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Outline
• Introduction

– MPI-1 Status, MPI-2 Status
• Life, 1D Decomposition

– point-to-point
– checkpoint/restart

• stdout
• MPI-IO

– RMA
• fence
• post/start/complete/wait

• Life, 2D Decomposition
– point-to-point
– RMA
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MPI-1

• MPI is a message-passing library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

• MPI was defined (1994) by a broadly-based group of parallel 
computer vendors, computer scientists, and applications 
developers.
– 2-year intensive process

• Implementations appeared quickly and now MPI is taken for 
granted as vendor-supported software on any parallel machine.

• Free, portable implementations exist for clusters (MPICH, LAM, 
OpenMPI) and other environments (MPICH)
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MPI-2

• Same process of definition by MPI Forum
• MPI-2 is an extension of MPI

– Extends the message-passing model.
• Parallel I/O
• Remote memory operations (one-sided)
• Dynamic process management

– Adds other functionality
• C++ and Fortran 90 bindings

– similar to original C and Fortran-77 bindings
• External interfaces
• Language interoperability
• MPI interaction with threads
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MPI-2 Implementation Status

• Most parallel computer vendors now support MPI-2 on 
their machines
– Except in some cases for the dynamic process 

management functions, which require interaction 
with other system software 

• Cluster MPIs, such as MPICH2 and LAM, support most 
of MPI-2 including dynamic process management

• Our examples here have all been run on MPICH2
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Our Approach in this Tutorial

• Example driven
– Structured data (Life)

• Show solutions that use the MPI-2 support for parallel I/O 
and RMA
– Walk through actual code

• We assume familiarity with MPI-1
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Conway’s Game of Life

• A cellular automata
– Described in 1970 Scientific American
– Many interesting behaviors; see:

• http://www.ibiblio.org/lifepatterns/october1970.html

• Program issues are very similar to those for codes that 
use regular meshes, such as PDE solvers
– Allows us to concentrate on the MPI issues
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Rules for Life

• Matrix values A(i,j) initialized to 1 (live) or 0 (dead)
• In each iteration, A(i,j) is set to

– 1(live) if either
• the sum of the values of its 8 neighbors is 3, or
• the value was already 1 and the sum of its 8 neighbors is 2 

or 3
– 0 (dead) otherwise
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Implementing Life

• For the non-parallel version, we:
– Allocate a 2D matrix to hold state

• Actually two matrices, and we will swap them between steps
– Initialize the matrix

• Force boundaries to be “dead”
• Randomly generate states inside

– At each time step:
• Calculate each new cell state based on previous cell states 

(including neighbors)
• Store new states in second matrix
• Swap new and old matrices
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Steps in Designing the Parallel Version

• Start with the “global” array as the main object
– Natural for output – result we’re computing

• Describe decomposition in terms of global array
• Describe communication of data, still in terms of the 

global array
• Define the “local” arrays and the communication 

between them by referring to the global array
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Step 1: Description of Decomposition

• By rows (1D or row-block)
– Each process gets a group of adjacent rows

• Later we’ll show a 2D decomposition

Columns

R
ow

s
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Step 2: Communication

• “Stencil” requires read access to data from neighbor cells

• We allocate extra space on each process to store neighbor cells
• Use send/recv or RMA to update prior to computation 
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Step 3: Define the Local Arrays

• Correspondence between the local and global array
• “Global” array is an abstraction; there is no one global 

array allocated anywhere
• Instead, we compute parts of it (the local arrays) on 

each process
• Provide ways to output the global array by combining 

the values on each process (parallel I/O!)



14

Boundary Regions

• In order to calculate next state of cells in edge rows, 
need data from adjacent rows

• Need to communicate
these regions at each
step
– First cut: use isend

and irecv
– Revisit with RMA later
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Life Point-to-Point Code Walkthrough

• Points to observe in the code:
– Handling of command-line arguments
– Allocation of local arrays
– Use of a routine to implement halo 

exchange
•Hides details of exchange

See mlife.c pp. 1-8 for code example.
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Note: Parsing Arguments

• MPI standard does not guarantee that command line arguments 
will be passed to all processes.
– Process arguments on rank 0
– Broadcast options to others

• Derived types allow one bcast to handle most args
– Two ways to deal with strings

• Big, fixed-size buffers
• Two-step approach: size first, data second (what we do in 

the code)

See mlife.c pp. 9-10 for code example.
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Point-to-Point Exchange

• Duplicate communicator to ensure communications do 
not conflict

• Non-blocking sends and receives allow implementation 
greater flexibility in passing messages

See mlife-pt2pt.c pp. 1-3 for code example.
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Parallel I/O and Life



19

Supporting Checkpoint/Restart

• For long-running applications, the cautious user checkpoints
• Application-level checkpoint involves the application saving 

its own state
– Portable!

• A canonical representation is preferred
– Independent of number of processes

• Restarting is then possible
– Canonical representation aids restarting with a different 

number of processes
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Defining a Checkpoint

• Need enough to restart
– Header information

• Size of problem (e.g. matrix dimensions)
• Description of environment (e.g. input parameters)

– Program state
• Should represent the global (canonical) view of the 

data
• Ideally stored in a convenient container

– Single file!
• If all processes checkpoint at once, naturally a parallel, 

collective operation



21

Life Checkpoint/Restart API

• Define an interface for checkpoint/restart for the row-block 
distributed Life code

• Five functions:
– MLIFEIO_Init
– MLIFEIO_Finalize
– MLIFEIO_Checkpoint
– MLIFEIO_Can_restart
– MLIFEIO_Restart

• All functions are collective
• Once the interface is defined, we can implement it for 

different back-end formats
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Life Checkpoint

• MLIFEIO_Checkpoint(char    *prefix,
int    **matrix,
int      rows,
int      cols,
int      iter,
MPI_Info info);

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)



23

Life Checkpoint (Fortran)

• MLIFEIO_Checkpoint(prefix, matrix,
rows, cols, iter, info )

character*(*) prefix
integer       rows, cols, iter
integer       matrix(rows,cols)
integer       info

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)
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stdio Life Checkpoint Code 
Walkthrough

• Points to observe
– All processes call checkpoint routine

• Collective I/O from the viewpoint of the program
– Interface describes the global array
– Output is independent of the number of processes

See mlife-io-stdout.c pp. 1-2 for code example.
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Life stdout “checkpoint”

• The first implementation is one that simply prints out the 
“checkpoint” in an easy-to-read format

• MPI standard does not specify that all stdout will be 
collected in any particular way
– Pass data back to rank 0 for printing
– Portable!
– Not scalable, but ok for the purpose of stdio

See mlife-io-stdout.c pp. 3 for code example.
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Describing Data

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

MPI_Type_vector(count = myrows, 
blklen = cols, stride = cols+2, MPI_INT, &vectype);

– Second type gets memory offset right
MPI_Type_hindexed(count = 1, len = 1,

disp = &matrix[1][1], vectype, &type);

matrix[1][0..cols-1]

matrix[myrows][0..cols-1]

See mlife-io-stdout.c pp. 4-6 for code example.
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Describing Data (Fortran)

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

Call MPI_Type_vector(count = myrows, 
blklen = cols, stride = cols+2, MPI_INTEGER, vectype, ierr )

Matrix(1,0:cols-1)

Matrix(myrows,0:cols-1)
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Life Checkpoint/Restart Notes

• MLIFEIO_Init
– Duplicates communicator to avoid any collisions with other 

communication
• MLIFEIO_Finalize

– Frees the duplicated communicator
• MLIFEIO_Checkpoint and _Restart

– MPI_Info parameter is used for tuning I/O behavior

Note: Communicator duplication may not always be necessary, but 
is good practice for safety

See mlife-io-stdout.c pp. 1-8 for code example.
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Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel
– One process is responsible for all I/O
– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file 
system?
– We first look at how parallel I/O works in MPI
– We then implement a fully parallel checkpoint 

routine
• Because it will use the same interface, we can 
use it without changing the rest of the parallel life 
code
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Why MPI is a Good Setting for Parallel 
I/O

• Writing is like sending and reading is like receiving.
• Any parallel I/O system will need:

– collective operations
– user-defined datatypes to describe both memory and file 

layout
– communicators to separate application-level message 

passing from I/O-related message passing
– non-blocking operations

• I.e., lots of MPI-like machinery
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What does Parallel I/O Mean?

• At the program level:
– Concurrent reads or writes from multiple processes 

to a common file
• At the system level:

– A parallel file system and hardware that support 
such concurrent access
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Collective I/O and MPI
• A critical optimization in parallel I/O
• All processes (in the communicator) must call the collective I/O

function
• Allows communication of “big picture” to file system

– Framework for I/O optimizations at the MPI-IO layer 
• Basic idea: build large blocks, so that reads/writes in I/O system 

will be large
– Requests from different processes may be merged together
– Particularly effective when the accesses of different processes 

are noncontiguous and interleaved

Small individual
requests

Large collective
access
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Collective I/O Functions

• MPI_File_write_at_all, etc.
– _all indicates that all processes in the group specified 

by the communicator passed to MPI_File_open will 
call this function

– _at indicates that the position in the file is specified as 
part of the call; this provides thread-safety and clearer 
code than using a separate “seek” call

• Each process specifies only its own access information —
the argument list is the same as for the non-collective 
functions
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MPI-IO Life Checkpoint Code Walkthrough

• Points to observe
– Use of a user-defined MPI datatype to handle the 

local array
– Use of MPI_Offset for the offset into the file

• “Automatically” supports files larger than 2GB if 
the underlying file system supports large files

– Collective I/O calls
• Extra data on process 0

See mlife-io-mpiio.c pp. 1-2 for code example.
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Life MPI-IO Checkpoint/Restart

• We can map our collective checkpoint directly to a single 
collective MPI-IO file write: MPI_File_write_at_all
– Process 0 writes a little extra (the header)

• On restart, two steps are performed:
– Everyone reads the number of rows and columns from 

the header in the file with MPI_File_read_at_all
• Sometimes faster to read individually and bcast (see 

later example)
– If they match those in current run, a second collective 

call used to read the actual data
• Number of processors can be different

See mlife-io-mpiio.c pp. 3-6 for code example.
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Describing Header and Data

• Data is described just as before
• Create a struct wrapped around this to describe the 

header as well:
– no. of rows
– no. of columns
– Iteration no.
– data (using previous type)

See mlife-io-mpiio.c pp. 7 for code example.
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Placing Data in Checkpoint

Rows Columns Iteration

Global Matrix

File Layout

Note: We store the matrix in global, canonical order with no ghost cells.

See mlife-io-mpiio.c pp. 9 for code example.
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The Other Collective I/O Calls

•MPI_File_seek
•MPI_File_read_all
•MPI_File_write_all
•MPI_File_read_at_all
•MPI_File_write_at_all
•MPI_File_read_ordered
•MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O
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Portable Checkpointing
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Portable File Formats

• Ad-hoc file formats 
– Difficult to collaborate
– Cannot leverage post-processing tools 

• MPI provides external32 data encoding
• High level I/O libraries

– netCDF and HDF5
– Better solutions than external32

• Define a “container” for data
– Describes contents
– May be queried (self-describing)

• Standard format for metadata about the file
• Wide range of post-processing tools available
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File Interoperability in MPI-IO

• Users can optionally create files with a portable binary data 
representation

• “datarep” parameter to MPI_File_set_view
• native - default, same as in memory, not portable
• external32 - a specific representation defined in MPI, 

(basically 32-bit big-endian IEEE format), portable across 
machines and MPI implementations 

• internal – implementation-defined representation 
providing an implementation-defined level of portability
– Not used by anyone we know of…



42

Higher Level I/O Libraries

• Scientific applications work with structured data and desire 
more self-describing file formats

• netCDF and HDF5 are two popular “higher level” I/O libraries
– Abstract away details of file layout
– Provide standard, portable file formats
– Include metadata describing contents

• For parallel machines, these should be built on top of MPI-IO
– HDF5 has an MPI-IO option

• http://hdf.ncsa.uiuc.edu/HDF5/
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Parallel netCDF (PnetCDF)

• (Serial) netCDF
– API for accessing multi-dimensional data 

sets
– Portable file format
– Popular in both fusion and climate 

communities
• Parallel netCDF

– Very similar API to netCDF
– Tuned for better performance in today’s 

computing environments
– Retains the file format so netCDF and 

PnetCDF applications can share files
– PnetCDF builds on top of any MPI-IO 

implementation

ROMIOROMIO

PnetCDFPnetCDF

PVFS2PVFS2

Cluster

IBM MPIIBM MPI

PnetCDFPnetCDF

GPFSGPFS

IBM SP
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I/O in netCDF and PnetCDF

• (Serial) netCDF
– Parallel read

• All processes read the file independently
• No possibility of collective optimizations

– Sequential write
• Parallel writes are carried out by shipping 

data to a single process
• Just like our stdout checkpoint code

• PnetCDF
– Parallel read/write to shared netCDF file
– Built on top of MPI-IO which utilizes optimal 

I/O facilities of the parallel file system and 
MPI-IO implementation

– Allows for MPI-IO hints and datatypes for 
further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System
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Life PnetCDF Checkpoint/Restart

• Third implementation of MLIFEIO interface
• Stores matrix as a two-dimensional array of integers in the 

netCDF file format
– Same canonical ordering as in MPI-IO version

• Iteration number stored as an attribute
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PnetCDF Life Checkpoint Code 
Walkthrough

• Points to observe
– Creating a netCDF file
– Defining dimensions
– Defining variables
– Storing attributes
– Discovering dimensions on restart

See mlife-io-pnetcdf.c pp. 1-6 for code example.
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Discovering Variable Dimensions

• Because netCDF is self-describing, applications can 
inquire about data in netCDF files:
err = ncmpi_inq_dimlen(ncid,

dims[0], &coldimsz);

• Allows us to discover the dimensions of our matrix at 
restart time

See mlife-io-pnetcdf.c pp. 7-8 for code example.
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Exchanging Data with RMA
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Revisiting Mesh Communication

• Recall how we designed the parallel implementation
– Determine source and destination data

• Do not need full generality of send/receive
– Each process can completely define what data needs to 

be moved to itself, relative to each processes local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the 
neighbor processes
• Each process can “put” data to its neighbors
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Remote Memory Access
• Separates data transfer from indication of completion 

(synchronization)
• In message-passing, they are combined

store
send receive

load

Proc 0           Proc 1 Proc 0            Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or
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Remote Memory Access in MPI-2
(also called One-Sided Operations)

• Goals of MPI-2 RMA Design
– Balancing efficiency and portability across a wide class 

of architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues:  cache 

coherence, sequential consistency



52

Remote Memory Access Windows and 
Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

=  address spaces =  window object

window
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Basic RMA Functions for Communication 

• MPI_Win_create exposes local memory to RMA operation by 
other processes in a communicator
– Collective operation 
– Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote memory
• MPI_Get retrieves data from remote memory into local memory
• MPI_Accumulate updates remote memory using local values
• Data movement operations are non-blocking
• Subsequent synchronization on window object needed to 

ensure operation is complete
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Performance of RMA

Caveats: On SGI, MPI_Put uses specially allocated memory
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Advantages of RMA Operations

• Can do multiple data transfers with a single 
synchronization operation
– like BSP model

• Bypass tag matching
– effectively precomputed as part of remote offset

• Some irregular communication patterns can be more 
economically expressed

• Can be significantly faster than send/receive on 
systems with hardware support for remote memory 
access, such as shared memory systems
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Irregular Communication Patterns with RMA

• If communication pattern is not known a priori, the 
send-recv model requires an extra step to determine 
how many sends-recvs to issue

• RMA, however, can handle it easily because only the 
origin or target process needs to issue the put or get 
call

• This makes dynamic communication easier to code in 
RMA
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RMA Window Objects

MPI_Win_create(base, size, disp_unit, info,
comm, win)

• Exposes memory given by (base, size) to RMA 
operations by other processes in comm

•win is window object used in RMA operations
•disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an 
array of elements of type type

– Allows use of array indices
– Allows heterogeneity
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RMA Communication Calls

•MPI_Put - stores into remote memory

•MPI_Get - reads from remote memory

•MPI_Accumulate - updates remote memory

• All are non-blocking:  data transfer is described, maybe 
even initiated,  but may continue after call returns

• Subsequent synchronization on window object is needed 
to ensure operations are complete
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Put, Get, and Accumulate

• MPI_Put(origin_addr, origin_count,
origin_datatype, 
target_rank, target_offset, 
target_count, target_datatype,
window)

• MPI_Get(  ... )

• MPI_Accumulate( ..., op, ... )

• op is as in MPI_Reduce, but no user-defined operations are 
allowed
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The Synchronization Issue

• Issue: Which value is retrieved?
– Some form of synchronization is required between 

local load/stores and remote get/put/accumulates
• MPI provides multiple forms

local
stores

MPI_Get
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Synchronization with Fence

Simplest methods for synchronizing on window objects:
• MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)
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Mesh Exchange Using MPI RMA

• Define the windows
– Why – safety, options for performance (later)

• Define the data to move
• Mark the points where RMA can start and where it 

must complete (e.g., fence/put/put/fence)
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Outline of 1D RMA Exchange

• Create Window object
• Computing target offsets
• Exchange operation



64

Computing the Offsets

• Offset to top ghost row
– 1

• Offset to bottom ghost row
– 1 + (# cells in a row)*(# of rows – 1)
– = 1 + (nx + 2)*(e – s + 2)

e

s

nx

a(1,e)

a(1,s)
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Fence Life Exchange Code Walkthrough

• Points to observe
– MPI_Win_fence is used to separate RMA accesses from 

non-RMA accesses
• Both starts and ends data movement phase

– Any memory may be used
• No special malloc or restrictions on arrays

– Uses same exchange interface as the point-to-point 
version

See mlife-fence.c pp. 1-3 for code example.
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Comments on Window Creation

• MPI-2 provides MPI_SIZEOF for Fortran users
– Not universally implemented
– Use MPI_Type_size for portability

• Using a displacement size corresponding to a basic 
type allows use of put/get/accumulate on 
heterogeneous systems
– Even when the sizes of basic types differ

• Displacement size also allows easier computation of 
offsets in terms of array index instead of byte offset
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More on Fence

• MPI_Win_fence is collective over the group of the 
window object

• MPI_Win_fence is used to separate, not just complete, 
RMA and local memory operations
– That is why there are two fence calls

• Why?
– MPI RMA is designed to be portable to a wide 

variety of machines, including those without cache 
coherent hardware (including some of the fastest 
machines made)

– See performance tuning for more info
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Scalable Synchronization with 
Post/Start/Complete/Wait
• Fence synchronization is not scalable because it is 

collective over the group in the window object
• MPI provides a second synchronization mode: Scalable 

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA 
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the 
memory window
– MPI_Win_post, MPI_Win_wait

• P/S/C/W allows synchronization to be performed only 
among communicating processes
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Synchronization with P/S/C/W

• Origin process calls MPI_Win_start and MPI_Win_complete
• Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)
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P/S/C/W Life Exchange Code 
Walkthrough

• Points to Observe
– Use of MPI group routines to describe neighboring 

processes
– No change to MPI_Put calls

• You can start with MPI_Win_fence, then switch to 
P/S/C/W calls if necessary to improve 
performance

See mlife-pscw.c pp. 1-4 for code example.
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Life with 2D Block-Block 
Decomposition
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Why Use a 2D Decomposition?

• More scalable due to reduced communication requirements
– We can see why with a simple communication model.
– Let the time to move n words from one process to another be

Tc = s + rn
– 1D decomposition time on p processes is

• T = 2(s+rn) + T1/p
– 2D decomposition time on p processes is

• T = 4(s + r(n/√p)) + T1/p
– For large n, 2D decomposition has much smaller 

communication time
– (Even stronger effect for 3D decompositions of 3D problems)
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Designing the 2D Decomposition

• Go back to global mesh view
• Define decomposition
• Define data to move
• Define local mesh
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Mesh Exchange for 2D Decomposition

• Creating the datatypes
• Using fence
• Using scalable synchronization
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Outline of 2D RMA Exchange

• Create Window Object
• Computing target offsets

– Even for less regular decompositions
• Creating Datatypes
• Exchange Operation
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Creating the Window

MPI_Win win;
int *localMesh;

/* nx is the number of (non-ghost) values in x, ny 
in y */
nx = ex - sx + 1;
ny = ey - sy + 1;
MPI_Win_create(localMesh, 

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI_INFO_NULL, 
MPI_COMM_WORLD, &win);

• Nothing new here
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Creating the Window (C++)

MPI::Win win;
int *localMesh;

// nx is the number of (non-ghost) values in x, 
// ny in y 
nx = ex - sx + 1;
ny = ey - sy + 1;
win = MPI::Win::Create(localMesh, 

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI::INFO_NULL, 
MPI::COMM_WORLD);

• Nothing new here
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Creating the Window (Fortran)

integer win, sizedouble, ierr
double precision a(sx-1:ex+1,sy-1:ey+1)

! nx is the number of (non-ghost) values in x, ny in y
nx = ex - sx + 1
ny = ey - sy + 1
call MPI_TYPE_SIZE(MPI_DOUBLE_PRECISION, sizedouble,&

ierr)
call MPI_WIN_CREATE(a, (ex-sx+3)*(ey-sy+3)*sizedouble, &

sizedouble, MPI_INFO_NULL, &
MPI_COMM_WORLD, win, ierr)

• Nothing new here
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Computing Target Offsets
• Similar to 1D, but may include some computation since neighbor 

with shared boundary still needs to know the size of the other 
dimension as that is needed to compute the offsets
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Creating Datatypes for Columns

MPI_Datatype coltype;
/* Vector type used on origin process */
MPI_Type_vector(1, ny, nx+2, MPI_INT, &coltype);
MPI_Type_commit(&coltype);

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride
# elements

• For both the left and right side
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Creating Datatypes for Columns (C++)

MPI::Datatype coltype;
// Vector type used on origin process
coltype = MPI::Type::Create_vector(1, ny, nx+2, MPI::INT );
coltype.Commit();

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride# elements

• For both the left and right side
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Creating Datatypes for Columns 
(Fortran)

integer coltype
! Vector type used on origin process
call MPI_TYPE_VECTOR(1, ny, nx+2,&

MPI_DOUBLE_PRECISION, &
coltype, ierr)

call MPI_TYPE_COMMIT(coltype, ierr)

sy

ey

nx

ny

sx ex

Stride
# elements

• For both the left and right side



83

2D Life Code Walkthrough

• Points to observe
– More complicated than 1D!
– Communication of noncontiguous regions uses derived 

datatypes
• For the RMA version (mlife2d-fence)

– Be careful in determining the datatype for the target process
– Be careful in determining the offset
– MPI_Win_fence must return before data may be used on 

target

See mlife2d.c, mlife2d-pt2pt.c, mlife2d-fence.c for code examples.
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Conclusions
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Designing Parallel Programs

• Common theme – think about the “global” object, then 
see how MPI can help you

• Also specify the largest amount of communication or 
I/O between “synchronization points”
– Collective and noncontiguous I/O
– RMA
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Summary

• MPI-2 provides major extensions to the original message-
passing model targeted by MPI-1.

• MPI-2 can deliver to libraries and applications portability 
across a diverse set of environments. 

• Implementations are here now.
• Sources:

– The MPI standard documents are available at
http://www.mpi-forum.org

– 2-volume book:  MPI - The Complete Reference, available 
from MIT Press

– Using MPI (Gropp, Lusk, and Skjellum) and Using MPI-2 
(Gropp, Lusk, and Thakur), MIT Press.
• Using MPI-2 also available in Japanese, from Pearson 

Education Japan
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Conclusions

• MPI is a proven, effective, portable parallel programming 
model
– 26TF application on the Earth Simulator

• MPI has succeeded because
– features are orthogonal (complexity is the product of the 

number of features, not routines)
– programmer can control memory motion (critical in high-

performance computing)
– complex programs are no harder than easy ones
– open process for defining MPI led to a solid design
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More Information on Software

• MPICH2
– Latest version available from www.mcs.anl.gov/mpi/mpich2

• More Information on PnetCDF
– Parallel netCDF web site:

http://www.mcs.anl.gov/parallel-netcdf/
– Parallel netCDF mailing list:

Mail to majordomo@mcs.anl.gov with the body “subscribe 
parallel-netcdf”

– The SDM SciDAC web site:
http://sdm.lbl.gov/sdmcenter/

• PETSc
– http://www.mcs.anl.gov/petsc

• HDF5
– http://hdf.ncsa.uiuc.edu/HDF5/ 
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MPICH2

• Goals: same as MPICH
– Research project, to explore scalability and 

performance, incorporate and test research results
– Software project, to encourage use of MPI-2

• Scope: all of MPI-2
– I/O 
– Dynamic
– One-sided
– All the obscure parts, too
– Useful optional features recommended by the 

Standard (full mpiexec, singleton-init, thread safety)
– Other useful features (debugging, profiling libraries, 

tools)
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MPICH2
• Incorporates latest research into MPI implementation

– Our own
• Collective operations
• Optimizations for one-sided ops
• Optimized datatype handling
• I/O

– Others
• Collectives, for example

• See recent EuroPVM and Cluster Proceedings
• In use by vendors

– IBM on BG/L
– Cray on Red Storm/XT3
– Microsoft, Intel
– Having vendors adapt MPICH2 into their products has helped 

make it efficient and robust
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The MPI Standard (1 & 2)
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Tutorial Material on MPI, MPI-2

http://www.mcs.anl.gov/mpi/{usingmpi,usingmpi2}


