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Subspace Projected Approximate Matrix: SPAM
Method

• Subspace iterative solution to eigenvalue, linear, and nonlinear problems
e.g. eigenvalue problem  (H – λj )vj = 0

• Subspace iterative solutions have form vj = Xn cj
where: Xn = x1,x2,…,xn

• cj is solved in a subspace: Hn cj = λn
j cj

where: Hn = (Wn)T Xn

where: Wn = H Xn <---for N>>n, where all the work is

• New xn+1 vector from residual: rn+1 = (Wn-λn
j Xn)cj

• SPAM gives more accurate or faster converging way to get rn+1 in 3 steps
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Step 1: Assemble and apply Projections Operators on current vector

Pn rn+1 (=Xn[Xn]T rn+1) Qn rn+1 (= rn+1 - Pn rn+1)

where
n trial vectors n+1 trial vector  exact         matrix-vector         subspace

(already processed) rn+1 matrix            product          matrix
(Xn) 

Subspace Projected Approximate Matrix: SPAM
Method

=

=

= == -
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Subspace Projected Approximate Matrix: SPAM
Method

+

Step 2: Decomposition and Approximation of H rn+1

Hv = (Pn+Qn) H (Pn+Qn) rn+1

cheap subspace operations expensive full space
operation

+ +=

+

cheap approximation
to full matrix

+ +~

Step 3: Solve approximate subspace problem
- solution is rn+1
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Subspace Projected Approximate Matrix: SPAM
Method

SPAM properties (broad view):

Relation to other subspace methods (e.g., Davidson)
– More flexible (sequence of approx. matrices - no sequence => SPAM= Davidson)
– If iteration tolerances are correct, always no worse than Davidson 

Relation to multigrid methods
– SPAM sequences of approx. matrices ~ multigrid sequences of approx. grids
– Subspace method => solution vector composed of multiple vectors 

Multigrid methods => single solution vector that is updated

Relation to preconditioned conjugate gradient (PCG) methods
– SPAM has multiple approximations always improving by projection

PCG has a fixed single preconditioner

Deep injection of physical insight into numerics
– Application experts can design physical approximation sequences
– SPAM maps approximation sequences onto numerics sequences
– Projection operators continually improve the approximations

=> coarse approximations can still be numerically useful
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Outline of the Davidson Method
Generate an initial vector x1
MAINLOOP: DO n =1
Compute and save wn = Hxn
Compute the n-th row and column of 〈H〉:  

〈H〉1:n,n = wn
T X[n]

Compute the subspace eigenvector and 
value: (〈H〉 – ρ)c = 0

Compute the residual:  r=W1:nc1:n – ρ 
X1:nc1:n

Check for convergence using |r|, c, ρ, etc. 
IF (converged) THEN 
EXIT MAINLOOP
ELSE
Generate a new expansion vector xn+1 from 

r, ρ, v=Xc, etc. 
ENDIF
ENDDO MAINLOOP

Outline of the SPAM Method
Generate an initial vector x1
Set wtype1=1  ! Start the iterations with 

approximate products
Set n0=0; n=1
MAINLOOP: DO 
Compute and save wn = H(wtypen, n0) xn
Compute the n-th row and column of 〈H〉:  〈H〉1:n,n

= wn
T X[n]

Compute the subspace eigenvector and value: (〈H〉
– ρ)c = 0

Compute the residual:  r=W1:nc1:n – ρ X1:nc1:n
Check for convergence using |r|, c, ρ, etc. 
IF (converged .AND. wtypen.EQ.0) then 
EXIT MAINLOOP ! Final convergence is 

achieved
ELSEIF (converged .AND. wtypen≠0) then
Contract 
Set n=n0+1; n0= n1
Set wtypen=0  !  The next product will be exact
ELSE
Set n←n+1
Generate a new expansion vector xn from r, ρ, 

v=Xc, etc. 
Set wtypen =1  !  The next product will be 

approximate
ENDIF
ENDDO MAINLOOP
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Subspace iterative solution to eigenvalue problem:
(H – λj )vj = 0

subspace iterative solutions have form vj = Xn cj
n

v1,j 
v2,j 
 • 
 •

N =

x11 
x12 
 • 
 •

x22 
x22 
 • 
 •

•       •   
•       •

c1,j 
c2,j 
 • 
 •

where: Xn = x1,x2,…,xn
cj is solved in a subspace: Hn cj = λnj cj
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That subspace Hn is of the form:

where:

Xn

Hn = (Wn)T

Xn
=Wn H
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For N>>n, work/iteration = H xn

New x vector from residual: xn+1 = (Wn-λnj Xn)cj
SPAM gives better way to get xn+1 via 4 steps:

• Define Projection Operators P and Q:
Pn = Xn ((Xn)T Xn)-1 (Xn)T

= Xn (Xn)T with orthonormal basis vectors,
Qn = (1–Pn)

P v = the Xn components of v
Q v = the part of v that is not spanned by Xn

• Decomposition of H with P and Q:
H = (Pn+Qn) H (Pn+Qn)

= PnHPn+ PnHQn+QnHPn+QnHQn
= Xn Hn(Xn)T + Xn(Wn)TQn + QnWn(Xn)T + QnHQn

blue => cheap subspace operations
red => expensive matrix vector multiply

• Approximate QnHQn with cheap approximate H(1):
H1 = XnHn(Xn)T+Xn(Wn)TQn+QnWn(Xn)T + QnH(1)Qn

• Iteratively solve for xn+1:
xn+1 = wj where (H1 – εj )wj = 0
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What might H(1) be?

Anything to make matrix vector multiplies cheaper

• Sparser
• Smaller underlying basis
• Lower-order expansion of matrix elements
• Coarser underlying grid 
• Lower-order difference equation
• Tensor-product approximation 
• Operator approximation 

SPAM has great properties:

• projection operators => convergence from any H(1)
• multi-level SPAM with dynamic tolerances

QnHQn approximated by QnH(1)Qn
QnH(1)Qn approximated by QnH(2)Qn

QnH(2)Qn approximated by QnH(3)Qn…
• tens of lines of additional code to existing iterative subspace eigensolver
• applicable to any subspace problem (linearsolves?)
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SPAM Example 1:

Banded Matrix:

H characterized by:
N = matrix dimension
∆ = off diagonal "increment"
W0 = width of band

H(i) has Wi < Wi-1

 

1 ∆ ∆2 0
∆ 2 ∆ O
∆2 ∆ 3 O
0 O O O

 

 

 
 
 
 
 

 

 

 
 
 
 
  
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Banded Matrix

(N=10,000, ²=0.75,W
i
=2 6-i , i = 0,..,3)
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Tensor-Product Convergence Results for Multiple Eigenvectors

Method
m=8 m=10

nm

ax

Nproduct Effort nm

ax

Nproduct Effort

DPR

One vector at a time 40 [203] 1.000 26 [145] 1.000

Simultaneous/lowest 82 [82] 1.000 99 [99] 1.000

Simultaneous/cycle 94 [94] 1.000 94 [94] 1.000

Simultaneous/largest |r | 95 [95] 1.000 93 [93] 1.000

SPAM+DPR µ=4.9⋅10
-4

µ=1.0⋅10
-5

One vector at a time 42 [20,164
]

0.099 26 [20,13
2]

0.138

Simultaneous/lowest 83 [19,87] 0.232 99 [20,10
4]

0.202

Simultaneous/cycle 86 [19,90] 0.203 94 [20,10
1]

0.213

Simultaneous/largest |r | 95 [19,99] 0.201 94 [20,99] 0.215

SPAM+IIGD µ=2.0⋅10
-3

µ=4.0⋅10
-5

One vector at a time 11 [20,20] 0.099 11 [20,20] 0.138

Simultaneous/lowest 20 [19,21] 0.232 20 [20,21] 0.202

Simultaneous/cycle 20 [19,21] 0.203 20 [20,21] 0.213

Simultaneous/largest |r | 20 [19,21] 0.200 20 [20,21] 0.215

Convergence summaries of the lowest 10 roots of the m=8 and m=10 perturbed-tensor-product matrices described in the text.  The initial vectors 
in all cases are the eigenvectors of the tensor-product matrices, which were computed as tensor-products of the eigenvectors of the 4x4 
component matrices.  The matrix-vector product counts are the totals for all 10 roots.  For the m=8 calculations, N=65,536, β=10, and |rj|<10–1.  
For the m=10 calculations, N=1,048,576, β=100, and |rj|<100.
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How Fast Do Molecules React?
MPP Simulation of Exact Cumulative Reaction 
Probabilities

• Combustion modeling requires accurate determination of rate constants which are 

approximated by statistical simulation techniques.  Exact calculations of rate 
constants can be obtained from Cumulative Reaction Probabilities (CRP), however 
this can be done for only a few degrees of freedom (DOF) problems.  Initial 
computational results suggest that the statistical methods may increasing differ with 
exact calculations as DOF increases.  Larger problems (up to 10 DOF) can be 
addressed only via MPP calculations.  (This work is a collaborative project in 
chemical kinetics modeling (ANL/CHM) and massively parallel simulation 
(ANL/MCS).

• CRP simulation involves calculation of a few eigenvalues of the in an outer 
iteration with an inner iteration evaluation of a Greens function dealing the solution of 
two Hamiltonian (linear) systems.

• PETSc provides the capability to develop rapid-prototyping for the MPP software 
development of CRP simulations and an software environment for developing novel 
preconditioners for these and other linear systems and iterative eigenvalue solvers.
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Advanced Software for the Calculation of 
Thermochemistry, Kinetics and Dynamics
Parallelization of Cumulative Reaction Probabilities 

Cumulative Reaction Probabilities (CRP)
- computational core of reaction rate constants
- exact computation computational intensive
- approximate computation underlies 
all major reaction rate theories in use

=> efficient exact CRP code will
- give exact rates (if the computed forces are accurate)
- calibrate ubiquitous approximate rate methods

– Time Independent (Miller and Manthe, 1994, and others)

Highly parallel approaches to both methods being pursued
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Parallelization of Cumulative Reaction Probabilities 
Time Independent Approach

• N(E) = Σk pk(E,J)
where pk(E,J) = eigenvalues of Probability Operator:

P(E) = 4 εr
1/2 (H+iε-E)-1 εp (H-iε-E)-1 εr

1/2

where iεx = absorbing diagonal potentials
= imaginary potentials

H = hamiltonian (differential operator)
=> for realistic problems

size ~105x105 or much larger
number of eigenvalues < 100

• iterative approach
macrocycle of iteration for eigenvalue
microcycle of iteration for

action of Green’s function (H-iε-E)-1

=> linear solve

Action 
of 

1st Green's Fcn 
on 

current vector

Action 
of  

2nd Green's Fcn 
on 

current vector

Eigenvalue 
Cycle
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Parallelization of Cumulative Reaction Probabilities 
Time Independent Approach

• Code built on PETSc (http://www.mcs.anl.gov/petsc) -> TOPS

• PETSc: data structure, GMRES linear solve, preconditioners
USER: Lanczos method for eigensolve

• Future: user supplied preconditioners

Computation and Communication Kernels
MPI, MPI-IO, BLAS, LAPACK

Profiling Interface

PETSc PDE Application Codes

Object-Oriented
Matrices, Vectors, Indices

Grid
Management

Linear Solvers
Preconditioners + Krylov Methods

Nonlinear Solvers,
Unconstrained Minimization

ODE Integrators Visualization

Interface

http://www.mcs.anl.gov/petsc
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Chemical Dynamics Theory
3 angles, 3 stretches
6 degrees of freedom
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Chemical Dynamics Theory
Probability Operator and It’s Inverse
– Using probability method calculates a few large 

eigenvalues via iterative methods.  The iterative 
evaluation involves the action of two Green’s function.

– Using inverse probability method involves a direct 
calculation each iteration to obtain a few smallest 
eigenvalues.  At each iteration the action of a vector by 
the Green’s function is required.  This leads to solving 
linear systems involving the Hamiltonian.
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Parallelization of Cumulative Reaction Probabilities 
Time Independent Approach

Performance:

-model problem
- Optional number of dimensions
• Eckhart potential along rxn coord.
• parabolic potential perpendicular
to reaction coord.

- DVR representation of H

-Algorithm options
- Diagonal preconditioner
- other PETSc preconditioners slower

for this problem
-Computers

- NERSC SP
- others include SGI Power Chanllenge,
Cray T3E 100
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Parallelization of Cumulative Reaction Probabilities 
Time Independent Approach

Future Preconditioners:
• SPAM (see next poster) great scales

Exact H performance poorly
- storage
- banded

matrix
inversion

• Sparse optimal similarity transforms 

IF Q =                         THEN find optimal Q such that QHQT =
optimal block diagonal ->

10-3

10-2

10-1

100

101

102

103

100 101 102

Ti
m

e/
ei

ge
nv

al
ue

 
re

la
tiv

e 
to

 d
ia

go
na

l p
re

co
nd

iti
on

er

Half Band Width

#m
ic

ro
/m

ac
ro

2D

2D

3D

3D
4D

4D

failed to converge

fat band
precond.

SPAM
precond.

can SPAM get scalable performance?



23
CMCIM02

Combustion Kinetics
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Parallel computing 
dramatically lowers 
time-to-solution for 
rate constants 

ANL software 
libraries (PETSc) 
important

Parallel computing 
is only way to solve 
large problem:  
more processors => 
larger problems 
Results obtained on 
NERSC IBM/SP.
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Extrapolated Storage 
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0.01

0.1

1

10

100

1000

104

1 10

Storage Required for F=3.5 Cutoff, .32ev
 (3% Accuracy)

Matrix Size (MW ords)
Extrapolation Curve

M
at

ri
x 

S
iz

e 
(M

W
or

ds
)

Dimension


	Subspace Projected Approximate Matrix The SPAM MethodM. Minkoff, R. Shepard, A. Wagner
	Subspace Projected Approximate Matrix: SPAM Method
	Subspace Projected Approximate Matrix: SPAM Method
	Subspace Projected Approximate Matrix: SPAM Method
	Subspace Projected Approximate Matrix: SPAM Method
	How Fast Do Molecules React? MPP Simulation of Exact Cumulative Reaction Probabilities
	Advanced Software for the Calculation of Thermochemistry, Kinetics and DynamicsParallelization of Cumulative Reaction Probabi
	Parallelization of Cumulative Reaction Probabilities Time Independent Approach
	Parallelization of Cumulative Reaction Probabilities Time Independent Approach
	Chemical Dynamics Theory3 angles, 3 stretches6 degrees of freedom
	Chemical Dynamics Theory
	Parallelization of Cumulative Reaction Probabilities Time Independent Approach
	Parallelization of Cumulative Reaction Probabilities Time Independent Approach
	Combustion Kinetics

