The Portable Extensible Toolkit for Scientific computing
This talk: http://59A2.org/files/20110817-ACTS.pdf

Jed Brown

Mathematics and Computer Science Division, Argonne National Laboratory
ACTS 2011-08-17

## Outline

(1) Introduction
(2) Installation
(3) Programming model

Collective semantics
Options Database
(4) Core PETSc Components and Algorithms Primer

Linear Algebra background/theory
Nonlinear solvers: SNES
Structured grid distribution: DA
Preconditioning
Matrix Redux
Debugging

## Requests

- Tell me if you do not understand
- Tell me if an example does not work
- Suggest better wording, figures, organization
- Follow up:
- Configuration issues, private: petsc-maint@mcs.anl.gov
- Public questions: petsc-users@mcs.anl.gov
- Me: jed@59A2. org


## Outline

(1) Introduction
(2) Installation
(3) Programming model

Collective semantics
Options Database
4) Core PETSc Components and Algorithms Primer

Linear Algebra background/theory
Nonlinear solvers: SNES
Structured grid distribution: DA
Preconditioning
Matrix Redux
Debugging

MPI-1 MPI-2

## PETSc-1 PETSc-2



## Portable Extensible Toolkit for Scientific computing

- Architecture
- tightly coupled (e.g. XT5, BG/P, Earth Simulator)
- loosely coupled such as network of workstations
- GPU clusters (many vector and sparse matrix kernels)
- Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)
- Any compiler
- Real/complex, single/double/quad precision, 32/64-bit int
- Usable from C, C++, Fortran 77/90, Python, and MATLAB
- Free to everyone (BSD-style license), open development
- 500B unknowns, $75 \%$ weak scalability on Jaguar (225k cores) and Jugene (295k cores)
- Same code runs performantly on a laptop


## Portable Extensible Toolkit for Scientific computing

- Architecture
- tightly coupled (e.g. XT5, BG/P, Earth Simulator)
- loosely coupled such as network of workstations
- GPU clusters (many vector and sparse matrix kernels)
- Operating systems (Linux, Mac, Windows, BSD, proprietary Unix)
- Any compiler
- Real/complex, single/double/quad precision, 32/64-bit int
- Usable from C, C++, Fortran 77/90, Python, and MATLAB
- Free to everyone (BSD-style license), open development
- 500B unknowns, $75 \%$ weak scalability on Jaguar (225k cores) and Jugene (295k cores)
- Same code runs performantly on a laptop
- iPhone support


## Portable Extensible Toolkit for Scientific computing

Philosophy: Everything has a plugin architecture

- Vectors, Matrices, Coloring/ordering/partitioning algorithms
- Preconditioners, Krylov accelerators
- Nonlinear solvers, Time integrators
- Spatial discretizations/topology*


## Example

Vendor supplies matrix format and associated preconditioner, distributes compiled shared library. Application user loads plugin at runtime, no source code in sight.

## Portable Extensible Toolkit for Scientific computing

Algorithms, (parallel) debugging aids, low-overhead profiling

## Composability

Try new algorithms by choosing from product space and composing existing algorithms (multilevel, domain decomposition, splitting).

## Experimentation

- It is not possible to pick the solver a priori.

What will deliver best/competitive performance for a given physics, discretization, architecture, and problem size?

- PETSc's response: expose an algebra of composition so new solvers can be created at runtime.
- Important to keep solvers decoupled from physics and discretization because we also experiment with those.


## Portable Extensible Toolkit for Scientific computing

- Computational Scientists
- PyLith (CIG), Underworld (Monash), Magma Dynamics (LDEO, Columbia), PFLOTRAN (DOE), SHARP/UNIC (DOE)
- Algorithm Developers (iterative methods and preconditioning)
- Package Developers
- SLEPc, TAO, Deal.II, Libmesh, FEniCS, PETSc-FEM, MagPar, OOFEM, FreeCFD, OpenFVM
- Funding
- Department of Energy
- SciDAC, ASCR ISICLES, MICS Program, INL Reactor Program
- National Science Foundation
- CIG, CISE, Multidisciplinary Challenge Program
- Hundreds of tutorial-style examples
- Hyperlinked manual, examples, and manual pages for all routines
- Support from petsc-maint@mcs.anl.gov


## The Role of PETSc

Developing parallel, nontrivial PDE solvers that deliver high performance is still difficult and requires months (or even years) of concentrated effort.

PETSc is a toolkit that can ease these difficulties and reduce the development time, but it is not a black-box PDE solver, nor a silver bullet.
— Barry Smith

## Outline

(1) Introduction
(2) Installation
(3) Programming model

Collective semantics
Options Database
4) Core PETSc Components and Algorithms Primer

Linear Algebra background/theory
Nonlinear solvers: SNES
Structured grid distribution: DA
Preconditioning
Matrix Redux
Debugging

## Downloading

- http://mcs.anl.gov/petsc, download tarball
- We will use Mecurial in this tutorial:
- http://mercurial.selenic.com
- Debian/Ubuntu: \$ aptitude install mercurial
- Fedora: \$ yum install mercurial
- Get the PETSc release
- \$ hg clone
http://petsc.cs.iit.edu/petsc/releases/petsc-3.1
- \$ cd petsc-3.1
- \$ hg clone
http://petsc.cs.iit.edu/petsc/releases/BuildSystem-3.1 config/BuildSystem
- Get the latest bug fixes with \$ hg pull --update


## Configuration

## Basic configuration

- \$ export PETSC_DIR=\$PWD PETSC_ARCH=mpich-gcc-dbg
- \$ ./configure --with-shared
--with-blas-lapack-dir=/usr
--download-\{mpich,ml,hypre\}
- \$ make all test
- Other common options
- --with-mpi-dir=/path/to/mpi
- --with-scalar-type=<real or complex>
- --with-precision=<single, double,longdouble>
- --with-64-bit-indices
- --download-\{umfpack, mumps,scalapack,blacs,parmetis \}
- reconfigure at any time with

$$
\begin{aligned}
& \text { \$ mpich-gcc-dbg/conf/reconfigure-mpich-gcc-dbg.py } \\
& \text {--new-options }
\end{aligned}
$$

## Automatic Downloads

- Most packages can be automatically
- Downloaded
- Configured and Built (in \$PETSC_DIR/externalpackages)
- Installed with PETSc
- Currently works for
- petsc4py
- PETSc documentation utilities (Sowing, Igrind, c2html)
- BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
- MPICH, MPE, Open MPI
- ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
- MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
- PaStiX, BLOPEX, FFTW, SPRNG
- Prometheus, HYPRE, ML, SPAI
- Sundials
- Triangle, TetGen, FIAT, FFC, Generator
- HDF5, Boost

Can also use --with-xxx=/path/to/your/install

## An optimized build

- \$ mpich-gcc-dbg/conf/reconfigure-mpich-gcc-dbg.py

PETSC_ARCH=mpich-gcc-opt
--with-debugging=0 \&\& make PETSC_ARCH=mpich-gcc-opt

- What does --with-debugging=1 (default) do?
- Keeps debugging symbols (of course)
- Maintains a stack so that errors produce a full stack trace (even SEGV)
- Does lots of integrity checking of user input
- Places sentinels around allocated memory to detect memory errors
- Allocates related memory chunks separately (to help find memory bugs)
- Keeps track of and reports unused options
- Keeps track of and reports allocated memory that is not freed
-malloc_dump


## Compiling an example

- \$ hg clone
http://petsc.cs.iit.edu/petsc/tutorials/CSCS10
- \$ cd CSCS10
- \$ hg update 1
- \$ make
- \$ ./pbratu -help | less


## Outline

(1) Introduction
(2) Installation
(3) Programming model

Collective semantics
Options Database
(4) Core PETSc Components and Algorithms Primer

Linear Algebra background/theory
Nonlinear solvers: SNES
Structured grid distribution: DA
Preconditioning
Matrix Redux
Debugging

## PETSc Structure

## PETSc PDE Application Codes

## ODE Integrators

Nonlinear Solvers
Visualization

## Linear Solvers

Preconditioners + Krylov Methods Object-Oriented
Matrices, Vectors, Indices
Profiling Interface
Computation and Communication Kernels MPI, MPI-IO, BLAS, LAPACK

## Flow Control for a PETSc Application

## Main Routine



## MPI

- Message Passing Interface
- Defines an interface, many implementations
- Can write and run multiprocess jobs without a multicore processor
- Highly optimized
- Often bypasses kernel, IP stack
- Network hardware can send/receive directly from user memory (no-copy)
- Many nonblocking primitives, one-sided operations
- Can use shared memory within a node
- Sometimes faster to have network hardware do the copy
- Designed for library interoperability (e.g. attribute caching)
- Not very fault tolerant
- Usually can't recover if one process disappears, deadlock possible
- CAP Theorem
- \$ mpiexec -n 4 ./app -program -options
- Highly configurable runtime options (Open MPI, MPICH2)
- Rarely have to call MPI directly when using PETSc


## MPI communicators

- Opaque object, defines process group and synchronization channel
- PETSc objects need an MP I_Comm in their constructor
- PETSC_COMM_SELF for serial objects
- PETSC_COMM_WORLD common, but not required
- Can split communicators, spawn processes on new communicators, etc
- Operations are one of
- Not Collective: VecGetLocalSize(), MatSetValues()
- Logically Collective: KSPSetType(), PCMGSetCycleType()
- checked when running in debug mode
- Neighbor-wise Collective: VecScatterBegin(), MatMult()
- Point-to-point communication between two processes
- Neighbor collectives in upcoming MPI-3
- Collective: VecNorm(), MatAssemblyBegin(), KSPCreate()
- Global communication, synchronous
- Non-blocking collectives in upcoming MPI-3
- Deadlock if some process doesn't participate (e.g. wrong order)


## Advice from Bill Gropp

You want to think about how you decompose your data structures, how you think about them globally. [...] If you were building a house, you'd start with a set of blueprints that give you a picture of what the whole house looks like. You wouldn't start with a bunch of tiles and say. "Well I'll put this tile down on the ground, and then l'll find a tile to go next to it." But all too many people try to build their parallel programs by creating the smallest possible tiles and then trying to have the structure of their code emerge from the chaos of all these little pieces. You have to have an organizing principle if you're going to survive making your code parallel.

```
(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)
```


## Objects

```
Mat A;
PetscInt m,n,M,N;
MatCreate(comm,&A);
MatSetSizes(A,m,n,M,N) ; /* Or PETSC_DECIDE * /
MatSetOptionsPrefix(A,"foo__");
MatSetFromOptions(A);
/* Use A */
MatView(A,PETSC_VIEWER_DRAW_WORLD);
MatDestroy(A);
```

- Mat is an opaque object (pointer to incomplete type)
- Assignment, comparison, etc, are cheap
- What's up with this "Options" stuff?
- Allows the type to be determined at runtime: -foo_mat_type sbaij
- Inversion of Control similar to "service locator", related to "dependency injection"
- Other options (performance and semantics) can be changed at runtime under -foo_mat_


## Basic Petscobject Usage

Every object in PETSc supports a basic interface

| Function | Operation |
| ---: | :--- |
| Create() | create the object |
| Get/SetName() | name the object |
| Get/SetType() | set the implementation type |
| Get/SetOptionsPrefix() | set the prefix for all options |
| SetFromOptions() | customize object from the command line |
| SetUp() | preform other initialization |
| View() | view the object |
| Destroy() | cleanup object allocation |

Also, all objects support the -help option.

## Ways to set options

- Command line
- Filename in the third argument of PetscInitialize()
- ~/.petscrc
- \$PWD/.petscrc
- \$PWD/petscrc
- PetscOptionsInsertFile()
- PetscOptionsInsertString()
- PETSC_OPTIONS environment variable
- command line option -options_file [file]


## Try it out

\$ cd \$PETSC_DIR/src/snes/examples/tutorials \&\& make ex5

- \$ ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7 -snes_monitor - $\{\mathrm{ksp}$, snes \}_converged_reason -snes_view
- \$ ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7 -snes_monitor - $\{\mathrm{ksp}$, snes \}_converged_reason -snes_view -mat_view_draw -draw_pause 0.5
- \$ ./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7
-snes_monitor - $\{\mathrm{ksp}$, snes \}_converged_reason
-snes_view -mat_view_draw -draw_pause 0.5 -pc_type lu -pc_factor_mat_ordering_type natural
- Use -help to find other ordering types


## In parallel

- \$ mpiexec -n 4
./ex5 -da_grid_x 10 -da_grid_y 10 -par 6.7
-snes_monitor - $\{\mathrm{ksp}$, snes \}_converged_reason
-snes_view -sub_pc_type lu
- How does the performance change as you
- vary the number of processes (up to 32 or 64 )?
- increase the problem size?
- use an inexact subdomain solve?
- try an overlapping method: -pc_type asm -pc_asm_overlap 2
- simulate a big machine: -pc_asm_blocks 512
- change the Krylov method: -ksp_type ibcgs
- use algebraic multigrid: -pc_type hypre
- use smoothed aggregation multigrid: -pc_type ml


## Outline

(1) Introduction
(2) Installation
(3) Programming model

Collective semantics
Options Database
(4) Core PETSc Components and Algorithms Primer

Linear Algebra background/theory
Nonlinear solvers: SNES
Structured grid distribution: DA
Preconditioning
Matrix Redux
Debugging

## Newton iteration: foundation of SNES

- Standard form of a nonlinear system

$$
F(u)=0
$$

- Iteration

Solve: $\quad J(u) w=-F(u)$
Update: $\quad u^{+} \leftarrow u+w$

- Quadratically convergent near a root: $\left|u^{n+1}-u^{*}\right| \in \mathscr{O}\left(\left|u^{n}-u^{*}\right|^{2}\right)$
- Picard is the same operation with a different $J(u)$


## Example (Nonlinear Poisson)

$$
\begin{aligned}
F(u)=0 & \sim-\nabla \cdot\left[\left(1+u^{2}\right) \nabla u\right]-f=0 \\
J(u) w & \sim-\nabla \cdot\left[\left(1+u^{2}\right) \nabla w+2 u w \nabla u\right]
\end{aligned}
$$

## Matrices

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.

## Definition (Forming a matrix) <br> Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

## Matrices

## Definition (Matrix)

A matrix is a linear transformation between finite dimensional vector spaces.
Definition (Forming a matrix)
Forming or assembling a matrix means defining it's action in terms of entries (usually stored in a sparse format).

## Important matrices

(1) Sparse (e.g. discretization of a PDE operator)
(2) Inverse of anything interesting $B=A^{-1}$
(3) Jacobian of a nonlinear function $J y=\lim _{\varepsilon \rightarrow 0} \frac{F(x+\varepsilon y)-F(x)}{\varepsilon}$
(4) Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
(5) Other fast transforms, e.g. Fast Multipole Method
(6) Low rank correction $B=A+u v^{T}$
(7) Schur complement $S=D-C A^{-1} B$
(8) Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
(9) Linearization of a few steps of an explicit integrator

## Important matrices

(1) Sparse (e.g. discretization of a PDE operator)
(2) Inverse of anything interesting $B=A^{-1}$
(3) Jacobian of a nonlinear function $J y=\lim _{\varepsilon \rightarrow 0} \frac{F(x+\varepsilon y)-F(x)}{\varepsilon}$
(4) Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
(5) Other fast transforms, e.g. Fast Multipole Method
(6) Low rank correction $B=A+u v^{T}$
(7) Schur complement $S=D-C A^{-1} B$
(8) Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
(9) Linearization of a few steps of an explicit integrator

- These matrices are dense. Never form them.


## Important matrices

(1) Sparse (e.g. discretization of a PDE operator)
(2) Inverse of anything interesting $B=A^{-1}$
(3) Jacobian of a nonlinear function $J y=\lim _{\varepsilon \rightarrow 0} \frac{F(x+\varepsilon y)-F(x)}{\varepsilon}$
(4) Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
(5) Other fast transforms, e.g. Fast Multipole Method
(6) Low rank correction $B=A+u v^{\top}$
(7) Schur complement $S=D-C A^{-1} B$
(8 Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
(9) Linearization of a few steps of an explicit integrator

- These are not very sparse. Don't form them.


## Important matrices

(1) Sparse (e.g. discretization of a PDE operator)
(2) Inverse of anything interesting $B=A^{-1}$
(3) Jacobian of a nonlinear function $J y=\lim _{\varepsilon \rightarrow 0} \frac{F(x+\varepsilon y)-F(x)}{\varepsilon}$
(4) Fourier transform $\mathscr{F}, \mathscr{F}^{-1}$
(5) Other fast transforms, e.g. Fast Multipole Method
(6) Low rank correction $B=A+u v^{\top}$
(7) Schur complement $S=D-C A^{-1} B$

8 Tensor product $A=\sum_{e} A_{x}^{e} \otimes A_{y}^{e} \otimes A_{z}^{e}$
(9) Linearization of a few steps of an explicit integrator

- None of these matrices "have entries"


## What can we do with a matrix that doesn't have entries?

Krylov solvers for $A x=b$

- Krylov subspace: $\left\{b, A b, A^{2} b, A^{3} b, \ldots\right\}$
- Convergence rate depends on the spectral properties of the matrix
- Existance of small polynomials $p_{n}(A)<\varepsilon$ where $p_{n}(0)=1$.
- condition number $\kappa(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{\text {max }} / \sigma_{\text {min }}$
- distribution of singular values, spectrum $\wedge$, pseudospectrum $\wedge_{\varepsilon}$
- For any popular Krylov method $\mathscr{K}$, there is a matrix of size $m$, such that $\mathscr{K}$ outperforms all other methods by a factor at least $\mathscr{O}(\sqrt{m})$ [Nachtigal et. al., 1992]


## Typically...

- The action $y \leftarrow A x$ can be computed in $\mathscr{O}(m)$
- Aside from matrix multiply, the $n^{\text {th }}$ iteration requires at most $\mathscr{O}(m n)$


## GMRES

Brute force minimization of residual in $\left\{b, A b, A^{2} b, \ldots\right\}$
(1) Use Arnoldi to orthogonalize the $n$th subspace, producing

$$
A Q_{n}=Q_{n+1} H_{n}
$$

(2) Minimize residual in this space by solving the overdetermined system

$$
H_{n} y_{n}=e_{1}^{(n+1)}
$$

using $Q R$-decomposition, updated cheaply at each iteration.
Properties

- Converges in $n$ steps for all right hand sides if there exists a polynomial of degree $n$ such that $\left\|p_{n}(A)\right\|<$ tol and $p_{n}(0)=1$.
- Residual is monotonically decreasing, robust in practice
- Restarted variants are used to bound memory requirements


## The $\mathfrak{p}$-Bratu equation

- 2-dimensional model problem

$$
-\nabla \cdot\left(|\nabla u|^{\mathfrak{p}-2} \nabla u\right)-\lambda e^{u}-f=0, \quad 1 \leq \mathfrak{p} \leq \infty, \quad \lambda<\lambda_{\text {crit }}(\mathfrak{p})
$$

Singular or degenerate when $\nabla u=0$, turning point at $\lambda_{\text {crit }}$.

- Regularized variant

$$
\begin{aligned}
-\nabla \cdot(\eta \nabla u)-\lambda e^{u}-f & =0 \\
\eta(\gamma)=\left(\varepsilon^{2}+\gamma\right)^{\frac{p-2}{2}} & \gamma(u)
\end{aligned}=\frac{1}{2}|\nabla u|^{2} .
$$

- Jacobian

$$
\begin{gathered}
J(u) w \sim-\nabla \cdot\left[\left(\eta 1+\eta^{\prime} \nabla u \otimes \nabla u\right) \nabla w\right]-\lambda e^{u} w \\
\eta^{\prime}=\frac{\mathfrak{p}-2}{2} \eta /\left(\varepsilon^{2}+\gamma\right)
\end{gathered}
$$

Physical interpretation: conductivity tensor flattened in direction $\nabla u$

## Flow Control for a PETSc Application

## Main Routine



## SNES Paradigm

The SNES interface is based upon callback functions

- FormFunction(), set by SNESSetFunction()
- FormJacobian(), set by SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual $F(x)$,

- Solver calls the user's function
- User function gets application state through the ctx variable
- PETSc never sees application data


## SNES Function

The user provided function which calculates the nonlinear residual has signature

PetscErrorCode (*func) (SNES snes,Vec x,Vec r,void *ctx)
x : The current solution
$r$ : The residual
ctx: The user context passed to SNESSetFunction ()

- Use this to pass application information, e.g. physical constants


## SNES Jacobian

The user provided function which calculates the Jacobian has signature

```
PetscErrorCode (*func)(SNES snes,Vec x,Mat *J,Mat *M,
    MatStructure *flag,void *ctx)
```

$x$ : The current solution
J : The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)
ctx: The user context passed to SNESSetFunction ()

- Use this to pass application information, e.g. physical constants
- Possible MatStructure values are:
- SAME_NONZERO_PATTERN
- DIFFERENT_NONZERO_PATTERN

Alternatively, you can use

- a builtin sparse finite difference approximation ("coloring")
- automatic differentiation (ADIC/ADIFOR)


## Distributed Array

- Interface for topologically structured grids
- Defines (topological part of) a finite-dimensional function space
- Get an element from this space: DACreateGlobalVector ()
- Provides parallel layout
- Refinement and coarsening
- DARefineHierarchy()
- Ghost value coherence
- DAGlobalToLocalBegin()
- Matrix preallocation:
- DAGetMatrix()


## Ghost Values

To evaluate a local function $f(x)$, each process requires

- its local portion of the vector $x$
- its ghost values, bordering portions of $x$ owned by neighboring processes

- Local NodeGhost Node



## DA Global Numberings

| Proc 2 |  |  | Proc 3 |  |
| :---: | :---: | :---: | :---: | :---: |
| 25 | 26 | 27 | 28 | 29 |
| 20 | 21 | 22 | 23 | 24 |
| 15 | 16 | 17 | 18 | 19 |
| 10 | 11 | 12 | 13 | 14 |
| 5 | 6 | 7 | 8 | 9 |
| 0 | 1 | 2 | 3 | 4 |
| Proc 0 |  |  | Proc 1 |  |

Natural numbering

| Proc 2 |  |  | Proc 3 |  |
| :---: | :---: | :---: | :---: | :---: |
| 21 | 22 | 23 | 28 | 29 |
| 18 | 19 | 20 | 26 | 27 |
| 15 | 16 | 17 | 24 | 25 |
| 6 | 7 | 8 | 13 | 14 |
| 3 | 4 | 5 | 11 | 12 |
| 0 | 1 | 2 | 9 | 10 |
| Proc 0 |  |  | Proc 1 |  |

PETSc numbering

## DA Global vs. Local Numbering

- Global: Each vertex has a unique id belongs on a unique process
- Local: Numbering includes vertices from neighboring processes
- These are called ghost vertices

| Proc 2 |  | Proc 3 |
| :---: | :---: | :---: |
| X | X X | X X |
| X | X X | X X |
| 12 | 1314 | 15 X |
| 8 | 910 | 11 X |
|  | 56 | 7 X |
| 0 | 12 | 3 X |
| Proc 0 |  | Proc 1 |

Local numbering

| Proc 2 |  |  | Proc 3 |  |
| :---: | :---: | :---: | :---: | :---: |
| 21 | 22 | 23 | 28 | 29 |
| 18 | 19 | 20 | 26 | 27 |
| 15 | 16 | 17 | 24 | 25 |
| 6 | 7 | 8 | 13 | 14 |
| 3 | 4 | 5 | 11 | 12 |
| 0 | 1 | 2 | 9 | 10 |
| Proc 0 |  |  | Proc 1 |  |

Global numbering

## DA Vectors

- The DA object contains only layout (topology) information
- All field data is contained in PETSc Vecs
- Global vectors are parallel
- Each process stores a unique local portion
- DACreateGlobalVector(DA da, Vec *gvec)
- Local vectors are sequential (and usually temporary)
- Each process stores its local portion plus ghost values
- DACreateLocalVector (DA da, Vec *lvec)
- includes ghost values!
- Coordinate vectors store the mesh geometry
- DAGetCoordinates(DA,Vec *coords)
- Can be manipulated with their own DA DAGetCoordinateDA (DA, DA *cda)


## Updating Ghosts

Two-step process enables overlapping computation and communication

- DAGlobalToLocalBegin(da, gvec, mode, lvec)
- gvec provides the data
- mode is either INSERT_VALUES or ADD_VALUES
- lvec holds the local and ghost values
- DAGlobalToLocalEnd(da, gvec, mode, lvec)
- Finishes the communication

The process can be reversed with DALocalToGlobal ().

## DA Stencils

Both the box stencil and star stencil are available.


Box Stencil


Star Stencil

## Creating a DA

DACreate2d(comm, wrap, type, $M, N, m, n$, dof, $s, \operatorname{lm}[], \ln [], ~ D A ~ * d a)$
wrap: Specifies periodicity

- DA_NONPERIODIC, DA_XPERIODIC, DA_YPERIODIC, or DA_XYPERIODIC
type: Specifies stencil
- DA_STENCIL_BOX or DA_STENCIL_STAR
$\mathrm{M}, \mathrm{N}$ : Number of grid points in $\mathrm{x} / \mathrm{y}$-direction
$m, n$ : Number of processes in $x / y$-direction
dof: Degrees of freedom per node
s: The stencil width
lm, ln: Alternative array of local sizes
- Use PETSC_NULL for the default


## Working with the local form

Wouldn't it be nice if we could just write our code for the natural numbering?

- Yes, that's what DAVecGetArray () is for.
- Also, the DA offers local callback functions
- FormFunctionLocal(), set by DASetLocalFunction()
- FormJacobianLocal(), set by DASetLocalJacobian()
- When PETSc needs to evaluate the nonlinear residual $F(x)$,
- Each process evaluates the local residual
- PETSc assembles the global residual automatically
- Uses DALocalToGlobal() method


## DA Local Function

The user provided function which calculates the nonlinear residual in 2D has signature
PetscErrorCode (*lfunc) (DALocalInfo *info, Field **x, Field **r, void *ctx)
info: All layout and numbering information
x : The current solution

- Notice that it is a multidimensional array
$r$ : The residual
ctx: The user context passed to DASetLocalFunction()
The local DA function is activated by calling
SNESSetFunction(snes, r, SNESDAFormFunction, ctx)


## Bratu Residual Evaluation

$$
-\Delta u-\lambda e^{u}=0
$$

```
BratuResidualLocal(DALocalInfo *info,Field **x,Field **f,
    UserCtx *user)
{
    /* Not Shown: Handle boundaries */
    /* Compute over the interior points */
    for(j = info->ys; j < info->ys+info->ym; j++) {
        for(i = info->xs; i < info->xs+info->xm; i++) {
            u = x[j][i];
            u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
            u_Yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
            f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);
        }
    }
}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex5.c

## Start with 2-Laplacian plus Bratu nonlinearity

- Matrix-free Jacobians, no preconditioning -snes_mf
- \$ hg update -r3
- \$ ./pbratu -da_grid_x 10 -da_grid_y 10
-lambda 6.7 -snes_mf -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 20 -da_grid_y 20
-lambda 6.7 -snes_mf -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 40 -da_grid_y 40
-lambda 6.7 -snes_mf -snes_monitor
-ksp_converged_reason
- Watch linear and nonlinear convergence


## Add $\mathfrak{p}$ nonlinearity

- Matrix-free Jacobians, no preconditioning -snes_mf
- \$ hg update -r4
- \$ ./pbratu -da_grid_x 10 -da_grid_y 10
-lambda 1 -p 1.3 -snes_mf -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 20 -da_grid_y 20
-lambda 1 -p 1.3 -snes_mf -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 40 -da_grid_y 40
-lambda 1 -p 1.3 -snes_mf -snes_monitor
-ksp_converged_reason
- Watch linear and nonlinear convergence


## Preconditioning

Idea: improve the conditioning of the Krylov operator

- Left preconditioning

$$
\begin{gathered}
\left(P^{-1} A\right) x=P^{-1} b \\
\left\{P^{-1} b,\left(P^{-1} A\right) P^{-1} b,\left(P^{-1} A\right)^{2} P^{-1} b, \ldots\right\}
\end{gathered}
$$

- Right preconditioning

$$
\begin{gathered}
\left(A P^{-1}\right) P x=b \\
\left\{b,\left(P^{-1} A\right) b,\left(P^{-1} A\right)^{2} b, \ldots\right\}
\end{gathered}
$$

- The product $P^{-1} A$ or $A P^{-1}$ is not formed.


## Definition (Preconditioner)

A preconditioner $\mathscr{P}$ is a method for constructing a matrix (just a linear function, not assembled!) $P^{-1}=\mathscr{P}\left(A, A_{p}\right)$ using a matrix $A$ and extra information $A_{p}$, such that the spectrum of $P^{-1} A$ (or $A P^{-1}$ ) is well-behaved.

## Preconditioning

## Definition (Preconditioner)

A preconditioner $\mathscr{P}$ is a method for constructing a matrix $P^{-1}=\mathscr{P}\left(A, A_{p}\right)$ using a matrix $A$ and extra information $A_{p}$, such that the spectrum of $P^{-1} A$ (or $A P^{-1}$ ) is well-behaved.

- $P^{-1}$ is dense, $P$ is often not available and is not needed
- $A$ is rarely used by $\mathscr{P}$, but $A_{p}=A$ is common
- $A_{p}$ is often a sparse matrix, the "preconditioning matrix"
- Matrix-based: Jacobi, Gauss-Seidel, SOR, ILU(k), LU
- Parallel: Block-Jacobi, Schwarz, Multigrid, FETI-DP, BDDC
- Indefinite: Schur-complement, Domain Decomposition, Multigrid


## Questions to ask when you see a matrix

(1) What do you want to do with it?

- Multiply with a vector
- Solve linear systems or eigen-problems
(2) How is the conditioning/spectrum?
- distinct/clustered eigen/singular values?
- symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$?
- nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \mathfrak{R}[z]>0\})$ ?
- indefinite?
(3) How dense is it?
- block/banded diagonal?
- sparse unstructured?
- denser than we'd like?
(4) Is there a better way to compute $A x$ ?

5 Is there a different matrix with similar spectrum, but nicer properties?
(6) How can we precondition $A$ ?

## Questions to ask when you see a matrix

(1) What do you want to do with it?

- Multiply with a vector
- Solve linear systems or eigen-problems
(2) How is the conditioning/spectrum?
- distinct/clustered eigen/singular values?
- symmetric positive definite $\left(\sigma(A) \subset \mathbb{R}^{+}\right)$?
- nonsymmetric definite $(\sigma(A) \subset\{z \in \mathbb{C}: \mathfrak{R}[z]>0\})$ ?
- indefinite?
(3) How dense is it?
- block/banded diagonal?
- sparse unstructured?
- denser than we'd like?
(4) Is there a better way to compute $A x$ ?

5 Is there a different matrix with similar spectrum, but nicer properties?
(6) How can we precondition $A$ ?

## Relaxation

Split into lower, diagonal, upper parts: $A=L+D+U$
Jacobi
Cheapest preconditioner: $P^{-1}=D^{-1}$
Successive over-relaxation (SOR)

$$
\begin{gathered}
\left(L+\frac{1}{\omega} D\right) x_{n+1}=\left[\left(\frac{1}{\omega}-1\right) D-U\right] x_{n}+\omega b \\
P^{-1}=k \text { iterations starting with } x_{0}=0
\end{gathered}
$$

- Implemented as a sweep
- $\omega=1$ corresponds to Gauss-Seidel
- Very effective at removing high-frequency components of residual


## Factorization

Two phases

- symbolic factorization: find where fill occurs, only uses sparsity pattern
- numeric factorization: compute factors


## LU decomposition

- Ultimate preconditioner
- Expensive, for $m \times m$ sparse matrix with bandwidth $b$, traditionally requires $\mathscr{O}\left(m b^{2}\right)$ time and $\mathscr{O}(m b)$ space.
- Bandwidth scales as $m^{\frac{d-1}{d}}$ in $d$-dimensions
- Optimal in 2D: $\mathscr{O}(m \cdot \log m)$ space, $\mathscr{O}\left(m^{3 / 2}\right)$ time
- Optimal in 3D: $\mathscr{O}\left(m^{4 / 3}\right)$ space, $\mathscr{O}\left(m^{2}\right)$ time
- Symbolic factorization is problematic in parallel


## Incomplete LU

- Allow a limited number of levels of fill: ILU( $k$ )
- Only allow fill for entries that exceed threshold: ILUT
- Very poor scaling in parallel, don't bother beyond 8 PEs.
- No guarantees


## 1-level Domain decomposition

Domain size $L$, subdomain size $H$, element size $h$
Overlapping/Schwarz

- Solve Dirichlet problems on overlapping subdomains
- No overlap: its $\in \mathscr{O}\left(\frac{L}{\sqrt{H h}}\right)$
- Overlap $\delta:$ its $\in\left(\frac{L}{\sqrt{H \delta}}\right)$


## Neumann-Neumann

- Solve Neumann problems on non-overlapping subdomains
- its $\in \mathscr{O}\left(\frac{L}{H}\left(1+\log \frac{H}{h}\right)\right)$
- Tricky null space issues (floating subdomains)
- Need subdomain matrices, net globally assembled matrix.
- Multilevel variants knock off the leading $\frac{\mathrm{L}}{\mathrm{H}}$
- Both overlapping and nonoverlapping with this bound


## Multigrid

Hierarchy: Interpolation and restriction operators

$$
\mathscr{I}^{\uparrow}: X_{\text {coarse }} \rightarrow X_{\text {tine }} \quad \mathscr{I}^{\downarrow}: X_{\text {tine }} \rightarrow X_{\text {coarse }}
$$

- Geometric: define problem on multiple levels, use grid to compute hierarchy
- Algebraic: define problem only on finest level, use matrix structure to build hierarchy


## Galerkin approximation

Assemble this matrix: $A_{\text {coarse }}=\mathscr{I}^{\downarrow} A_{\text {tine }} \mathscr{I}^{\uparrow}$
Application of multigrid preconditioner ( $V$-cycle)

- Apply pre-smoother on fine level (any preconditioner)
- Restrict residual to coarse level with $\mathscr{I} \downarrow$
- Solve on coarse level $A_{\text {coarse }} X=r$
- Interpolate result back to fine level with $\mathscr{I}^{\uparrow}$
- Apply post-smoother on fine level (any preconditioner)


## Multigrid convergence properties

- Textbook: $P^{-1} A$ is spectrally equivalent to identity
- Constant number of iterations to converge up to discretization error
- Most theory applies to SPD systems
- variable coefficients (e.g. discontinuous): low energy interpolants
- mesh- and/or physics-induced anisotropy: semi-coarsening/line smoothers
- complex geometry: difficult to have meaningful coarse levels
- Deeper algorithmic difficulties
- nonsymmetric (e.g. advection, shallow water, Euler)
- indefinite (e.g. incompressible flow, Helmholtz)
- Performance considerations
- Aggressive coarsening is critical in parallel
- Most theory uses SOR smoothers, ILU often more robust
- Coarsest level usually solved semi-redundantly with direct solver
- Multilevel Schwarz is essentially the same with different language
- assume strong smoothers, emphasize aggressive coarsening


## Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD

- Dense
- Activated by -snes_fd
- Computed by SNESDefaultComputeJacobian ()
- Sparse via colorings
- Coloring is created by MatFDColoringCreate ()
- Computed by SNESDefaultComputeJacobianColor ()

Can also use Matrix-free Newton-Krylov via 1st-order FD

- Activated by -snes_mf without preconditioning
- Activated by -snes_mf_operator with user-defined preconditioning
- Uses preconditioning matrix from SNESSetJacobian ()


## Add finite difference Jacobian by coloring

- \$ hg update -r5
- \$ ./pbratu -da_grid_x 10 -da_grid_y 10
-lambda 1 -p 1.3 -snes_fd -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 10 -da_grid_y 10
-lambda 1 -p 1.3 -fd_jacobian -snes_monitor
-ksp_converged_reason
- \$ ./pbratu -da_grid_x 10 -da_grid_y 10
-lambda 1 -p 1.3 -fd_jacobian -snes_monitor
-ksp_converged_reason
- Try some different preconditioners (jacobi, sor, asm, hypre, ml)
- Try changing the physical parameters
- May need -mat_fd_type ds


## Matrices, redux

What are PETSc matrices?

- Linear operators on finite dimensional vector spaces. (snarky)
- Fundamental objects for storing stiffness matrices and Jacobians
- Each process locally owns a contiguous set of rows
- Supports many data types
- AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
- Supports structures for many packages
- MUMPS, Spooles, SuperLU, UMFPack, Hypre


## Matrices, redux

What are PETSc matrices?

- Linear operators on finite dimensional vector spaces. (snarky)
- Fundamental objects for storing stiffness matrices and Jacobians
- Each process locally owns a contiguous set of rows
- Supports many data types
- AIJ, Block AIJ, Symmetric AIJ, Block Diagonal, etc.
- Supports structures for many packages
- MUMPS, Spooles, SuperLU, UMFPack, Hypre


## How do I create matrices?

- MatCreate(MPI_Comm, Mat *)
- MatSetSizes (Mat, int m, int $n$, int $M$, int $N$ )
- MatSetType(Mat, MatType typeName)
- MatSetFromOptions (Mat)
- Can set the type at runtime
- MatMPIBAIJSetPreallocation (Mat,...)
- important for assembly performance, more tomorrow
- MatSetBlockSize(Mat, int bs)
- for vector problems
- MatSetValues (Mat, ...)
- MUST be used, but does automatic communication
- MatSetValuesLocal(), MatSetValuesStencil()
- MatSetValuesBlocked()


## Matrix Polymorphism

The PETSc Mat has a single user interface,

- Matrix assembly
- MatSetValues()
- Matrix-vector multiplication
- MatMult()
- Matrix viewing
- MatView()
but multiple underlying implementations.
- AIJ, Block AIJ, Symmetric Block AIJ,
- Dense
- Matrix-Free
- etc.

A matrix is defined by its interface, not by its data structure.

## Matrix Assembly

- A three step process
- Each process sets or adds values
- Begin communication to send values to the correct process
- Complete the communication
- MatSetValues (Mat $A, m$, rows[], $n, ~ c o l s[]$, values [], mode)
- mode is either INSERT_VALUES or ADD_VALUES
- Logically dense block of values
- Two phase assembly allows overlap of communication and computation
- MatAssemblyBegin (Mat m, type)
- MatAssemblyEnd (Mat m, type)
- type is either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY
- For vector problems

MatsetValuesBlocked (Mat $A, m$, rows [],

- The same assembly code can build matrices of different format
- choose format at run-time.


## Matrix Assembly

- A three step process
- Each process sets or adds values
- Begin communication to send values to the correct process
- Complete the communication
- MatSetValues (Mat A, m, rows[], n, cols[], values[], mode)
- mode is either INSERT_VALUES or ADD_VALUES
- Logically dense block of values
- Two phase assembly allows overlap of communication and computation
- MatAssemblyBegin (Mat m, type)
- MatAssemblyEnd (Mat m, type)
- type is either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY
- For vector problems

$$
\begin{gathered}
\text { MatSetValuesBlocked(Mat A, m, rows[], } \\
\text { n, cols[], values[], mode) }
\end{gathered}
$$

- The same assembly code can build matrices of different format
- choose format at run-time.


## One Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
if (rank == 0) {
    for(row = 0; row < N; row++) {
        cols[0] = row-1; cols[1] = row; cols[2] = row+1;
        if (row == 0) {
            MatSetValues(A,1,&row,2,&cols[1],&v[1],INSERT_VALUES)
        } else if (row == N-1) {
            MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
        } else {
            MatSetValues(A,1,&row, 3,cols,v,INSERT_VALUES);
        }
    }
}
MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
```


## A Better Way to Set the Elements of a Matrix

Simple 3-point stencil for 1D Laplacian

```
v[0] = -1.0; v[1] = 2.0; v[2] = -1.0;
for(row = start; row < end; row++) {
    cols[0] = row-1; cols[1] = row; cols[2] = row+1;
        if (row == 0) {
        MatSetValues(A,1,&row, 2, &cols[1], &v[1],INSERT_VALUES);
        } else if (row == N-1) {
        MatSetValues(A,1,&row,2,cols,v,INSERT_VALUES);
        } else {
        MatSetValues(A,1,&row, 3,cols,v,INSERT_VALUES);
    }
}
MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY);
```


## Why Are PETSc Matrices That Way?

- No one data structure is appropriate for all problems
- Blocked and diagonal formats provide significant performance benefits
- PETSc has many formats and makes it easy to add new data structures
- Assembly is difficult enough without worrying about partitioning
- PETSc provides parallel assembly routines
- Achieving high performance still requires making most operations local
- However, programs can be incrementally developed.
- MatPartitioning and MatOrdering can help
- Matrix decomposition in contiguous chunks is simple
- Makes interoperation with other codes easier
- For other ordering, PETSc provides "Application Orderings" (AO)


## $\mathfrak{p}$-Bratu assembly

- Use DAGetMatrix() (can skip matrix preallocation details)
- Start by just assembling Bratu nonlinearity
- \$ hg update -r6
- Watch -snes_converged_reason, what happens for $p \neq 2$ ?
- Solve exactly with the preconditioner -pc_type lu
- Try -snes_mf_operator


## $\mathfrak{p}$-Bratu assembly

- We need to assemble the $\mathfrak{p}$ part

$$
J(u) w \quad \sim \quad-\nabla \cdot\left[\left(\eta 1+\eta^{\prime} \nabla u \otimes \nabla u\right) \nabla w\right]
$$

- Second part is scary, but what about just using $-\nabla \cdot(\eta \nabla w)$ ?
- \$ hg update -r7
- Solve exactly with the preconditioner -pc_type lu
- Try -snes_mf_operator
- Refine the grid, change $\mathfrak{p}$
- Try algebraic multigrid if available: -pc_type [ml, hypre]


## Does the preconditioner need Newton linearization?

- The anisotropic part looks messy. Is it worth writing the code to assemble that part?
- Easy profiling: -log_summary
- Observation: the Picard linearization uses a "star" (5-point) stencil while Newton linearization needs a "box" (9-point) stencil.
- Add support for reduced preallocation with a command-line option
- \$ hg update -r8
- Compare performance (time, memory, iteration count) of
- 5-point Picard-linearization assembled by hand
- 5-point Newton-linearized Jacobian computed by coloring
- 9-point Newton-linearized Jacobian computed by coloring


## Maybe it's not worth it, but let's assemble it anyway

- \$ hg update -r9
- Crash!
- You were using the the debug PETSC_ARCH, right?
- Launch the debugger
- -start_in_debugger [gdb,dbx,noxterm]
- -on_error_attach_debugger [gdb,dbx,noxterm]
- Attach the debugger only to some parallel processes
- -debugger_nodes 0,1
- Set the display (often necessary on a cluster)
- -display :0


## Debugging Tips

- Put a breakpoint in PetscError () to catch errors as they occur
- PETSc tracks memory overwrites at both ends of arrays
- The CHKMEMQ macro causes a check of all allocated memory
- Track memory overwrites by bracketing them with CHKMEMQ
- PETSc checks for leaked memory
- Use PetscMalloc () and PetscFree() for all allocation
- Print unfreed memory on PetscFinalize() with -malloc_dump
- Simply the best tool today is Valgrind
- It checks memory access, cache performance, memory usage, etc.
- http://www.valgrind.org
- Pass -malloc 0 to PETSc when running under Valgrind
- Might need --trace-children=yes when running under MPI
- --track-origins=yes handy for uninitialized memory


## Memory error is gone now

- \$ hg update -r10
- Run with -snes_mf_operator -pc_type lu
- Do you see quadratic convergence?
- Hmm, there must be a bug in that mess, where is it?


## Memory error is gone now

- \$ hg update -r10
- Run with -snes_mf_operator -pc_type lu
- Do you see quadratic convergence?
- Hmm, there must be a bug in that mess, where is it?


## SNES Test

- PETSc can compute a finite difference Jacobian and compare it to yours
- -snes_type test
- Is the difference significant?
- -snes_type test -snes_test_display
- Are the entries in the star stencil correct?
- Find which line has the typo
- \$ hg update -r11
- Check with -snes_type test
- and -snes_mf_operator -pc_type lu


## Outline

(5) Application Integration
(6) Performance and Scalability

Memory hierarchy Profiling

## Application Integration

- Be willing to experiment with algorithms
- No optimality without interplay between physics and algorithmics
- Adopt flexible, extensible programming
- Algorithms and data structures not hardwired
- Be willing to play with the real code
- Toy models are rarely helpful
- If possible, profile before integration
- Automatic in PETSc


## Incorporating PETSc into existing codes

- PETSc does not seize main (), does not control output
- Propogates errors from underlying packages, flexible error handling
- Nothing special about MP I_COMM_WORLD
- Can wrap existing data structures/algorithms
- MatShell, PCShell, full implementations
- VecCreateMPIWithArray()
- MatCreateSeqAIJWithArrays()
- Use an existing semi-implicit solver as a preconditioner
- Usually worthwhile to use native PETSc data structures unless you have a good reason not to
- Uniform interfaces across languages
- C, C++, Fortran 77/90, Python, MATLAB
- Do not have to use high level interfaces (e.g. SNES, TS, DM)
- but PETSc can offer more if you do, like MFFD and SNES Test


## Integration Stages

- Version Control
- It is impossible to overemphasize
- Initialization
- Linking to PETSc
- Profiling
- Profile before changing
- Also incorporate command line processing
- Linear Algebra
- First PETSc data structures
- Solvers
- Very easy after linear algebra is integrated


## Initialization

- Call PetscInitialize()
- Setup static data and services
- Setup MPI if it is not already
- Can set PETSC_COMM_WORLD to use your communicator (can always use subcommunicators for each object)
- Call PetscFinalize()
- Calculates logging summary
- Can check for leaks/unused options
- Shutdown and release resources
- Can only initialize PETSc once


## Matrix Memory Preallocation

- PETSc sparse matrices are dynamic data structures
- can add additional nonzeros freely
- Dynamically adding many nonzeros
- requires additional memory allocations
- requires copies
- can kill performance
- Memory preallocation provides
- the freedom of dynamic data structures
- good performance
- Easiest solution is to replicate the assembly code
- Remove computation, but preserve the indexing code
- Store set of columns for each row
- Call preallocation routines for all datatypes
- MatSeqAIJSetPreallocation()
- MatMPIBAIJSetPreallocation()
- Only the relevant data will be used


## Sequential Sparse Matrices

MatSeqAIJPreallocation(Mat A, int $n z$, int $n n z[])$
$n z$ : expected number of nonzeros in any row nnz(i): expected number of nonzeros in row i


## Parallel Sparse Matrix

- Each process locally owns a submatrix of contiguous global rows
- Each submatrix consists of diagonal and off-diagonal parts

- MatGetOwnershipRange (Mat A, int *start,int *end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix


## Parallel Sparse Matrices

```
MatMPIAIJPreallocation(Mat A, int dnz, int dnnz[],
    int onz, int onnz[])
```

dnz: expected number of nonzeros in any row in the diagonal block dnnz(i): expected number of nonzeros in row i in the diagonal block
onz: expected number of nonzeros in any row in the offdiagonal portion onnz(i): expected number of nonzeros in row $i$ in the offdiagonal portion

## Verifying Preallocation

- Use runtime option -info
- Output:
[proc \#] Matrix size: \%d X \%d; storage space: \%d unneeded, \%d used [proc \#] Number of mallocs during MatSetValues( ) is \%d
[merlin] mpirun ex2 -log_info
[0] MatAssemblyEnd_SeqAIJ:Matrix size: 56 X 56 ; storage space:
[0] 310 unneeded, 250 used
[0] MatAs semblyEnd_SeqAIJ : Number of mallocs during Matsetvalues () is 0
[0] MatassemblyEnd_SeqAIJ:Most nonzeros in any row is 5
[0] Mat_AIJ_CheckIñde: Found 56 nodes out of 56 rows. Not using Inode routine
[0] Mat_AIJ_CheckInode: Found 56 nodes out of 56 rows. Not using Inode routine
Norm of error 0.000156044 iterations 6
[0]PetscFinalize:PETSc successfully ended!


## Block and symmetric formats

- BAIJ
- Like AlJ, but uses static block size
- Preallocation is like AIJ, but just one index per block
- SBAIJ
- Only stores upper triangular part
- Preallocation needs number of nonzeros in upper triangular parts of on- and off-diagonal blocks
- MatSetValuesBlocked()
- Better performance with blocked formats
- Also works with scalar formats, if MatSetBlockSize () was called
- Variants MatSetValuesBlockedLocal(), MatSetValuesBlockedStencil()
- Change matrix format at runtime, don't need to touch assembly code


## Linear Solvers

Krylov Methods

- Using PETSc linear algebra, just add:
- KSPSetOperators(KSP ksp, Mat A, Mat M, MatStructure flag)
- KSPSolve(KSP ksp, Vec b, Vec x)
- Can access subobjects
- KSPGetPC(KSP ksp, PC *pc)
- Preconditioners must obey PETSc interface
- Basically just the KSP interface
- Can change solver dynamically from the command line, -ksp_type


## Nonlinear Solvers

Newton and Picard Methods

- Using PETSc linear algebra, just add:
- SNESSetFunction(SNES snes, Vec r, residualFunc, void *ctx)
- SNESSetJacobian(SNES snes, Mat A, Mat M, jacFunc, void *ctx)
- SNESSolve(SNES snes, Vec b, Vec x)
- Can access subobjects
- SNESGetKSP (SNES snes, KSP *ksp)
- Can customize subobjects from the cmd line
- Set the subdomain preconditioner to ILU with -sub_pc_type ilu


## Outline

## (5) Application Integration

(6) Performance and Scalability

Memory hierarchy
Profiling

## Bottlenecks of (Jacobian-free) Newton-Krylov



- Matrix assembly
- integration/fluxes: FPU
- insertion: memory/branching
- Preconditioner setup
- coarse level operators
- overlapping subdomains
- (incomplete) factorization
- Preconditioner application
- triangular solves/relaxation: memory
- coarse levels: network latency
- Matrix multiplication
- Sparse storage: memory
- Matrix-free: FPU

Globalization

## Scalability definitions

Strong scalability

- Fixed problem size
- execution time $T$ inversely proportional to number of processors $p$


Weak scalability

- Fixed problem size per processor
- execution time constant as problem size increases



## Scalability Warning

## The easiest way to make software scalable is to make it sequentially inefficient. (Gropp 1999)

- We really want efficient software
- Need a performance model
- memory bandwidth and latency
- algorithmically critical operations (e.g. dot products, scatters)
- floating point unit
- Scalability shows marginal benefit of adding more cores, nothing more
- Constants hidden in the choice of algorithm
- Constants hidden in implementation

Intel Clowertown


- 75 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)

AMD Opteron


- 17 Gflop/s
- 21 GB/s bandwidth
- thread + instruction level parallelism
- vector instructions (SSE)


## Hardware capabilities

Floating point unit
Recent Intel: each core can issue

- 1 packed add (latency 3)
- 1 packed mult (latency 5)
- One can include an aligned read
- Out of Order execution
- Peak: 10 Gflop/s (double)


## Memory

- ~ 250 cycle latency
- $5.3 \mathrm{~GB} / \mathrm{s}$ bandwidth
- 1 double load / 3.7 cycles
- Pay by the cache line ( $32 / 64 \mathrm{~B}$ )
- L2 cache: $\sim 10$ cycle latency



Intel Clovertown

AMD Opteron

* Model faster cores by commenting out the inner kernel calls, but still performing all DMAs
* Enabled 1x1 BCOO
* ~16\% improvement
+better Cell implementation +More DIMMs(opteron), +FW fix, array padding(N2), etc... +Cache/TLB Blocking +Compression +SW Prefetching +NUMA/Affinity Naïve Pthreads

Naïve

## Sparse Mat-Vec performance model

## Compressed Sparse Row format (AlJ)

For $m \times n$ matrix with $N$ nonzeros
ai row starts, length $m+1$
aj column indices, length $N$, range $[0, n-1)$
aa nonzero entries, length $N$, scalar values

$$
\begin{array}{ll}
\text { for }(i=0 ; i<m ; i++) \\
y \leftarrow y+A x & \text { for }(j=a i[i] ; j<a i[i+1] ; j++) \\
y[i]+=a a[j] * x[a j[j]] ;
\end{array}
$$

- One add and one multiply per inner loop
- Scalar aa [j] and integer aj[j] only used once
- Must load aj [j] to read from x, may not reuse cache well


## Memory Bandwidth

- Stream Triad benchmark (GB/s): $w \leftarrow \alpha x+y$

| Threads <br> per Node | Cray XT5 |  | BlueGene/P |  |
| :--- | ---: | :--- | :--- | :--- | :--- |
|  | 8448 | 8448 | 2266 | 2266 |
| 2 | 10112 | 5056 | 4529 | 2264 |
| 4 | 10715 | 2679 | 8903 | 2226 |
| 6 | 10482 | 1747 | - | - |
|  |  | Per Core | Total |  |

- Sparse matrix-vector product: 6 bytes per flop

| Machine | Peak MFlop/s per core | Bandwidth (GB/s) |  | Ideal MFlop/s |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Required | Measured |  |
| Blue Gene/P | 3,400 | 20.4 | 2.2 | 367 |
| XT5 | 10,400 | 62.4 | 1.7 | 292 |

## Optimizing Sparse Mat-Vec

- Order unknows so that vector reuses cache (Reverse Cuthill-McKee)
- Optimal: $\frac{(2 \text { flops) (bandwidth) }}{\text { sizeof (Scalar) }+ \text { sizeof (Int) }}$
- Usually improves strength of ILU and SOR
- Coalesce indices for adjacent rows with same nonzero pattern (Inodes)
- Optimal: $\frac{(2 \text { flops }) \text { (bandwidth) }}{\text { sizeof (Scalar) }+ \text { sizeof (Int)/i }}$
- Can do block SOR (much stronger than scalar SOR)
- Default in PETSc, turn off with -mat_no_inode
- Requires ordering unknowns so that fields are interlaced, this is (much) better for memory use anyway
- Use explicit blocking, hold one index per block (BAIJ format)
- Optimal: $\frac{(2 \text { flops)(bandwidth) }}{\text { sizeof (Scalar) }+ \text { sizeof (Int)/b }{ }^{2}}$
- Block SOR and factorization
- Symbolic factorization works with blocks (much cheaper)
- Very regular memory access, unrolled dense kernels
- Faster insertion: MatSetValuesBlocked()


## Performance of assembled versus unassembled




- Arithmetic intensity for $Q_{p}$ elements
- $\leq \frac{1}{4}$ (assembled), $\approx 10$ (unassembled), $\approx 4$ (hardware)
- store Jacobian information at Quass quadrature points, can use AD


## Optimizing unassembled Mat-Vec

- High order spatial discretizations do more work per node
- Dense tensor product kernel (like small BLAS3)
- Cubic $\left(Q_{3}\right)$ elements in 3D can achieve $>70 \%$ of peak FPU (compare to $<5 \%$ for assembled operators on multicore)
- Can store Jacobian information at quadrature points (usually pays off for $Q_{2}$ and higher in 3D)
- Spectral, WENO, DG, FD
- Often still need an assembled operator for preconditioning
- Boundary element methods
- Dense kernels
- Fast Multipole Method (FMM)
- Useful have code to assemble matrices: try out new methods quickly


## Optimizing unassembled Mat-Vec

- High order spatial discretizations do more work per node
- Dense tensor product kernel (like small BLAS3)
- Cubic $\left(Q_{3}\right)$ elements in 3D can achieve $>70 \%$ of peak FPU (compare to $<5 \%$ for assembled operators on multicore)
- Can store Jacobian information at quadrature points (usually pays off for $Q_{2}$ and higher in 3D)
- Spectral, WENO, DG, FD
- Often still need an assembled operator for preconditioning
- Boundary element methods
- Dense kernels
- Fast Multipole Method (FMM)
- Preconditioning requires more effort
- Useful have code to assemble matrices: try out new methods quickly


## Profiling

- Use -log_summary for a performance profile
- Event timing
- Event flops
- Memory usage
- MPI messages
- Call PetscLogStagePush() and PetscLogStagePop()
- User can add new stages
- Call PetscLogEventBegin() and PetscLogEventEnd()
- User can add new events
- Call PetscLogFlops () to include your flops


## Reading -log_summary

|  | Max | Max/Min | Avg | Total |
| :--- | :---: | :---: | :---: | :---: |
| Time (sec): | $1.548 \mathrm{e}+02$ | 1.00122 | $1.547 \mathrm{e}+02$ |  |
| Objects: | $1.028 \mathrm{e}+03$ | 1.00000 | $1.028 \mathrm{e}+03$ |  |
| Flops: | $1.519 \mathrm{e}+10$ | 1.01953 | $1.505 \mathrm{e}+10$ | $1.204 \mathrm{e}+11$ |
| Flops/sec: | $9.814 \mathrm{e}+07$ | 1.01829 | $9.727 \mathrm{e}+07$ | $7.782 \mathrm{e}+08$ |
| MPI Messages: | $8.854 \mathrm{e}+03$ | 1.00556 | $8.819 \mathrm{e}+03$ | $7.055 \mathrm{e}+04$ |
| MPI Message Lengths: | $1.936 \mathrm{e}+08$ | 1.00950 | $2.185 \mathrm{e}+04$ | $1.541 \mathrm{e}+09$ |
| MPI Reductions: | $2.799 \mathrm{e}+03$ | 1.00000 |  |  |

- Also a summary per stage
- Memory usage per stage (based on when it was allocated)
- Time, messages, reductions, balance, flops per event per stage
- Always send -log_summary when asking performance questions on mailing list


## Communication Costs

- Reductions: usually part of Krylov method, latency limited
- VecDot
- VecMDot
- VecNorm
- MatAssemblyBegin
- Change algorithm (e.g. IBCGS)
- Point-to-point (nearest neighbor), latency or bandwidth
- VecScatter
- MatMult
- PCApply
- MatAssembly
- SNESFunctionEval
- SNESJacobianEval
- Compute subdomain boundary fluxes redundantly
- Ghost exchange for all fields at once
- Better partition


## Outline

(7) Representative examples and algorithms

Hydrostatic Ice
Driven cavity
(8) Hard problems
(9) What's new for PETSc-3.2?

Improved multiphysics support
Time integration
Variational inequalities

## Hydrostatic equations for ice sheet flow

- Valid when $w_{x} \ll u_{z}$, independent of basal friction (Schoof\&Hindmarsh 2010)
- Eliminate $p$ and $w$ from Stokes by incompressibility: 3D elliptic system for $u=(u, v)$

$$
\begin{aligned}
& -\nabla \cdot\left[\eta\left(\begin{array}{ccc}
4 u_{x}+2 v_{y} & u_{y}+v_{x} & u_{z} \\
u_{y}+v_{x} & 2 u_{x}+4 v_{y} & v_{z}
\end{array}\right)\right]+\rho g \bar{\nabla} h=0 \\
& \eta(\theta, \gamma)=\frac{B(\theta)}{2}\left(\gamma_{0}+\gamma\right)^{\frac{1-n}{2 n}}, \quad \mathfrak{n} \approx 3 \\
& \quad \gamma=u_{x}^{2}+v_{y}^{2}+u_{x} v_{y}+\frac{1}{4}\left(u_{y}+v_{x}\right)^{2}+\frac{1}{4} u_{z}^{2}+\frac{1}{4} v_{z}^{2}
\end{aligned}
$$

and slip boundary $\sigma \cdot n=\beta^{2} u$ where

$$
\begin{aligned}
\beta^{2}\left(\gamma_{b}\right) & =\beta_{0}^{2}\left(\varepsilon_{b}^{2}+\gamma_{b}\right)^{\frac{\mathfrak{m}-1}{2}}, \quad 0<\mathfrak{m} \leq 1 \\
\gamma_{b} & =\frac{1}{2}\left(u^{2}+v^{2}\right)
\end{aligned}
$$

- $Q_{1}$ FEM with Newton-Krylov-Multigrid solver in PETSc:
$f=-=1 \quad-3648$
$-2784$.

1921. 
1922. 

$-192.8$

## Some Multigrid Options

- -dmmg_grid_sequencce: [FALSE]

Solve nonlinear problems on coarse grids to get initial guess

- -pc_mg_galerkin: [FALSE]

Use Galerkin process to compute coarser operators

- -pc_mg_type: [FULL]
(choose one of) MULTIPLICATIVE ADDITIVE FULL KASKADE
- -mg_coarse_\{ksp,pc\}_*
control the coarse-level solver
- -mg_levels_\{ksp, pc\}_*
control the smoothers on levels
- -mg_levels_3_\{ksp,pc\}_* control the smoother on specific level
- These also work with ML's algebraic multigrid.


## What is this doing?

- mpiexec -n 4 ./ex48 -M 16 -P 2 -da_refine_hierarchy_x 1,8,8 -da_refine_hierarchy_y 2,1,1 -da_refine_hierarchy_z 2,1,1 -dmmg_grid_sequence 1 -dmmg_view -log_summary
-ksp_converged_reason -ksp_gmres_modifiedgramschmidt
-ksp_monitor -ksp_rtol 1e-2
-pc_mg_type multiplicative
-mg_coarse_pc_type lu -mg_levels_0_pc_type lu
-mg_coarse_pc_factor_mat_solver_package mumps
-mg_levels_0_pc_factor_mat_solver_package mumps
-mg_levels_1_sub_pc_type cholesky
-snes_converged_reason -snes_monitor -snes_stol 1e-12
-thi_L 80e3 -thi_alpha 0.05 -thi_friction_m 0.3
-thi_hom x -thi_nlevels 4
- What happens if you remove -dmmg_grid_sequence?
- What about solving with block Jacobi, ASM, or algebraic multigrid?


## SNES Example

Driven Cavity

Solution Components

velocity: u

vorticity:

velocity: v

temperature: T

- Velocity-vorticity formulation
- Flow driven by lid and/or bouyancy
- Logically regular grid
- Parallelized with DA
- Finite difference discretization
- Authored by David Keyes


## SNES Example

Driven Cavity Application Context
/* Collocated at each node */
typedef struct \{
PetscScalar u,v,omega, temp;
\} Field;
typedef struct \{
/* physical parameters */
PassiveReal lidvelocity, prandtl, grashof; /* color plots of the solution */
PetscTruth draw_contours;
\} AppCtx;

## SNES Example

Driven Cavity Residual Evaluation

DrivenCavityFunction (SNES snes, Vec X, Vec F, void *ptr) \{
AppCtx $\quad *$ user $=($ AppCtx $*)$ ptr;
/* local starting and ending grid points */
Petsclnt istart, iend, jstart, jend;
PetscScalar *f; /* local vector data */
PetscReal grashof $=$ user $\rightarrow$ grashof;
PetscReal prandtl = user $\rightarrow$ prandtl;
PetscErrorCode ierr;
/* Code to communicate nonlocal ghost point data */
VecGetArray (F, \&f);
/* Code to compute local function components */
VecRestoreArray (F, \&f);
return 0;
\}

## SNES Example

## Better Driven Cavity Residual Evaluation

PetscErrorCode DrivenCavityFuncLocal(DALocalInfo *info,
Field $* * x$, Field $* * f$, void $*$ ctx) \{

```
    /* Handle boundaries */
    /* Compute over the interior points */
    for (j = info ->ys; j < info ->ys+info ->ym; j++) \{
    for (i \(=\) info \(\rightarrow x s ; i<i n f o \rightarrow x s+i n f o \rightarrow x m ; i++\) ) \{
    /* convective coefficients for upwinding */
    /* U velocity */
    u \(=x[j][i] . u\);
    uxx \(\quad=(2.0 * u-x[j][i-1] . u-x[j][i+1] . u) * h y d h x\);
    uyy \(\quad=(2.0 * u-x[j-1][i] . u-x[j+1][i] . u) * h x d h y\);
    upw \(=0.5 *(x[j+1][i]\).omega \(-x[j-1][i]\).omega \() * h x\)
    f[j][i].u = uxx + uyy - upw;
    /* V velocity, Omega, Temperature */
```

\$PETSC_DIR/src/snes/examples/tutorials/ex19.c

## Running the driven cavity

- ./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- Uh oh, we have convergence problems
- Run with -snes_monitor_convergence
- Does -dmma arid sequence help?


## Running the driven cavity

- ./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- ./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -snes_monitor -dmmg_view -nlevels 3
- Uh oh, we have convergence problems
- Run with -snes_monitor_convergence
- Does -dmmg_grid_sequence help?


## Why isn't SNES converging?

- The Jacobian is wrong (maybe only in parallel)
- Check with -snes_type test and-snes_mf_operator -pc_type lu
- The linear system is not solved accurately enough
- Check with -pc_type lu
- Check -ksp_monitor_true_residual, try right preconditioning
- The Jacobian is singular with inconsistent right side
- Use MatNullSpace to inform the KSP of a known null space
- Use a different Krylov method or preconditioner
- The nonlinearity is just really strong
- Run with -info or -snes_ls_monitor (petsc-dev) to see line search
- Try using trust region instead of line search -snes_type tr
- Try grid sequencing if possible
- Use a continuation


## Globalizing the lid-driven cavity

## Pseudotransient continuation continuation ( $\Psi t c$ )

- Do linearly implicit backward-Euler steps, driven by steady-state residual
- Clever way to adjust step sizes to retain quadratic convergence in terminal phase
- Implemented in src/snes/examples/tutorials/ex27.c
- \$ make runex27
- Make the method linearly implicit: -snes_max_it 1
- Compare required number of linear iterations
- Try increasing-lidvelocity, -grashof, and problem size
- Coffey, Kelley, and Keyes, Pseudotransient continuation and differential algebraic equations, SIAM J. Sci. Comp, 2003.


## Outline

(7) Representative examples and algorithms Hydrostatic Ice Driven cavity

8 Hard problems

(9) What's new for PETSc-3.2?

Improved multiphysics support
Time integration
Variational inequalities

## Splitting for Multiphysics

$$
\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
f \\
g
\end{array}\right]
$$

- Relaxation: -pc_fieldsplit_type
[additive, multiplicative, symmetric_multiplicative]

$$
\left[\begin{array}{ll}
A & \\
& D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1} \quad\left[\begin{array}{ll}
A & \\
& 1
\end{array}\right]^{-1}\left(1-\left[\begin{array}{ll}
A & B \\
& 1
\end{array}\right]\left[\begin{array}{ll}
A & \\
C & D
\end{array}\right]^{-1}\right)
$$

- Gauss-Seidel inspired, works when fields are loosely coupled
- Factorization: -pc_fieldsplit_type schur

$$
\left[\begin{array}{ll}
A & B \\
& S
\end{array}\right]^{-1}\left[\begin{array}{cc}
1 & \\
C A^{-1} & 1
\end{array}\right]^{-1}, \quad S=D-C A^{-1} B
$$

- robust (exact factorization), can often drop lower block
- how to precondition $S$ which is usually dense?
- interpret as differential operators, use approximate commutators


## Coupled approach to multiphysics

- Smooth all components together
- Block SOR is the most popular
- Block ILU often more robust (e.g. transport/anisotropy)
- Vanka field-split smoothers or for saddle-point problems
- Scaling between fields is critical
- Indefiniteness
- Make smoothers and interpolants respect inf-sup condition
- Difficult to handle anisotropy
- Exotic interpolants for Helmholtz
- Transport
- Define smoother in terms of first-order upwind discretization (h-ellipticity)
- Evaluate residuals using high-order discretization
- Use Schur field-split: "parabolize" at top level or for smoother on levels
- Multigrid inside field-split or field-split inside multigrid
- Open research area, hard to write modular software


## "Physics-based" preconditioners (semi-implicit method)

Shallow water with stiff gravity wave
$h$ is hydrostatic pressure, $u$ is velocity, $\sqrt{g h}$ is fast wave speed

Semi-implicit method

$$
\begin{gathered}
h_{t}-(u h)_{x}=0 \\
(u h)_{t}+\left(u^{2} h+\frac{1}{2} g h^{2}\right)_{x}=0
\end{gathered}
$$

Suppress spatial discretization, discretize in time, implicitly for the terms contributing to the gravity wave

$$
\begin{gathered}
\frac{h^{n+1}-h^{n}}{\Delta t}+(u h)_{x}^{n+1}=0 \\
\frac{(u h)^{n+1}-(u h)^{n}}{\Delta t}+\left(u^{2} h\right)_{x}^{n}+g\left(h^{n} h^{n+1}\right)_{x}=0
\end{gathered}
$$

Rearrange, eliminating $(u h)^{n+1}$

$$
\frac{h^{n+1}-h^{n}}{\Delta t}-\Delta t\left(g h^{n} h_{x}^{n+1}\right)_{x}=-S_{x}^{n}
$$

## Delta form

- Preconditioner should work like the Newton step: $-F(x) \mapsto \boldsymbol{\delta} x$
- Recast semi-implicit method in delta form

$$
\frac{\delta h}{\Delta t}+(\delta u h)_{x}=-F_{0}, \quad \frac{\delta u h}{\Delta t}+g h^{n}(\delta h)_{x}=-F_{1}, \quad \widehat{J}=\left(\begin{array}{cc}
\frac{1}{\Delta t} & \nabla \cdot \\
g h^{n} \nabla & \frac{1}{\Delta t}
\end{array}\right)
$$

- Eliminate $\delta u h$

$$
\frac{\delta h}{\Delta t}-\Delta t\left(g h^{n}(\delta h)_{x}\right)_{x}=-F_{0}+\left(\Delta t F_{1}\right)_{x}, \quad S \sim \frac{1}{\Delta t}-g \Delta t \nabla \cdot h^{n} \nabla
$$

- Solve for $\delta h$, then evaluate

$$
\delta u h=-\Delta t\left[g h^{n}(\delta h)_{x}-F_{1}\right]
$$

- Fully implicit solver
- Is nonlinearly consistent (no splitting error), can be high-order in time
- Uses existing code when a semi-implicit method has been implemented
- Allows efficient bifurcation analysis, steady-state analysis


## Outline

(7) Representative examples and algorithms Hydrostatic Ice Driven cavity
(8) Hard problems
(9) What's new for PETSc-3.2?

Improved multiphysics support
Time integration
Variational inequalities

## Multiphysics problems

## Examples

- Saddle-point problems (e.g. incompressibility, contact)
- Stiff waves (e.g. low-Mach combustion)
- Mixed type (e.g. radiation hydrodynamics, ALE free-surface flows)
- Multi-domain problems (e.g. fluid-structure interaction)
- Full space PDE-constrained optimization


## Software/algorithmic considerations

- Separate groups develop different "physics" components
- Do not know a priori which methods will have good algorithmic properties
- Achieving high throughput is more complicated
- Multiple time and/or spatial scales
- Splitting methods are delicate, often not in asymptotic regime
- Strongest nonlinearities usually non-stiff: prefer explicit for TVD


## The Great Solver Schism: Monolithic or Split?

## Split

Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (need unassembled matrices)
- Coupled multigrid

X Need to understand local spectral and compatibility properties of the coupled system

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
- approximate commutators SIMPLE, PCD, LSC
- segregated smoothers
- Augmented Lagrangian
- "parabolization" for stiff waves
$X$ Need to understand global coupling strengths
- Preferred data structures depend on which method is used.
- Interplay with geometric multigrid.


## Multi-physics coupling in PETSc

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting


## Multi-physics coupling in PETSc

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting


## Multi-physics coupling in PETSc

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting


## Multi-physics coupling in PETSc

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting


## Multi-physics coupling in PETSc

- package each "physics" independently
- solve single-physics and coupled problems
- semi-implicit and fully implicit
- reuse residual and Jacobian evaluation unmodified
- direct solvers, fieldsplit inside multigrid, multigrid inside fieldsplit without recompilation
- use the best possible matrix format for each physics (e.g. symmetric block size 3)
- matrix-free anywhere
- multiple levels of nesting

- Primarily for assembly
- B is not guaranteed to implement MatMult
- The communicator for $B$ is not specified, only safe to use non-collective ops (unless you check)
- IS represents an index set, includes a block size and communicator
- MatSetValuesBlockedLocal () is implemented
- MatNest returns nested submatrix, no-copy
- No-copy for Neumann-Neumann formats (unassembled across procs, e.g. BDDC, FETI-DP)
- Most other matrices return a lightweight proxy Mat
- COMM_SELF
- Values not copied, does not implement MatMult
- Translates indices to the language of the parent matrix
- Multiple levels of nesting are flattened


## IMEX time integration in PETSc-3.2

- Additive Runge-Kutta IMEX methods

$$
\begin{aligned}
G(t, x, \dot{x}) & =F(t, x) \\
J_{\alpha} & =\alpha G_{\dot{x}}+G_{x}
\end{aligned}
$$

- User provides:
- FormRHSFunction (ts, $t, x, F$, void *ctx);
- FormIFunction (ts, $t, x, \dot{x}, G$, void *ctx) ;
- FormIJacobian (ts $\left., t, x, \dot{x}, \alpha, J, J_{p}, m s t r, \operatorname{void} * c t x\right)$;
- L-stable DIRK for stiff part $G$
- Choice of explicit method, e.g. SSP
- Orders 2 through 5 , embedded error estimates
- Dense output, hot starts for Newton
- Can use more accurate methods if $G$ is linear
- Can use preconditioner from classical "semi-implicit" methods
- Eliminate many interface quirks
- Single step interface so user can have own time loop


## Variational Inequalities

- Supports inequality and box constraints on solution variables.
- Solution methods
- Semismooth Newton
- reformulate problem as a non-smooth system, Newton on subdifferential
- Newton step solves diagonally perturbed systems
- Active set
- similar linear algebra to solving PDE
- sometimes slower convergence or "bouncing"
- composes with multigrid and field-split
- demonstrated optimality for phase-field problems with millions of degrees of freedom


## Conclusions

## PETSc can help you

- solve algebraic and DAE problems in your application area
- rapidly develop efficient parallel code, can start from examples
- develop new solution methods and data structures
- debug and analyze performance
- advice on software design, solution algorithms, and performance
- petsc-\{users, dev, maint\}@mcs.anl.gov


## You can help PETSc

- report bugs and inconsistencies, or if you think there is a better way
- tell us if the documentation is inconsistent or unclear
- consider developing new algebraic methods as plugins, contribute if your idea works


## References

- Knoll and Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, JCP, 2004.
- Elman et. al., A Taxonomy and Comparison of Parallel Block Multi-Level Preconditioners for the Incompressible Navier-Stokes Equations, JCP, 2008.
- Wan, Chan, and Smith, An Energy-minimizing Interpolation for Robust Multigrid Methods, SIAM J. Sci. Comp, 2000.
- Gropp, Kaushik, Keyes, Smith, Performance Modeling and Tuning of an Unstructured Mesh CFD Application, Supercomputing, 2000.
- Gropp, Exploiting Existing Software in Libraries: Successes, Failures, and Reasons Why, OO methods for interoperable scientific and engineering computing, 1999.
- Upcoming report from ICiS Multiphysics workshop, July 31 - August 5

