
Argonne National Laboratory is managed by
The University of Chicago for the U.S. Department of Energy

Using MPI-2:
A Problem-Based Approach
William Gropp, Rusty Lusk

Mathematics and Computer Science Division

2

Outline
• Introduction

– MPI-1 Status, MPI-2 Status
• Life, 1D Decomposition

– point-to-point
– checkpoint/restart

• stdout
• MPI-IO

– RMA
• fence
• post/start/complete/wait

• Life, 2D Decomposition
– point-to-point
– RMA

3

MPI-1

• MPI is a message-passing library interface standard.
– Specification, not implementation
– Library, not a language
– Classical message-passing programming model

• MPI was defined (1994) by a broadly-based group of parallel
computer vendors, computer scientists, and applications
developers.
– 2-year intensive process

• Implementations appeared quickly and now MPI is taken for
granted as vendor-supported software on any parallel machine.

• Free, portable implementations exist for clusters (MPICH, LAM,
OpenMPI) and other environments (MPICH)

4

MPI-2

• Same process of definition by MPI Forum
• MPI-2 is an extension of MPI

– Extends the message-passing model.
• Parallel I/O
• Remote memory operations (one-sided)
• Dynamic process management

– Adds other functionality
• C++ and Fortran 90 bindings

– similar to original C and Fortran-77 bindings
• External interfaces
• Language interoperability
• MPI interaction with threads

5

MPI-2 Implementation Status

• Most parallel computer vendors now support MPI-2 on
their machines
– Except in some cases for the dynamic process

management functions, which require interaction
with other system software

• Cluster MPIs, such as MPICH2 and LAM, support most
of MPI-2 including dynamic process management

• Our examples here have all been run on MPICH2

6

Our Approach in this Tutorial

• Example driven
– Structured data (Life)

• Show solutions that use the MPI-2 support for parallel I/O
and RMA
– Walk through actual code

• We assume familiarity with MPI-1

7

Conway’s Game of Life

• A cellular automata
– Described in 1970 Scientific American
– Many interesting behaviors; see:

• http://www.ibiblio.org/lifepatterns/october1970.html

• Program issues are very similar to those for codes that
use regular meshes, such as PDE solvers
– Allows us to concentrate on the MPI issues

8

Rules for Life

• Matrix values A(i,j) initialized to 1 (live) or 0 (dead)
• In each iteration, A(i,j) is set to

– 1(live) if either
• the sum of the values of its 8 neighbors is 3, or
• the value was already 1 and the sum of its 8 neighbors is 2

or 3
– 0 (dead) otherwise

j

i

j-1 j+1

i+1

i-1

9

Implementing Life

• For the non-parallel version, we:
– Allocate a 2D matrix to hold state

• Actually two matrices, and we will swap them between steps
– Initialize the matrix

• Force boundaries to be “dead”
• Randomly generate states inside

– At each time step:
• Calculate each new cell state based on previous cell states

(including neighbors)
• Store new states in second matrix
• Swap new and old matrices

10

Steps in Designing the Parallel Version

• Start with the “global” array as the main object
– Natural for output – result we’re computing

• Describe decomposition in terms of global array
• Describe communication of data, still in terms of the

global array
• Define the “local” arrays and the communication

between them by referring to the global array

11

Step 1: Description of Decomposition

• By rows (1D or row-block)
– Each process gets a group of adjacent rows

• Later we’ll show a 2D decomposition

Columns

R
ow

s

12

Step 2: Communication

• “Stencil” requires read access to data from neighbor cells

• We allocate extra space on each process to store neighbor cells
• Use send/recv or RMA to update prior to computation

13

Step 3: Define the Local Arrays

• Correspondence between the local and global array
• “Global” array is an abstraction; there is no one global

array allocated anywhere
• Instead, we compute parts of it (the local arrays) on

each process
• Provide ways to output the global array by combining

the values on each process (parallel I/O!)

14

Boundary Regions

• In order to calculate next state of cells in edge rows,
need data from adjacent rows

• Need to communicate
these regions at each
step
– First cut: use isend

and irecv
– Revisit with RMA later

15

Life Point-to-Point Code Walkthrough

• Points to observe in the code:
– Handling of command-line arguments
– Allocation of local arrays
– Use of a routine to implement halo

exchange
•Hides details of exchange

See mlife.c pp. 1-8 for code example.

16

Note: Parsing Arguments

• MPI standard does not guarantee that command line arguments
will be passed to all processes.
– Process arguments on rank 0
– Broadcast options to others

• Derived types allow one bcast to handle most args
– Two ways to deal with strings

• Big, fixed-size buffers
• Two-step approach: size first, data second (what we do in

the code)

See mlife.c pp. 9-10 for code example.

17

Point-to-Point Exchange

• Duplicate communicator to ensure communications do
not conflict

• Non-blocking sends and receives allow implementation
greater flexibility in passing messages

See mlife-pt2pt.c pp. 1-3 for code example.

18

Parallel I/O and Life

19

Supporting Checkpoint/Restart

• For long-running applications, the cautious user checkpoints
• Application-level checkpoint involves the application saving

its own state
– Portable!

• A canonical representation is preferred
– Independent of number of processes

• Restarting is then possible
– Canonical representation aids restarting with a different

number of processes

20

Defining a Checkpoint

• Need enough to restart
– Header information

• Size of problem (e.g. matrix dimensions)
• Description of environment (e.g. input parameters)

– Program state
• Should represent the global (canonical) view of the

data
• Ideally stored in a convenient container

– Single file!
• If all processes checkpoint at once, naturally a parallel,

collective operation

21

Life Checkpoint/Restart API

• Define an interface for checkpoint/restart for the row-block
distributed Life code

• Five functions:
– MLIFEIO_Init
– MLIFEIO_Finalize
– MLIFEIO_Checkpoint
– MLIFEIO_Can_restart
– MLIFEIO_Restart

• All functions are collective
• Once the interface is defined, we can implement it for

different back-end formats

22

Life Checkpoint

• MLIFEIO_Checkpoint(char *prefix,
int **matrix,
int rows,
int cols,
int iter,
MPI_Info info);

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)

23

Life Checkpoint (Fortran)

• MLIFEIO_Checkpoint(prefix, matrix,
rows, cols, iter, info)

character*(*) prefix
integer rows, cols, iter
integer matrix(rows,cols)
integer info

• Prefix is used to set filename
• Matrix is a reference to the data to store
• Rows, cols, and iter describe the data (header)
• Info is used for tuning purposes (more later!)

24

stdio Life Checkpoint Code
Walkthrough

• Points to observe
– All processes call checkpoint routine

• Collective I/O from the viewpoint of the program
– Interface describes the global array
– Output is independent of the number of processes

See mlife-io-stdout.c pp. 1-2 for code example.

25

Life stdout “checkpoint”

• The first implementation is one that simply prints out the
“checkpoint” in an easy-to-read format

• MPI standard does not specify that all stdout will be
collected in any particular way
– Pass data back to rank 0 for printing
– Portable!
– Not scalable, but ok for the purpose of stdio

See mlife-io-stdout.c pp. 3 for code example.

26

Describing Data

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INT, &vectype);

– Second type gets memory offset right
MPI_Type_hindexed(count = 1, len = 1,

disp = &matrix[1][1], vectype, &type);

matrix[1][0..cols-1]

matrix[myrows][0..cols-1]

See mlife-io-stdout.c pp. 4-6 for code example.

27

Describing Data (Fortran)

• Lots of rows, all the same size
– Rows are all allocated as one big block
– Perfect for MPI_Type_vector

Call MPI_Type_vector(count = myrows,
blklen = cols, stride = cols+2, MPI_INTEGER, vectype, ierr)

Matrix(1,0:cols-1)

Matrix(myrows,0:cols-1)

28

Life Checkpoint/Restart Notes

• MLIFEIO_Init
– Duplicates communicator to avoid any collisions with other

communication
• MLIFEIO_Finalize

– Frees the duplicated communicator
• MLIFEIO_Checkpoint and _Restart

– MPI_Info parameter is used for tuning I/O behavior

Note: Communicator duplication may not always be necessary, but
is good practice for safety

See mlife-io-stdout.c pp. 1-8 for code example.

29

Parallel I/O and MPI

• The stdio checkpoint routine works but is not parallel
– One process is responsible for all I/O
– Wouldn’t want to use this approach for real

• How can we get the full benefit of a parallel file
system?
– We first look at how parallel I/O works in MPI
– We then implement a fully parallel checkpoint

routine
• Because it will use the same interface, we can
use it without changing the rest of the parallel life
code

30

Why MPI is a Good Setting for Parallel
I/O

• Writing is like sending and reading is like receiving.
• Any parallel I/O system will need:

– collective operations
– user-defined datatypes to describe both memory and file

layout
– communicators to separate application-level message

passing from I/O-related message passing
– non-blocking operations

• I.e., lots of MPI-like machinery

31

What does Parallel I/O Mean?

• At the program level:
– Concurrent reads or writes from multiple processes

to a common file
• At the system level:

– A parallel file system and hardware that support
such concurrent access

32

Collective I/O and MPI
• A critical optimization in parallel I/O
• All processes (in the communicator) must call the collective I/O

function
• Allows communication of “big picture” to file system

– Framework for I/O optimizations at the MPI-IO layer
• Basic idea: build large blocks, so that reads/writes in I/O system

will be large
– Requests from different processes may be merged together
– Particularly effective when the accesses of different processes

are noncontiguous and interleaved

Small individual
requests

Large collective
access

33

Collective I/O Functions

• MPI_File_write_at_all, etc.
– _all indicates that all processes in the group specified

by the communicator passed to MPI_File_open will
call this function

– _at indicates that the position in the file is specified as
part of the call; this provides thread-safety and clearer
code than using a separate “seek” call

• Each process specifies only its own access information —
the argument list is the same as for the non-collective
functions

34

MPI-IO Life Checkpoint Code Walkthrough

• Points to observe
– Use of a user-defined MPI datatype to handle the

local array
– Use of MPI_Offset for the offset into the file

• “Automatically” supports files larger than 2GB if
the underlying file system supports large files

– Collective I/O calls
• Extra data on process 0

See mlife-io-mpiio.c pp. 1-2 for code example.

35

Life MPI-IO Checkpoint/Restart

• We can map our collective checkpoint directly to a single
collective MPI-IO file write: MPI_File_write_at_all
– Process 0 writes a little extra (the header)

• On restart, two steps are performed:
– Everyone reads the number of rows and columns from

the header in the file with MPI_File_read_at_all
• Sometimes faster to read individually and bcast (see

later example)
– If they match those in current run, a second collective

call used to read the actual data
• Number of processors can be different

See mlife-io-mpiio.c pp. 3-6 for code example.

36

Describing Header and Data

• Data is described just as before
• Create a struct wrapped around this to describe the

header as well:
– no. of rows
– no. of columns
– Iteration no.
– data (using previous type)

See mlife-io-mpiio.c pp. 7 for code example.

37

Placing Data in Checkpoint

Rows Columns Iteration

Global Matrix

File Layout

Note: We store the matrix in global, canonical order with no ghost cells.

See mlife-io-mpiio.c pp. 9 for code example.

38

The Other Collective I/O Calls

•MPI_File_seek
•MPI_File_read_all
•MPI_File_write_all
•MPI_File_read_at_all
•MPI_File_write_at_all
•MPI_File_read_ordered
•MPI_File_write_ordered

combine seek and I/O
for thread safety

use shared file pointer

like Unix I/O

39

Portable Checkpointing

40

Portable File Formats

• Ad-hoc file formats
– Difficult to collaborate
– Cannot leverage post-processing tools

• MPI provides external32 data encoding
• High level I/O libraries

– netCDF and HDF5
– Better solutions than external32

• Define a “container” for data
– Describes contents
– May be queried (self-describing)

• Standard format for metadata about the file
• Wide range of post-processing tools available

41

File Interoperability in MPI-IO

• Users can optionally create files with a portable binary data
representation

• “datarep” parameter to MPI_File_set_view
• native - default, same as in memory, not portable
• external32 - a specific representation defined in MPI,

(basically 32-bit big-endian IEEE format), portable across
machines and MPI implementations

• internal – implementation-defined representation
providing an implementation-defined level of portability
– Not used by anyone we know of…

42

Higher Level I/O Libraries

• Scientific applications work with structured data and desire
more self-describing file formats

• netCDF and HDF5 are two popular “higher level” I/O libraries
– Abstract away details of file layout
– Provide standard, portable file formats
– Include metadata describing contents

• For parallel machines, these should be built on top of MPI-IO
– HDF5 has an MPI-IO option

• http://hdf.ncsa.uiuc.edu/HDF5/

43

Parallel netCDF (PnetCDF)

• (Serial) netCDF
– API for accessing multi-dimensional data

sets
– Portable file format
– Popular in both fusion and climate

communities
• Parallel netCDF

– Very similar API to netCDF
– Tuned for better performance in today’s

computing environments
– Retains the file format so netCDF and

PnetCDF applications can share files
– PnetCDF builds on top of any MPI-IO

implementation

ROMIOROMIO

PnetCDFPnetCDF

PVFS2PVFS2

Cluster

IBM MPIIBM MPI

PnetCDFPnetCDF

GPFSGPFS

IBM SP

44

I/O in netCDF and PnetCDF

• (Serial) netCDF
– Parallel read

• All processes read the file independently
• No possibility of collective optimizations

– Sequential write
• Parallel writes are carried out by shipping

data to a single process
• Just like our stdout checkpoint code

• PnetCDF
– Parallel read/write to shared netCDF file
– Built on top of MPI-IO which utilizes optimal

I/O facilities of the parallel file system and
MPI-IO implementation

– Allows for MPI-IO hints and datatypes for
further optimization

P0 P1 P2 P3

netCDF

Parallel File System

Parallel netCDF

P0 P1 P2 P3

Parallel File System

45

Life PnetCDF Checkpoint/Restart

• Third implementation of MLIFEIO interface
• Stores matrix as a two-dimensional array of integers in the

netCDF file format
– Same canonical ordering as in MPI-IO version

• Iteration number stored as an attribute

46

PnetCDF Life Checkpoint Code
Walkthrough

• Points to observe
– Creating a netCDF file
– Defining dimensions
– Defining variables
– Storing attributes
– Discovering dimensions on restart

See mlife-io-pnetcdf.c pp. 1-6 for code example.

47

Discovering Variable Dimensions

• Because netCDF is self-describing, applications can
inquire about data in netCDF files:
err = ncmpi_inq_dimlen(ncid,

dims[0], &coldimsz);

• Allows us to discover the dimensions of our matrix at
restart time

See mlife-io-pnetcdf.c pp. 7-8 for code example.

48

Exchanging Data with RMA

49

Revisiting Mesh Communication

• Recall how we designed the parallel implementation
– Determine source and destination data

• Do not need full generality of send/receive
– Each process can completely define what data needs to

be moved to itself, relative to each processes local mesh
• Each process can “get” data from its neighbors

– Alternately, each can define what data is needed by the
neighbor processes
• Each process can “put” data to its neighbors

50

Remote Memory Access
• Separates data transfer from indication of completion

(synchronization)
• In message-passing, they are combined

store
send receive

load

Proc 0 Proc 1 Proc 0 Proc 1

fence
put
fence

fence

fence
load

store
fence fence

get

or

51

Remote Memory Access in MPI-2
(also called One-Sided Operations)

• Goals of MPI-2 RMA Design
– Balancing efficiency and portability across a wide class

of architectures
• shared-memory multiprocessors
• NUMA architectures
• distributed-memory MPP’s, clusters
• Workstation networks

– Retaining “look and feel” of MPI-1
– Dealing with subtle memory behavior issues: cache

coherence, sequential consistency

52

Remote Memory Access Windows and
Window Objects

Get

Put

Process 2

Process 1

Process 3

Process 0

= address spaces = window object

window

53

Basic RMA Functions for Communication

• MPI_Win_create exposes local memory to RMA operation by
other processes in a communicator
– Collective operation
– Creates window object

• MPI_Win_free deallocates window object

• MPI_Put moves data from local memory to remote memory
• MPI_Get retrieves data from remote memory into local memory
• MPI_Accumulate updates remote memory using local values
• Data movement operations are non-blocking
• Subsequent synchronization on window object needed to

ensure operation is complete

54

Performance of RMA

Caveats: On SGI, MPI_Put uses specially allocated memory

55

Advantages of RMA Operations

• Can do multiple data transfers with a single
synchronization operation
– like BSP model

• Bypass tag matching
– effectively precomputed as part of remote offset

• Some irregular communication patterns can be more
economically expressed

• Can be significantly faster than send/receive on
systems with hardware support for remote memory
access, such as shared memory systems

56

Irregular Communication Patterns with RMA

• If communication pattern is not known a priori, the
send-recv model requires an extra step to determine
how many sends-recvs to issue

• RMA, however, can handle it easily because only the
origin or target process needs to issue the put or get
call

• This makes dynamic communication easier to code in
RMA

57

RMA Window Objects

MPI_Win_create(base, size, disp_unit, info,
comm, win)

• Exposes memory given by (base, size) to RMA
operations by other processes in comm

•win is window object used in RMA operations
•disp_unit scales displacements:

– 1 (no scaling) or sizeof(type), where window is an
array of elements of type type

– Allows use of array indices
– Allows heterogeneity

58

RMA Communication Calls

•MPI_Put - stores into remote memory

•MPI_Get - reads from remote memory

•MPI_Accumulate - updates remote memory

• All are non-blocking: data transfer is described, maybe
even initiated, but may continue after call returns

• Subsequent synchronization on window object is needed
to ensure operations are complete

59

Put, Get, and Accumulate

• MPI_Put(origin_addr, origin_count,
origin_datatype,
target_rank, target_offset,
target_count, target_datatype,
window)

• MPI_Get(...)

• MPI_Accumulate(..., op, ...)

• op is as in MPI_Reduce, but no user-defined operations are
allowed

60

The Synchronization Issue

• Issue: Which value is retrieved?
– Some form of synchronization is required between

local load/stores and remote get/put/accumulates
• MPI provides multiple forms

local
stores

MPI_Get

61

Synchronization with Fence

Simplest methods for synchronizing on window objects:
• MPI_Win_fence - like barrier, supports BSP model

Process 0

MPI_Win_fence(win)

MPI_Put
MPI_Put

MPI_Win_fence(win)

Process 1

MPI_Win_fence(win)

MPI_Win_fence(win)

62

Mesh Exchange Using MPI RMA

• Define the windows
– Why – safety, options for performance (later)

• Define the data to move
• Mark the points where RMA can start and where it

must complete (e.g., fence/put/put/fence)

63

Outline of 1D RMA Exchange

• Create Window object
• Computing target offsets
• Exchange operation

64

Computing the Offsets

• Offset to top ghost row
– 1

• Offset to bottom ghost row
– 1 + (# cells in a row)*(# of rows – 1)
– = 1 + (nx + 2)*(e – s + 2)

e

s

nx

a(1,e)

a(1,s)

65

Fence Life Exchange Code Walkthrough

• Points to observe
– MPI_Win_fence is used to separate RMA accesses from

non-RMA accesses
• Both starts and ends data movement phase

– Any memory may be used
• No special malloc or restrictions on arrays

– Uses same exchange interface as the point-to-point
version

See mlife-fence.c pp. 1-3 for code example.

66

Comments on Window Creation

• MPI-2 provides MPI_SIZEOF for Fortran users
– Not universally implemented
– Use MPI_Type_size for portability

• Using a displacement size corresponding to a basic
type allows use of put/get/accumulate on
heterogeneous systems
– Even when the sizes of basic types differ

• Displacement size also allows easier computation of
offsets in terms of array index instead of byte offset

67

More on Fence

• MPI_Win_fence is collective over the group of the
window object

• MPI_Win_fence is used to separate, not just complete,
RMA and local memory operations
– That is why there are two fence calls

• Why?
– MPI RMA is designed to be portable to a wide

variety of machines, including those without cache
coherent hardware (including some of the fastest
machines made)

– See performance tuning for more info

68

Scalable Synchronization with
Post/Start/Complete/Wait
• Fence synchronization is not scalable because it is

collective over the group in the window object
• MPI provides a second synchronization mode: Scalable

Synchronization
– Uses four routines instead of the single MPI_Win_fence:

• 2 routines to mark the begin and end of calls to RMA
routines
– MPI_Win_start, MPI_Win_complete

• 2 routines to mark the begin and end of access to the
memory window
– MPI_Win_post, MPI_Win_wait

• P/S/C/W allows synchronization to be performed only
among communicating processes

69

Synchronization with P/S/C/W

• Origin process calls MPI_Win_start and MPI_Win_complete
• Target process calls MPI_Win_post and MPI_Win_wait

Process 0

MPI_Win_start(target_grp)

MPI_Put
MPI_Put

MPI_Win_complete(target_grp)

Process 1

MPI_Win_post(origin_grp)

MPI_Win_wait(origin_grp)

70

P/S/C/W Life Exchange Code
Walkthrough

• Points to Observe
– Use of MPI group routines to describe neighboring

processes
– No change to MPI_Put calls

• You can start with MPI_Win_fence, then switch to
P/S/C/W calls if necessary to improve
performance

See mlife-pscw.c pp. 1-4 for code example.

71

Life with 2D Block-Block
Decomposition

72

Why Use a 2D Decomposition?

• More scalable due to reduced communication requirements
– We can see why with a simple communication model.
– Let the time to move n words from one process to another be

Tc = s + rn
– 1D decomposition time on p processes is

• T = 2(s+rn) + T1/p
– 2D decomposition time on p processes is

• T = 4(s + r(n/√p)) + T1/p
– For large n, 2D decomposition has much smaller

communication time
– (Even stronger effect for 3D decompositions of 3D problems)

73

Designing the 2D Decomposition

• Go back to global mesh view
• Define decomposition
• Define data to move
• Define local mesh

74

Mesh Exchange for 2D Decomposition

• Creating the datatypes
• Using fence
• Using scalable synchronization

75

Outline of 2D RMA Exchange

• Create Window Object
• Computing target offsets

– Even for less regular decompositions
• Creating Datatypes
• Exchange Operation

76

Creating the Window

MPI_Win win;
int *localMesh;

/* nx is the number of (non-ghost) values in x, ny
in y */
nx = ex - sx + 1;
ny = ey - sy + 1;
MPI_Win_create(localMesh,

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI_INFO_NULL,
MPI_COMM_WORLD, &win);

• Nothing new here

77

Creating the Window (C++)

MPI::Win win;
int *localMesh;

// nx is the number of (non-ghost) values in x,
// ny in y
nx = ex - sx + 1;
ny = ey - sy + 1;
win = MPI::Win::Create(localMesh,

(ex-sx+3)*(ey-sy+3)*sizeof(int),
sizeof(int), MPI::INFO_NULL,
MPI::COMM_WORLD);

• Nothing new here

78

Creating the Window (Fortran)

integer win, sizedouble, ierr
double precision a(sx-1:ex+1,sy-1:ey+1)

! nx is the number of (non-ghost) values in x, ny in y
nx = ex - sx + 1
ny = ey - sy + 1
call MPI_TYPE_SIZE(MPI_DOUBLE_PRECISION, sizedouble,&

ierr)
call MPI_WIN_CREATE(a, (ex-sx+3)*(ey-sy+3)*sizedouble, &

sizedouble, MPI_INFO_NULL, &
MPI_COMM_WORLD, win, ierr)

• Nothing new here

79

Computing Target Offsets
• Similar to 1D, but may include some computation since neighbor

with shared boundary still needs to know the size of the other
dimension as that is needed to compute the offsets

80

Creating Datatypes for Columns

MPI_Datatype coltype;
/* Vector type used on origin process */
MPI_Type_vector(1, ny, nx+2, MPI_INT, &coltype);
MPI_Type_commit(&coltype);

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride
elements

• For both the left and right side

81

Creating Datatypes for Columns (C++)

MPI::Datatype coltype;
// Vector type used on origin process
coltype = MPI::Type::Create_vector(1, ny, nx+2, MPI::INT);
coltype.Commit();

GLastRow

GFirstRow

LCols

LRows

GFirstCol GLastCol

Stride# elements

• For both the left and right side

82

Creating Datatypes for Columns
(Fortran)

integer coltype
! Vector type used on origin process
call MPI_TYPE_VECTOR(1, ny, nx+2,&

MPI_DOUBLE_PRECISION, &
coltype, ierr)

call MPI_TYPE_COMMIT(coltype, ierr)

sy

ey

nx

ny

sx ex

Stride
elements

• For both the left and right side

83

2D Life Code Walkthrough

• Points to observe
– More complicated than 1D!
– Communication of noncontiguous regions uses derived

datatypes
• For the RMA version (mlife2d-fence)

– Be careful in determining the datatype for the target process
– Be careful in determining the offset
– MPI_Win_fence must return before data may be used on

target

See mlife2d.c, mlife2d-pt2pt.c, mlife2d-fence.c for code examples.

84

Conclusions

85

Designing Parallel Programs

• Common theme – think about the “global” object, then
see how MPI can help you

• Also specify the largest amount of communication or
I/O between “synchronization points”
– Collective and noncontiguous I/O
– RMA

86

Summary

• MPI-2 provides major extensions to the original message-
passing model targeted by MPI-1.

• MPI-2 can deliver to libraries and applications portability
across a diverse set of environments.

• Implementations are here now.
• Sources:

– The MPI standard documents are available at
http://www.mpi-forum.org

– 2-volume book: MPI - The Complete Reference, available
from MIT Press

– Using MPI (Gropp, Lusk, and Skjellum) and Using MPI-2
(Gropp, Lusk, and Thakur), MIT Press.
• Using MPI-2 also available in Japanese, from Pearson

Education Japan

87

Conclusions

• MPI is a proven, effective, portable parallel programming
model
– 26TF application on the Earth Simulator

• MPI has succeeded because
– features are orthogonal (complexity is the product of the

number of features, not routines)
– programmer can control memory motion (critical in high-

performance computing)
– complex programs are no harder than easy ones
– open process for defining MPI led to a solid design

88

More Information on Software

• MPICH2
– Latest version available from www.mcs.anl.gov/mpi/mpich2

• More Information on PnetCDF
– Parallel netCDF web site:

http://www.mcs.anl.gov/parallel-netcdf/
– Parallel netCDF mailing list:

Mail to majordomo@mcs.anl.gov with the body “subscribe
parallel-netcdf”

– The SDM SciDAC web site:
http://sdm.lbl.gov/sdmcenter/

• PETSc
– http://www.mcs.anl.gov/petsc

• HDF5
– http://hdf.ncsa.uiuc.edu/HDF5/

89

MPICH2

• Goals: same as MPICH
– Research project, to explore scalability and

performance, incorporate and test research results
– Software project, to encourage use of MPI-2

• Scope: all of MPI-2
– I/O
– Dynamic
– One-sided
– All the obscure parts, too
– Useful optional features recommended by the

Standard (full mpiexec, singleton-init, thread safety)
– Other useful features (debugging, profiling libraries,

tools)

90

MPICH2
• Incorporates latest research into MPI implementation

– Our own
• Collective operations
• Optimizations for one-sided ops
• Optimized datatype handling
• I/O

– Others
• Collectives, for example

• See recent EuroPVM and Cluster Proceedings
• In use by vendors

– IBM on BG/L
– Cray on Red Storm/XT3
– Microsoft, Intel
– Having vendors adapt MPICH2 into their products has helped

make it efficient and robust

91

The MPI Standard (1 & 2)

92

Tutorial Material on MPI, MPI-2

http://www.mcs.anl.gov/mpi/{usingmpi,usingmpi2}

