertion into a ring of one daemon, the daemon plays both the left and the right roles.

The algorithm may be viewed as consisting of two parts, each of which may potentially contain errors. One part deals with establishment of listening ports and sockets to enable bidirectional communication between processes. The second part concerns the passage of messages over the established communication links and their handling upon receipt. Correct socket establishment depends to a large degree on the correct implementation of the Unix socket library. The PROMELA and OTTER models described below do not check correctness of this part of the algorithm but rather concentrate on the correctness of passing messages between processes, correctness of message handling, and correctness and consistency of the global system state. Under this partitioning of the algorithm, and assuming that each processor records the identity of its right and left neighbors, the correctness property, stated as a postcondition, can be formulated as follows.

The algorithm is correct for \(i \) daemons when, upon termination of the algorithm, the ring has \(i \) distinct connected components and when, for any processors \(i \) and \(j \) in the ring, if the right neighbor of \(i \) is \(j \), then the left neighbor of \(j \) is \(i \).

2.2 Barrier Algorithm

Parallel programs frequently rely on a barrier mechanism to ensure that all processes of the job reach a certain point (complete initialization, for example) before any are allowed to proceed further. Parallel jobs, that is, programs running on the clients, rely on the manager processes to implement the barrier service. The algorithm proceeds as follows. A manager process is designated as the leader of the algorithm and is given a rank of 0. When the leader reads a request from its client to provide the barrier service, it sends a message \texttt{barrier.in} to its right-hand side neighbor in the ring. When a non-leader manager receives the \texttt{barrier.in} message, its behavior is determined by whether its client has already requested the barrier service. If
the client has done so, the manager forwards the message to the right-hand side manager. Otherwise, it holds the barrier_in message until the request from the client arrives. While the barrier_in message is held, a bit variable holding_barri

er_in is set. Once the barrier_in message traverses the entire manager ring and arrives back in the leader, meaning that each client has reached the barrier and notified its manager, the leader sends a barrier_out message around the ring. When a manager receives the barrier_out message, it notifies its client to proceed past the barrier. The leader can be either the first or the last manager to allow its client to proceed.

The barrier algorithm, as the ring establishment algorithm, can be viewed as consisting of two parts: socket handling and message handling. Here, however, the socket handling portion of the algorithm is largely unimportant to the verification effort, since the communication paths between processes are completely established before the algorithm begins execution. The socket portion may become important in future verification efforts that concentrate on interaction of MPD algorithms and examine the barrier algorithm in conjunction with an algorithm that manages — that is, establishes, breaks down, or restores after a fault — connections between processes.

Two correctness properties, a postcondition and an invariant, are verified for the barrier algorithm. The postcondition property is that all clients have been released from the barrier. The invariant demands that no client be released until every client has reached the barrier, that is, every client has requested the barrier service from its manager.

3 Formalization and Verification of MPD with SPIN

To formalize an MPD algorithm in Promela, the modeling language of SPIN, one has to make three related decisions: what variables need be defined globally and locally to record the necessary information during the execution of the algorithm, how to model the communication network, and whether and how to model the Unix socket functions. When considered together, the three modeling decisions determine how abstract the resulting model will be.

The original approach [12] to model checking MPD algorithms with SPIN produced models that were too literal, meaning that the Promela modeling language was used in a way that closely resembled C. The motivation for such an approach was to enable automated extraction of executable C code from verified Promela models. As a consequence of such a modeling methodology it was possible to formalize within a single model both the socket-handling and the message-handling portions of the MPD algorithms. Unfortunately, another consequence of the approach was poor verification performance. We were able to verify the ring establishment algorithm on only a few (less than five) daemons, far short of the desired goal to verify models with ten to twenty processors (see Section 5.3 for discussion of why verifying models of this size would be interesting). During verification attempts on larger models, the number of states in the search space was so large that SPIN ran out of nearly 1 GB of available memory. The current formalization approach produces more abstract models, which enables verification to complete within the constraints of available memory on larger models, but at the expense of not considering correctness of the socket-handling portion of the algorithms.

Components of the MPD system map naturally to predefined Promela entities: a proctype is defined for each different MPD process type; individual daemons, manager, console, and client processes correspond to active instances of the corresponding proctypes; sockets map to channels; and messages that are read and written over the sockets correspond to messages traveling on the channels. The functionality of the Unix select [21] is implemented by the nondeterministic do construct: when a message arrives in the input queue of a process instance, the appropriate guard of the do construct triggers its handling; in the absence of new messages in the input queue, the instance is blocked.
The distinguishing characteristic of the PROMELA model of the barrier algorithm is that the clients are not represented by separate process instances. To do otherwise would waste of precious memory. In SPIN, each process instance requires a certain amount of space in the description of the entire system state, otherwise known as the state vector. The functionality of a client is to send a request message to its manager and then wait for a reply. Both these actions can be adequately modeled by binary variables, \texttt{client_barrier_in} and \texttt{client_barrier_out}, per manager process. We note that the algorithm depends on the fact that a manager records whether it has already received a barrier request from its client, so one of these variables is present in the model regardless of how clients are formalized. Omission of clients reduces the complexity of the model and the size of the state vector in another way: communication links between managers and clients are not necessary. Connections between managers are the only communication links that have to be modeled. To this end we define a global vector of \(N \) channels, where \(N \) is the number of managers in the model. Each manager process has local pointers, \texttt{left} and \texttt{right}, to the appropriate channels in the global array. To manage the bit variables, we rely on an implementation of bit arrays by Ruys \cite{18}, which defines the \texttt{IS} and \texttt{SET} macros. The formalization ensures that the handler of a barrier request message from the client is executed only once. The use of the \texttt{do} construct ensures that all messages that arrive at the manager have equal precedence and can be handled in any order. We show a partial PROMELA model of the barrier algorithm:

```
end_select:
  do
    :: IS (client_barrier_in, _pid) ->
      SET (client_barrier_in, _pid);
      /* remainder of client request handling */
    :: left?barrier_in ->
      /* barrier_in handling */
    :: left?barrier_out ->
      /* remainder barrier_out handling */
      SET (client_barrier_out, _pid);
      if
        :: _pid = 0 -> skip
        :: else -> right?barrier_out
      fi;
  od;
```

The socket-based communication network presented the most challenges in the formalization of the ring establishment algorithm. Unlike the static topology of the communication links in the barrier algorithm, the topology of connections in the ring algorithm is dynamic. As daemons enter the ring, new connections are established, and the old ones are broken down, as illustrated in Figure 2. In addition, because all execution interleavings are exhaustively considered during the model search, the network has to be set up so that any two processes can communicate with each other. Numerous different formalizations of the communication network were tried in our effort to verify a model of meaningful size. In particular, we tried the bus and matrix of channels formalizations, as suggested in \cite{19}.

Our experiments showed that, with respect to verification, the best approach to modeling the communication network of the ring establishment algorithm depends on a vector of global channels. Each daemon process owns a channel, which serves as an input queue for any messages addressed to that process. In order to further reduce complexity, as suggested by SPIN's documentation, each daemon retains exclusive rights, by using the \texttt{xx} designation, to read from its owned channel. In this approach, illustrated in Figure 3, a single input queue is used by a node to receive messages from all nodes, but different queues are used to send messages addressed
to different nodes. We find it interesting that this approach is explicitly advised against in the
SPIN help file: to reduce complexity, the documentation suggests one “avoid sharing channels
between multiple receivers or multiple senders.” This approach nonetheless succeeds in our
model because, while the network is set up to allow sharing channels between multiple senders,
most communications take place between distinct pairs of daemons, so channel sharing very
rarely occurs during exploration of a single execution path. Thus, the complexity of the model
is not adversely affected.

4 Formalization and Verification of MPD with Otter

Otter [13] is an automated theorem-proving system for first-order logic with equality. Most
successful applications of Otter have been in abstract algebra and logic, and its strength is the
ability to quickly explore large search spaces. It can efficiently manage large sets of formulas
(hundreds of thousands), which allows it to automatically prove many difficult theorems.

Otter’s basic operations are (1) to apply various inference rules to formulas, (2) to apply
rewrite rules to inferred formulas, and (3) to determine whether newly inferred formulas are
already in the database of formulas. These operations can be applied to state space searches as
well as to the heuristic searches used in traditional automated theorem proving.

Program verification is a nonstandard application of Otter. Fortunately, Otter’s lan-
guage, data structures, and operations allow reasonably intuitive and efficient implementations
of model checking by state space search. One of the languages Otter accepts is a sequent
language with which we can write rules, assertions, and goals as follows.

\[\text{hypothesis}_1, \ldots, \text{hypothesis}_n \rightarrow \text{conclusion} \]
\[\rightarrow \text{assertion} \]
\[\rightarrow \text{goal} \rightarrow \]

Given an input consisting of statements of this type, Otter can apply the rules to the assertions,
generating new assertions, and so on, until it derives one of the goals or until reaches a fixed
point (i.e., runs out of things to do). All of the assertions (initial and derived) are stored in the
database.

A feature of Otter that allows it to conduct an efficient state-space search is the ability
evaluate hypotheses by rewriting, as well as to match the hypotheses with assertions. For ex-
ample, the hypotheses \(X == 3 \), where \(X \) is instantiated by a preceding hypothesis, is evaluated
to a Boolean value. The rewrite mechanism includes a simple but general equational program-
ing language so that the evaluable hypotheses can be arbitrary function calls. In addition, the
conclusion of the rule can have function calls to transform the result.

One can use this mechanism to implement a state space search in a straightforward way.
The initial states are initial assertions (usually there is just one), say,

\[\rightarrow \text{State}(s_0) \]
where \(s_0 \) is a data structure representing the initial state. The rules take states to successor states,

\[
\text{State}(S), P(S) \rightarrow \text{State}(f(S)),
\]

where \(P(S) \) are evaluable hypotheses specifying the states to which the rule applies, and \(f(S) \) generates the successor state.

When applying this method to model-checking concurrent computations, one frequently needs the hypothesis “Let \(N \) be an arbitrary process.” To implement this capability, we include initial assertions giving the set of process IDs, say, for a three-processor simulation,

\[
\rightarrow \text{PID}(0).
\]

\[
\rightarrow \text{PID}(1).
\]

\[
\rightarrow \text{PID}(2).
\]

Then, the rules can be given as

\[
\text{State}(S), \text{PID}(N), P(S,N) \rightarrow \text{State}(f(S,N)).
\]

In its basic form, the OTTER search mechanism is designed to be complete; that is, if a conjecture is a theorem, then OTTER will eventually find a proof. (In the practice of traditional automated theorem proving, restrictions are frequently imposed by the user, resulting in incomplete search procedures.) In the context of state space search, this completeness means that (given enough time and memory) all states that can be reached from the initial states will eventually be derived and stored by OTTER.

To determine whether an illegal state can be reached, one can include a rule such as

\[
\text{State}(S), P(S) \rightarrow \text{Bad State}(S)
\]

and the goal

\[
\text{Bad State}(S) \rightarrow \text{~}
\]

with the effect that if any illegal state is derived, OTTER will report it and print the path of states from an initial state to the illegal one. From OTTER’s point of view, it has simply found and printed a proof of a goal. From the point of view of verification, the path of states represents an erroneous execution scenario. The Otter proof of the reachability of an illegal state can be examined to determine which state transition rule leads to the error. If OTTER reaches a fixed point without deriving an illegal state, the terminal states or the entire state space can be examined and processed by the user or by another system.

We show a partial three-element OTTER model of the barrier algorithm:

\[
\% \text{ available managers}
\rightarrow \text{PID}(0).
\rightarrow \text{PID}(1).
\rightarrow \text{PID}(2).
\]

\[
\% \text{ initial state}
\rightarrow \text{State}((S,0,0,0,\text{□}), (S,0,0,0,\text{□}), (S,0,0,0,\text{□})).
\]

\[
\% \text{ state transition rules}
\text{State}(S), \text{PID}(X), X \equiv 0, \text{TRUE} (\text{barrier_out_arrived}(S,X)) \rightarrow
\text{State} (\text{assign_client_return} (\text{receive_message}(S,X),X,1))
\]
State(S), PID(X), X ! = 0, $TRUE(barrier_out_arrived(S,X))$ ->
State(assign_client_return(send_message
 (receive_message(S,X), next(X), barrier_out), X, 1)).

% evaluable functions
-> barrier_out_arrived([], I) = false.
-> barrier_out_arrived([PS(CLI_IN, CLI_OUT, MSG, Q) | T], I) =
 $IF(I == 0,$
 first(Q) == barrier_out,
 barrier_out_arrived(T, I - 1)).

-> assign_client_return([], I, V) = [].
-> assign_client_return([PS(CLI_IN, CLI_OUT, MSG, Q) | T], I, V) =
 $IF(I == 0,$
 [PS(CLI_IN, V, MSG, Q) | T],
 [PS(CLI_IN, CLI_OUT, MSG, Q) | assign_client_return(T, I - 1, V))].

-> dequeue([]) = [].
-> dequeue([H | T]) = T.

-> receive_message([], I) = [].
-> receive_message([PS(CLI_IN, CLI_OUT, MSG, Q) | T], I) =
 $IF(I == 0,$
 [PS(CLI_IN, CLI_OUT, MSG, dequeue(Q)) | T],
 [PS(CLI_IN, CLI_OUT, MSG, Q) | receive_message(T, I - 1)]).

The model is based on the same simplification as the Promela model of the algorithm: clients are not explicitly represented. A valid system state consists of three process states. Each process state PS is a 4-tuple, whose every element implicitly corresponds to one of the variables used by the algorithm or the input queue. In this model the process state template is

PS[client_barrier_in, client_barrier_out, holding barrier_in, input_queue].

In the initial state of each process, every variable has a zero value, and the input queue is empty. The two transition rules correspond to the handling operations for the barrier_out message, as also shown in the Promela model above. The rules are applicable when the client barrier requests have been received by all processes, that is, the client_barrier_in bit has been set by every process, any holding_barrier_in bits that might have been set are again reset. In this formalization, the manager with rank 0 is the last to release its client, so the state of the system to which the first of the two state transition rules applies is

(PS[1, 0, 0, (barrier_out)],
 PS[1, 1, 0, []],
 PS[1, 1, 0, []]),

and the result of the application of the rule, including evaluation of the functions assign_client_return to assign the value of the client_barrier_out bit and receive_message to remove a message from the input queue, is the overall system state

(PS[1, 1, 0, []],
 PS[1, 1, 0, []],
 PS[1, 1, 0, []]).
Formalization of MPD algorithms in the sequent language of OTTER is similar to formalizations in the input language of the Murő model checker, especially as presented in the simplified form in [9]. Similarities are most evident in the definition of state transition rules.

5 Results and Comparisons

At this point in the project, the goal is to discover whether existing tools and methodologies can be used for verification of MPD algorithms. We are also interested in developing formalization techniques that simultaneously produce models abstract enough to allow us to verify models of meaningful size and detailed enough to enable automated model construction and code generation. We apply verification approaches to MPD algorithms that have been developed some time ago, and are well understood and well debugged. That is, bug hunting is currently only a secondary goal. (We have nonetheless found a minor error in the ring insertion algorithm using the literal formalization of our earlier approach to using SPIN.) Rather, we are interested in developing an arsenal of verification techniques to use for the analysis of the recent and future MPD algorithms. Therefore, criteria for evaluation of verification methods include the ease of modeling, correlation of the model to the design and/or implementation of the MPD algorithm, and verification performance.

5.1 Comparison of Formalizations

The SPIN/PROMELA approach is the more natural one for the MPD application, but the Otter approach does offer some, albeit possibly subjective, advantages.

SPIN and its input language PROMELA are specifically developed for verification of concurrent communicating processes. Therefore, the language and the tool include special built-in constructs and algorithms for message handling, communication path definition, and variable declaration and manipulation. As a result, there is a natural mapping between MPD components and PROMELA entities. By contrast, OTTER, as a general-purpose tool, has to be programmed from scratch to handle these common operations of MPD algorithms. Although, once constructed, this auxiliary portion of the OTTER model can be reused, the SPIN models are much more concise, as demonstrated by the model extracts above.

From our point of view, the ability to model an algorithm as a set of state transition rules is the main advantage of the OTTER approach. The set of rules, which is the main component of the OTTER model, can be easily extracted from a flow chart representation of the MPD algorithms or from other notations typically used in the early stages of algorithm design. Construction of PROMELA models looks and feels much more like constructing another implementation of the algorithm, only using a language much less powerful than C or Python, which are used for actual implementations. Furthermore, all intermediate states produced by the OTTER search are transparent to the user and can be examined. Such examination is not possible in SPIN and may be a limitation when trying to understand a particularly complicated error trace.

Correctness properties of OTTER models of MPD algorithms have to be formulated within the confines of first-order logic. SPIN, on the other hand, allows one to record correctness properties in linear temporal logic. Although we have not yet encountered a situation where limitations of first-order logic prevented us from stating the desired correctness property, such a situation is conceivable and may prove a disqualifying drawback of the OTTER approach.

5.2 Performance Comparison

All verification runs were conducted on a 933 MHz Pentium III processor with 970 MB of usable RAM. We used default SPIN settings for all verification attempts, except when we increased the memory limit to allow the search to complete. In cases where verification did not complete with
Table 1: Verification statistics

<table>
<thead>
<tr>
<th>Problem</th>
<th>Method</th>
<th>Model Size</th>
<th>Time (s)</th>
<th>Memory (MB)</th>
<th>States Stored</th>
<th>States Matched</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unordered ring</td>
<td>Otter 7</td>
<td>3079.08</td>
<td>391</td>
<td>7.83655e+06</td>
<td>1.908330e+06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spin 7</td>
<td>30.32</td>
<td>375</td>
<td>2.27008e+06</td>
<td>1.908333e+06</td>
<td></td>
</tr>
<tr>
<td>Ordered ring</td>
<td>Otter 14</td>
<td>15676</td>
<td>561</td>
<td>1.028351e+06</td>
<td>6.318042e+06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spin 14</td>
<td>263.68</td>
<td>734</td>
<td>6.50332e+06</td>
<td>8.66146e+06</td>
<td></td>
</tr>
<tr>
<td>Barrier</td>
<td>Otter 19</td>
<td>270.82</td>
<td>512</td>
<td>1.048533e+06</td>
<td>8.912898e+06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spin 21</td>
<td>20.45</td>
<td>746</td>
<td>8.38865e+06</td>
<td>8.38861e+06</td>
<td></td>
</tr>
</tbody>
</table>

default parameters within physical memory limits, verification with compression (using SPIN’s -DOOMAIN compile-time directive) was performed. The input files for the OTTER experiments included settings to optimize the state space exploration. Some default flags that are usually needed in standard OTTER experiments but irrelevant for our application were turned off.

Table 1 shows performance statistics of applying SPIN and OTTER to three problems. Two problems are variants of the ring insertion algorithm. In both versions the first daemon establishes a singleton ring. In the unordered version the subsequent daemons may enter the ring in any order, resulting in many possible final topologies with respect to the relative position of the processors in the ring, and hence a much greater state search space and poorer verification performance. In the ordered version, the order in which the processes enter the ring is fixed, resulting in a single possible final topology. In essence, the difference between the two versions is that in the unordered case the daemons are numbered before they begin to enter the ring, whereas in the ordered case they are numbered after they have done so. As a result, in the ordered case, the processor that enters the ring first is always numbered with one, the processor that is second, with two, and so on. Because the algorithm is independent of the identities of the processors, the ordered version is less complex.

Table 1 shows statistics for the largest model sizes on which a particular verification approach succeeded. On complex algorithms, such as ring insertion, OTTER matches SPIN with respect to the largest verifiable model. In terms of speed and memory usage per examined state, OTTER is far behind SPIN. This result is not surprising because SPIN is a special-purpose tool, specifically designed for applications like ours, while our use of OTTER is unusual in this case. In fact, the performance of OTTER far exceeded our expectations.

OTTER could not verify models of as many processors as SPIN could for the barrier algorithm. The explanation for such a difference in performance lies in the way states are represented in each method. In SPIN, the three local variables that contribute to individual process states are bits, and the communications channels are essentially arrays of bits, which allows SPIN to store state vectors very efficiently. In addition, in the SPIN verification run on a model of twenty-one processors, state vectors were compressed, resulting in further improved performance. In OTTER, the variables and the input queue are terms, which are not stored as efficiently as bits. Thus, OTTER requires much more memory to store an individual system state. As a result, OTTER is able to examine much smaller state spaces.

The OTTER search engine is not optimized for the kind of search that takes place in this application. It is therefore not surprising that verification with OTTER is several times slower than with SPIN. But, since memory, not time, is the main limitation in this application specifically and in model checking in general, the speed of verification is only of minor concern.
5.3 A Note on Model Sizes

Scalability was one of the design goals of MPD. The daemon is intended to run on hundreds, and eventually on thousands, of processors. Unexpected limitations of the underlying operating systems aside, it is assumed that the same algorithms that execute successfully in a daemon of just a few processors will execute smoothly in a much larger system. Given the current state of the model-checking technology, it is impossible to formally verify the algorithms of MPD on very large models sizes, even if it were desirable to do so. Luckily, the empirical evidence obtained while debugging the MPD code using the traditional means suggests that the errors, even the most difficult and obscure ones, exhibit themselves in daemons of just a few processors. It also appears to be an accepted view of the model-checking community that to verify systems with unbounded potential number of elements, it is sufficient to verify a limited (with respect to the number of elements) model of the system [1, 4, 10].

Our goal is to devise a verification approach and a modeling methodology that allows us to verify complex MPD algorithms and interactions of these algorithms on models of ten to twenty daemons. For example, MPD contains an algorithm that merges two daemons that are running parallel jobs. We want to verify the algorithm on a meaningful model consisting of two MPD structures, as shown in Figure 1, each having a console process and three of each of daemon, manager, and client processes.

6 Summary

We described here two approaches to verification of the algorithms of the parallel process management system called MPD. One approach is based on the software model checker SPIN, the other on the general-purpose first-order theorem prover OTTER. Both approaches are based on model checking, and the use of OTTER in the model checking capacity is unusual. The aim was to model algorithms of MPD in both the SPIN and the OTTER approaches so as to enable verification of the largest possible model.

The two approaches were compared with respect to the ease of formalization and verification performance characteristics. Overall, SPIN is more efficient in terms of absolute time and memory requirements and relative time and memory requirements per stored system state. In terms of the size of models that each approach allows us to verify, both tools perform roughly the same, with SPIN occasionally demonstrating better performance. Neither approach allows us to verify complicated algorithms on models of about twenty daemons, which is our goal. In terms of formalization methodology, the two approaches are too different to compare, and both exhibit advantages and disadvantages.

The main goal of this technical note is to document the current approach to modeling MPD in PROMELA, and to describe how OTTER can be used to simulate model-checking style search. We have been applying model checking techniques to MPD algorithms that have been under development and testing for some time. Consequently, it should come as no surprise that no errors have been discovered. Even though the current modeling methodologies limit verification to models of only a few entities, applying them to new MPD algorithms could still be beneficial.

For further details the reader is referred to the complete models of the presented algorithms. This information is available at http://www.mcs.anl.gov/~matlin/spin-mpd.

References

