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Abstract

We consider the solution of Mixed Integer Nonlinear Programming (MINLP) prob-
lems by a parallel implementation of nonlinear branch-and-bound on a computa-
tional grid or meta-computer. Computational experience on a set of large MINLPs
is reported which indicates that this approach is efficient for the solution of large
MINLPs.
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1 Introduction

We consider the solution of Mixed Integer Nonlinear Programming (MINLP) problems by
a parallel implementation of nonlinear branch-and-bound. An important feature of our
implementation is the use of a computational grid or meta-computer as the underlying
computing platform.

A computational grid is characterized by a collection of loosely-coupled, geographi-
cally distributed set of heterogeneous computing resources. For instance, the computing
network within a company or a university or several universities and research institutions
can be seen as a computational grid. The advantage of using computational grid is that
idle workstations can be assembled to solve large computationally challenging problems
making it an inexpensive, readily available and powerful parallel machine.

MINLPs are nonlinear optimization problems where some of the variables are required
to take integer or discrete values. Problems of this type have many important applications
(see Section 1.1) and are conveniently expressed as

minimize  f(z,y)

I7y
(P)q subject to g(z,y) <0
x € X, y € Y integer.

*Numerical Analysis Report NA /200, Department of Mathematics, University of Dundee.

tjean-pierre.goux@artelys.com, Artelys, 215 rue Jean-Jacques Rousseau, 92136 Issy-les-
Moulineaux Cedex, France.

!sleyffer@maths.dundee.ac.uk, Department of Mathematics, University of Dundee, DD1 4HN,
UK.



Throughout the paper it is assumed that X C R™ and Y C IR? are compact sets (e.g.
polyhedral sets or simple bounds) and that f and g are twice continuously differentiable.
These assumptions are quite mild in the sense that most Nonlinear Programming (NLP)
solvers require similar assumptions in order to converge to a (local) minimum. In par-
ticular, it is not assumed that the continuous relaxation of (P) is a convex programming
problem. We will comment on this issue later.

The aim of this paper is to demonstrate that computational grids can assist in the
solution of large, computationally challenging MINLP problems. The remainder of the
paper is organized as follows: first, some applications of MINLP are reviewed and the
computational environment is described, highlighting some of its advantages and difficul-
ties. In Section 2, nonlinear branch-and-bound is discussed together with other solution
techniques. Our parallel strategy and implementation details are described in Section 3.
Finally, Section 4 presents the numerical experience with the parallel solver on a set of
large MINLP applications. This experience indicates the potential of our approach for
solving large MINLP applications.

1.1 Applications of MINLP

Mixed Integer Nonlinear Programming problems arise in a wide variety of applications.
Chemical engineering applications include process synthesis [38]), batch plant design [31],
cyclic scheduling [37] and the design of distillation columns [59]. MINLP problems also
arise as nonlinear cutting stock problems in the paper industry [35] and in the opti-
mization of pump configurations [62]. Modeling of a simultaneous model structure and
parameter estimation in infrared spectroscopy [55] leads to large convex Mixed Integer
Quadratic Programming (MIQP) problems.

Recently, interest in MINLP models and solution techniques has also been motivated
by applications from the nuclear industry. The problem here is to maximize the efficiency
or performance of a nuclear reactor core after the re-loading operation [52]. A new and
interesting area of applications is topology optimization [53] where binary variables model
the presence or absence of material in each finite element.

Other MINLP applications arise in the design of water [6] networks, where the direc-
tion of flow through a pipe is modeled by a disjunction. MINLPs also arise in financial
applications such as strategic planning in telecommunication network design, where inte-
gers represent the number of optical fibers to be placed in pipes and nonlinearities arise
from the elasticity regarding future pricing strategies [36]. Another important financial
application is index tracking for passive portfolio management [39]. MINLPs also arise
in the optimization of gas lifted oil well networks [32] and in unit commitment problems
in the power generation industry [3].

The survey by Grossmann and Kravanja [30] gives further references. We expect this
list to grow significantly in the future due to the availability of modeling languages such
as AMPL [22] and GAMS [7] which assist in the formulation of MINLP and enable easy
access to solvers. There also exists a growing number of MINLP test problems available
on-line, e.g. [44] (where AMPL models of many of the applications referred to here can
be found), [24], [21] and the newly developed MINLP-world at [23].



1.2 Computational grids

A computational grid or meta-computer is characterized by a collection of loosely-coupled,
geographically distributed and distributively owned set of heterogeneous computing re-
sources. A computational grid enables idle workstations to be assembled to solve large
computationally challenging problems such as MINLPs. This makes computational grids
an inexpensive, readily available and powerful alternative to traditional supercomputers.

Besides these advantages, the use of computational grids also provides some difficult
challenges for the algorithm developer.

1. The machines are dynamically available and the pool of available machines may
grow and shrink during computation.

2. Individual machines can become unavailable at any time while a job is running, for
instance when the owner returns to use it.

3. The communication bandwidth is potentially very low and the latency very high
and may vary over time.

4. The grid is composed of heterogeneous resources with different architectures, oper-
ating systems, memory sizes, processor speeds etc.

These points have implications for the design and implementation of parallel algorithms
on computational grids. The dynamic availability means that the parallel implementation
cannot rely on having a fixed amount of resources available. The fact that machines can
become unavailable implies that the algorithm has to be fault-tolerant. The low latency
has implications for the grain-size and the amount of communication between resources.
These issues are addressed in detail in Section 3.

In order to harness the potential of computational grids, two main tools are used in
this work. These are Condor [47], a resource manager and MW [28] a framework for
building parallel master-worker application, see Section 3.3. Condor manages a pool of
distributively owned workstation. It allows the owner of each machine to retain control
over the access rights to his machine, e.g. by specifying access hours or conditions under
which Condor must terminate a job. When a job is submitted to Condor, it discovers an
idle machine and assigns it to the job. Condor also allows memory checkpointing to be
done if machines become unavailable, enabling it to transfer a job to another available
machine in the pool.

There have been several implementations of parallel MILP branch-and-bound algo-
rithms. Most notably, Eckstein [14] implements a parallel branch-and-bound solver on
a CM-5. However, the CM-5 is a dedicated parallel machine and very different from a
computational grid. Chen and Ferris [8], see also [9], implement a parallel MILP solver
on a computational grid, but their parallel strategy differs slightly from ours. Anstre-
icher et al. [2] solve some large Quadratic Assignment Problems on a computational grid.
Finally, Laursen [41] shows that parallel branch-and-bound without communication be-
tween workers can be efficient, provided a good initial solution is known. We believe that
there are issues unique to MINLP which ensure that the present approach is of interest.



2 Algorithms for MINLP

In this section we describe branch-and-bound and briefly review other techniques for
solving MINLP problems. The issues relating to the parallel strategy are presented in
Section 3.

2.1 Branch-and-bound

Branch-and-bound dates back to Land and Doig [40]. The first reference to nonlinear
branch-and-bound can be found in Dakin [12] although practical implementations have
only recently become available with the advance of nonlinear programming techniques.
Branch-and-bound is most conveniently explained in terms of a tree-search.

Initially, all integer restrictions are relaxed and the resulting NLP relaxation is solved.
If all integer variables take an integer value at the solution then this solution also solves
the MINLP. Usually, some integer variables take a non-integer value. The algorithm then
selects one of those integer variables, say y; with value y;, and branches on it. Branching
generates two new NLP problems by adding simple bounds y; < [¢;] and y; > [9:] + 1
respectively to the NLP relaxation (where [a] is the largest integer not greater than «a).

One of the two new NLP problems is selected and solved next. If the integer variables
take non-integer values then branching is repeated, thus generating a branch-and-bound
tree whose nodes correspond to NLP problems and where an edge indicates the addition of
a branching bound. If one of the following fathoming rules is satisfied, then no branching
is required, the corresponding node has been fully explored (fathomed).

1. An infeasible node is detected. In this case the whole subtree starting at this node
is infeasible and the node has been fathomed.

2. An integer feasible node is detected. This provides an upper bound on the optimum

of the MINLP; branching is not needed and the node has been fathomed.

3. A lower bound on the NLP solution of a node is greater or equal than the current
upper bound. In this case the node is fathomed, since this NLP solution provides
a lower bound for all problems in the corresponding sub-tree.

Once a node has been fathomed the algorithm backtracks to another node which has not
been fathomed until all nodes are fathomed. These rules only guarantee that the global
solution to (P) is found, if each NLP can be solved to global optimality. This is the case,
if f and g are convex or have some other structure which ensures that each NLP has a
unique minimum value. In the case of (P) being nonconvex, no guarantee can be given
that the solution is a global minimum. Nevertheless, we have found branch-and-bound
to work well in practice even on nonconvex examples.

Many heuristics exist for selecting a branching variable and for choosing the next
problem to be solved after a node has been fathomed (see surveys by Gupta and Ravin-
dran [33] and Volkovich et al. [60]). Linderoth and Savelsbergh [45] study the computa-
tional effect of MILP heuristics and some of their results (most notably on pseudo-costs)
are relevant to MINLP. Some of these ideas are relevant to the parallel MINLP solver
and are described in Section 3.



2.2 Choice of NLP solver for branch-and-bound

In order to design a successful nonlinear branch-and-bound solver, there are certain re-
quirements which the underlying NLP solver must satisfy. It has to be robust even if
the problems are degenerate, as it is difficult to recover from numerical failures deep in
the branch-and-bound tree. It has to declare an NLP infeasible quickly and reliably.
In particular, it should not declare feasible nodes infeasible as this might cut off global
solutions. Finally, it should have good warm-starting properties that exploit the solution
of the parent node.

In our implementation, each node in the tree-search is solved with a Sequential
Quadratic Programming solver. These methods date back to [64], [34] and [48], see
also [10] for a selection of other references. SQP methods possess very fast local conver-
gence properties. We believe that SQP methods are very well suited for use in nonlinear
branch-and-bound. In particular, the solver used in the experiments possesses the follow-
ing properties which we regard as important for the solution of large MINLP problem:s.

1. The solver uses a robust QP solver which resolves degeneracy at the QP level.
During branching, it is often observed that the linearizations at higher levels in the
tree are more degenerate and it is important that the solver does not fail under
these conditions, see [15].

2. It detects infeasibility quickly by solving a feasibility problem. Solving a feasibility
problem explicitly avoids the need to increase the penalty parameter to infinity
before declaring a problem locally infeasible. This makes this approach more robust.
However, since the feasibility problem is itself usually an NLP, the solver cannot
guarantee to find a global solution, unless the problem or the constraints causing
the infeasibility have some convexity properties.

3. Finally, SQP methods have better warm-start capabilities than interior point meth-
ods. In our implementation, we start each child node from the primal/dual optimal
solution of its parent. Numerical experience with a sequential branch-and-bound
code indicates that as a consequence, most nodes can be solved in about 3 SQP
iterations [43] (see also the results in Section 4).

In our implementation, we use filterSQP [17] to solve each NLP. This method uses a
filter to promote convergence from points which are far from a local solution, see [19],
[18]. The use of a filter avoids the need to determine a penalty parameter which may be
problematic to determine. Finally, the interface to AMPL [26] allows the use of automatic
differentiation to evaluate the first and second derivatives required by the solver.

2.3 Review of solution techniques for MINLP

Various solution techniques for solving MINLP have been proposed in the past. In this
paper, we concentrate on deterministic methods rather than heuristic solution techniques,
since we believe that NLP based solvers are better suited to handle nonlinear equations
and inequalities than heuristic techniques, which have mostly been applied to well struc-
tured integer linear problems. See [11] for a survey of heuristic techniques. In this section
we briefly discuss the various deterministic solution techniques and motivate the choice
of branch-and-bound for parallelization on computational grids.



Alternatives to nonlinear branch-and-bound usually decompose (P) into an alternat-
ing sequence of MILP master problems and NLP subproblems. The solution of each NLP
provides a number of cuts which are added to the master problem. Outer Approximation,
e.g. [13], [65] and [16], Benders Decomposition, e.g. [4], [27] and [20] and the Extended
Cutting plane method, e.g. [61] fall into this category. In order to handle nonconvex
MINLPs, these methods need to modify the cuts by lowering (and thereby weakening)
them, see e.g. [38] for Outer Approximation and [56] for the Extended Cutting plane
method. Often, these techniques are only available for special classes of MINLP and do
not generalize to more general problems of type (P).

A method which combines Outer Approximation with branch-and-bound is LP/NLP
based branch-and-bound, [50] and [42]. Like in Outer Approximation a MILP master
program is constructed which is solved using branch-and-bound with the additional caveat
that the tree-search is interrupted at each integer feasible node, where a corresponding
NLP subproblem is solved, new cuts are then added to the MILP master problem and
the tree-search continues. Similar heuristics to the ones used in Outer Approximation
are necessary to handle nonconvex problems.

In this paper, we decided to parallelize nonlinear branch-and-bound, since the algo-
rithm can naturally be broken down into (almost) independent subproblems which can
be solved simultaneously. Branch-and-bound is also readily mapped to a master-worker
paradigm which is well suited for computational grids. Moreover, branch-and-bound re-
quires less synchronization than Outer Approximation or Benders Decomposition, which
alternate between the solution of an MILP master and NLP subproblems. Finally, an-
other advantage in parallelizing branch-and-bound is that all tasks are of the same nature,
while the alternative approaches require two different kinds of task. Clearly, other solu-
tion approaches would have been possible. We hope our experience encourages others to
do research in this growing area.

3 Parallel branch-and-bound

This section describes the parallelization strategy as well as the underlying MINLP tree-
search strategies. In this work, we have chosen a master-worker paradigm to parallelize
branch-and-bound. The master manages a pool of unresolved nodes of the tree, sending
nodes to workers. Each worker, in turn searches a (distinct) part of the tree using a
sequential nonlinear branch-and-bound algorithm. This underlying sequential solver is
described first, before introducing the master-worker paradigm. Finally, we comment on
certain implementation issues.

3.1 The underlying sequential MINLP solver

The core of the parallel MINLP solver is a sequential nonlinear branch-and-bound solver.
This solver accepts MINLPs written in the AMPL format [22], which provides a flexible
syntax to quickly specify MINLP models. The solver supports binary and general integer
variables as well as special ordered set variables of type 1. Below, we refer to all these
different types of variables simply as integer variables. See [63] for a good description of
branching on special ordered set variables.

For each of these integer variables, the user can supply branching priorities to guide



the solver in its branching decision. Priorities are often readily available and are an
effective way of reducing the tree that has to be searched for many applications. During
the tree search, whenever a non-integer feasible node is found, the branching variable
is chosen from among the integer variables taking non-integral value with the highest
priority.

An implementation of a branch-and-bound solver outlined in Section 2.1 would not
be able to solve large MINLPs in a reasonable amount of time and storage. To this end,
we have added some advanced features borrowed from MILP to the solver. These include
advanced rules for choosing a branching variable and rules for selecting the next node to
be solved.

The solver allows three different rules for choosing the branching variable from among
the variables with highest priority.

e Mazimal fractional branching: this rule selects the variable with the maximal inte-
ger violation for branching.

e Strong branching: this rule evaluates both child nodes for all integer variables with
highest priority and, based on this, selects the branching variable which degrades
the objective value the most. This rule is computationally expensive but helps to
take better branching decisions and can be useful at finding good solutions early
on.

o Pseudo-costs branching: this rule uses pseudo-costs (e.g. [63]) to estimate which
branching decisions will degrade the objective value the most. The pseudo-costs
are either initialized by the user, or computed using dual information at the root
node or computed explicitly using strong branching.

The pseudo-costs are updated, each time a new branch is explored. This provides
a more global view of pseudo-costs as they are averaged over the entire tree-search.

In order to tackle hard problems, a compromise needs to be found between the quality
of the branching decisions and its computational effort. To this purpose the user has the
possibility to use mixed branching rules depending on the node’s depth.

Once a branching variable has been selected, the solver chooses the next node to
be explored. Four strategies for selecting the next node to be solved from among the
un-solved nodes have been considered.

o Depth-first: this strategy selects the deepest node to be solved next. It is easy to
show that this strategy minimizes the number of NLP nodes that have to be stored
and therefore minimizes the amount of memory required.

e Best lower bound: with this strategy, the node with the least lower bound (value
of the parent node) is chosen.

o Best expected bound: in this strategy, the node with the best expected bound is
selected. The expected bound is computed by adding pseudo-cost degradation
estimates of the branching variable to the lower bound.

e Best estimate (using pseudo-costs): this strategy chooses the node leading to the
best expected integer solution. The value of the best expected integer solution in a
subtree can be estimated by adding the pseudo-cost estimates for all non-integral
integer variables to the lower bound.



The code has been written in C4++ to allow easy plug-in of other NLP solvers and
addition of features such as cutting planes. The code can also solve MINLPs in sequential
mode very effectively and some of the features referred to above also appear in a recent
commercial branch-and-bound solver SBB [25]. It has been our aim to ensure that the
sequential version of our parallel solvers works reasonably efficiently. This ensures that
the numerical results of Section 4 give an indication as to the amount of improvement
that a commercial MINLP solver could expect from using parallel techniques like the
ones described here.

3.2 Parallel strategy

The choice of parallel strategy has been directly influenced by the principal characteristics
of computational grids, see Section 1.2. The dynamic availability of resources and the
low communication bandwidth made us choose a master-worker paradigm. See [29] for a
thorough justification of the suitability of the master-worker paradigm to computational
grids. In this paradigm, a master machine manages the task pool. As machines join the
computational pool, tasks are sent to them and task results are sent back to the master.
When a machine disappears its task is reassigned to the next available machine.

In order to obtain high parallel efficiency, the type of task has to be chosen so as
to avoid redundant work, minimize load at the master level and maximize usage of the
worker machines. In a first implementation, each worker was assigned a single NLP node.
This turned out to be very inefficient as each NLP was solved too fast for the master to
handle the communication, resulting in very poor parallel performance.

Figure 1: Parallel branch-and-bound strategy

In the current implementation, in contrast, each task is a MINLP subtree rooted at
a node sent by the master machine, and this is illustrated in Figure 1. This parallel
strategy can be interpreted as a nested tree-search. At the master level, a tree-search is
performed by passing subtrees to the workers. Each worker in turn performs a depth-first
tree-search on its subtree, thus minimizing the number of tasks returned to the master.
All other algorithmic choices (see Section 3.1) are selected by the master. Note that the
search strategies at both levels need not be the same.



The work on each subtree must, however, be centrally controlled to a certain degree.
Due to the low communication bandwidth of computational grids, there is no further
communication between master and worker or between workers until each worker returns
the (partial) result of its tree search. This can have undesired consequences, if workers
were allowed to search their tree until completion.

1. Once all un-resolved nodes at the master have been sent to workers, no new work is
available until at least one worker returns a partially explored tree. This can result
in idle times for unemployed workers.

2. A worker may spend a long time exploring a part of the tree that could have been
pruned with a new upper bound, thus performing unnecessary work due to a lack
of coordination across the grid.

In order to improve load balancing (item 1.) and avoid parallel search anomalies (item
2.), each worker only explores its subtree until

e the subtree has been fully fathomed, or
e an integer feasible solution is found, or
e a time limit has been reached.

The last item requires some additional comments. The time limit has to be small enough
to avoid idle workers and long tasks to be lost if workers disappear. In our implemen-
tation, this time limit, max_cpu_time is 10 seconds if the number of tasks at the master
is less than 100 and it is 100 seconds if that number is greater than 100, i.e. once a
sufficiently large task pool has been established.

Some preliminary runs still showed a poor parallel efficiency due to the large number
of short tasks being returned to the master. To avoid this, the worker’s time limit has
been relaxed by giving it a recourse period of max_cpu_time. In that additional period, the
worker tries to eliminate all nodes with a relative gap g, smaller than a given constant
before returning to the master. Here g, is defined as

g _U_f
rel U_f”

where U is the current upper bound, f is the lower bound on the node and f is the
lower bound on the root node of the subtree. If g, is close to 1, then the corresponding
subtree is deemed to be sufficiently large. During the recourse period, the solver attempts
to fathom all nodes with a relative gap, g.; < 0.5, i.e. nodes with a small expected subtree
are fathomed. This results in an increase of the average task size returned to the master
and improves the performance significantly.

The success of branch-and-bound depends crucially on the availability of good integer
feasible solutions which provide upper bounds and increase the amount of fathoming.
In order to find good solutions early on, a lazy-best-first strategy has been implemented
which corresponds to best-expected-bound node selection at the master level. In this
strategy, workers are given the node with the best expected bound in the master task
pool. The advantage of this strategy is that early on, nodes are chosen from near the root
of the tree, resulting in a more global search of the tree. The drawback of this approach is



that it leads to more difficult tasks, which can normally not be completed in max_cpu_time
seconds. In order to control the size of the master task pool, the lazy-best-first strategy
is only pursued until the task pool reaches max lazy best first. The master then
switches back to depth-first-search until the number of problems in the task pool drops
below min lazy best first. Both constants depend on the size of problem and the
amount of storage available at the master. The effect of the lazy-best-first strategy can
be observed in the numerical results of trimlon7, see Figure 3 and the paragraph following
that figure.

These issues related to the parallel implementation of a branch-and-bound solver on
a computational grid platform have also been used effectively in [2].

3.3 Implementation details

In order to use computational grid resources, resource management software is needed to
identify machines joining or leaving the computational pool, assigning jobs to machines
and running these jobs remotely. The Condor system [47] developed at the University
of Wisconsin Madison provides such features. Condor is a scavenger system that detects
idle machines in a network of participating machines, potentially in different geographical
locations. The owner of each machine defines the usage/sharing policy and a Condor
manager machine keeps track of the available resources based on the resource’s status
and policies at all time. The Condor manager also takes care of the matchmaking between
batch jobs submitted by Condor users and available machines.

The batch submission mode of operation is not effective for implementing parallel
algorithms with small granularity like branch-and-bound. Fortunately Condor provides
full support of the PVM message passing library [49] and remote I/O (input/output) that
can be used to maintain a state in participating resources and make them communicate
with each other.

Even with these features there are difficult computer science issues in implementing
an algorithm using the master-worker paradigm in a robust and efficient way. The MW
software framework ([29] and [28]) is an abstract software framework designed to easily
build master-worker applications running on top of Condor. By handling automatically
all the hard issues of resource discovery and management, fault-tolerance, task scheduling
and interprocess communication, users can focus on the algorithmic features of their
application without worrying about the computational details.

Three abstract classes must be implemented for each specific applications. The
MWDriver class corresponds to the master process and contains the control center for
distributing tasks to workers. The MWTask class describes the inputs and outputs (prob-
lem data and results) that are associated with a single unit of work. The MWWorker class
contains code to initialize a worker process and to execute any tasks that are sent to it
by the master. For a complete description of the functionalities of MW, see [29] and [28].

In our parallel MINLP application, the MINLP master is in charge of reading the
MINLP problem in AMPL format, reading the algorithmic parameters supplied by the
user, placing the MINLP root node in the task pool and shipping initial information to
MINLP workers when they join the computation. During the course of the computation

the MINLP master has to

e manage the task pool and the upper level branch-and-bound tree-search,



e merge and store pseudo-costs information and run time statistics from the workers,

e choose the next node to be sent to a worker by alternating node selection strategies
to balance load and avoid contention,

e update and store the current best upper and lower bounds, and
e check the stopping criterion.

Each task, or unit of work corresponds to a MINLP subtree. The worker is essentially
the MINLP sequential code described in Section 3.1 plugged into the MW framework.
The description of the MINLP problem (P) (i.e. information about bounds, function
and derivative evaluation) is only passed once to each worker, namely when it joins the
task pool. After this initial setup, each worker only received incremental information to
describe the subtree that it is being sent. This description includes

e the lower and upper bounds of the root node of the subtree,

e information for warm-starting the search. This includes initial guesses of the primal
and dual variables and the trust region radius,

e the most recent pseudo-costs table, and
e the best upper bound found so far by all workers which is used as the cut-off value.

After completing the task (either because the time limit has been reached, or an integer
feasible solution has been found or because the subtree has been fathomed), the worker
returns the following information to the master

e an integer feasible solution (if any has been found),
e the remaining unexplored nodes which form the remaining task pool,
e pseudo-costs updates and cumulated run-time statistics.

In order to evaluate the performance of an application in a heterogeneous environment,
MW provides a feature to register a benchmark task that is run by all new MINLP workers
as they join the computational pool. In our application this is a small MINLP tree search.
The CPU time required to process this task is used to normalize the statistics returned
by each individual workers and provide a performance evaluation that is independent of
the heterogeneous nature of resources, see [28].

In order to ensure robustness of the parallel MINLP solver, the master machine (which
can become unavailable like any other resource) is checkpointed occasionally. This means
that the list of tasks and all global statistics and pseudo-costs are stored on disk. This
enables the solver to continue from the last checkpoint if the master machine becomes
unavailable. This problem specific method of checkpointing is far more efficient than the
standard Condor checkpointing which consists of writing a complete copy of the current
memory status of a machine to disk.

There is no problem specific checkpointing at the worker level. Thus we do not
perform checkpointing at the worker level, as the amount of data that would have to be
saved is huge. Checkpointing of workers is only useful in applications with much larger



granularity (e.g. 1 hour per task). Instead, if a worker becomes unavailable, its task is
simply re-scheduled on another worker by the master.

MW has been used to implement other efficient grid-enabled parallel numerical opti-
mization solvers, such as solver for stochastic optimization [46], the quadratic assignment
problem [2] and mixed-integer linear programming [9].

4 Numerical Experience

This section presents some preliminary numerical results with a parallel implementation
of branch-and-bound on a computational grid. The experiments were conducted on a
grid of 146 Intel/Solaris machines at the University of Wisconsin’s Condor pool. All
problems were solved to an absolute tolerance of 107°.

header description

name Name of problem

n Number of variables (binary, integer & continuous)

np Number of binary variables

n; Number of general integer variables

m Number of constraints

aver. QPs Average number of QPs per node (excluding root node)
tree-size Base-10-logarithm of size of the complete tree
B&B-size  Base-10-logarithm of the number of nodes solved

B& B-eff = B&B-size/tree-size; proportion of tree explored by solver
MINLP Number of MINLP-subproblem tasks solved

NLP Number of NLPs solved

inf NLP Number of infeasible NLPs

job-time  Overall (wall) time for job [in hours]

work-time  Overall (CPU) time for workers [in hours]

work Average number of workers

effic Parallel efficiency

Table 1: Description of headers for Tables 2 and 3

Table 1 describes the headers of the two subsequent tables. Table 2 shows the problem
characteristics and Table 3 shows the results of the runs. The columns headed “tree-size”
and “B&B-size” indicate that the MINLPs attempted here are non-trivial and provide
a measure for the efficiency of the branch-and-bound solver. The parallel efficiency is

defined as

work-time

effic :=

work * job-time

or the total CPU time of the workers as a proportion of the computational resources used
in the solve. This number shows how efficiently the computational grid is exploited by
the algorithm. Note that “speed-up” would not be a useful measure in the context of
computational grids. In the present context, workstations can disappear at any time and
it is impossible to create conditions which would measure speed-up. More importantly
though the main aim of computational grids is to facilitate high-throughput computing,



exploiting unused cycles. Therefore, parallel efficiency is a better guide to the efficiency

of an algorithm.

aver. tree- B&B- B&B-

No. name n m np, n; QPs size size eff
1. c-reld-14a 342 308 168 0 1.15 50.6 2.7 1078
2. creld-g-25 1033 658 625 0 18.58 188.1 2.6 107186
3. c-sched?2 400 137 308 0 491 92.7 4.4 10788
4. space-25 893 235 750 0 1.15 225.8 3.8 107222
5. stockcycle 480 97 432 48  2.05 235.0 5.6 10722
6. trimlon4 24 24 4 20 124 18.1 4.6 10~
7. trimlond 35 35 5 30 1.20 27.0 58 107
8. trimlon6 48 36 6 42 1.89 37.2 6.1 103!
9. trimlon7 63 42 7 56 1.14 51.9 89 107
10. trimloss4 105 64 8 0 210 25.6 8.0 1078

Table 2: Problem characteristics

The problems arise in a variety of applications. Problems 1 and 2 are core reload
pattern optimization problems (see Quist et al. [52] and [51]). Problem 3 is a cyclic
scheduling due to Jain and Grossmann [37]. Problem 4 is a model of a 25 bar space
truss design in which the weight of the structure is minimized subject to choosing each
bar from a discrete set. This model is due to Tin-Loi [58]. Problem 4 is a pure integer
NLP which minimizes the total average stock cycle [54]. Problems 6 to 9 are nonconvex
MINLP arising from trim loss minimization in the paper industry. The problems differ
in the number of product rolls and this formulation is due to Harjunkoski et al. [35].
Finally, problem 10 is a convexified version of Problem 6. AMPL models describing all

problems can be found on-line at [44].

job-  work-
name MINLP NLP inf NLP  time time work effic
c-reld-14a 17 507 16 0.18 0.11 1.3 45.8
c-reld-q-25 255 337 19 1.83 19.77 17.1 68.3
c-sched?2 1094 25112 488  0.46 2.48 25.1 28.6
space-25 678 4452 1182  0.39 0.46 29.7 64
stockcycle 2848 384358 2319 1.20  20.67 33.3 5H7.2
trimlon4 108 28888 8473  0.11 0.06 3.0 49.3
trimlon5 283 556457 145764  0.14 0.42 13.3 22.6
trimlon6 725 1001705 200608  0.20 1.90 22.8 43.2
trimlon7 96408 600518018 179504387 15.50 752.65 62.7 80.5
trimloss4 42205 61291678 28054745  4.88 321.52 93.0 74.7

Table 3: Results of MINLP test

The final two columns of Table 2 show that the branch-and-bound techniques used in
the present implementation are efficient for solving MINLP problems. Note that only a
very small proportion of the complete tree is explored by the solver. Consider trimlon?7,



for example: even though it requires the solution of almost 10° NLPs, that number
represents only a 107*3 part of the total tree.

Table 2 shows the success of the warm start techniques in our NLP solver. For most
problems, 1-2 QPs are required on average to solve a node in the tree. Only problems
“c-sched2” and “c-reld-g-25” have a larger number of QPs per node. The much larger
average number of QPs for “c-reld-q-25” explains the high efficiency (Table 3) for this
problem, despite its small MINLP tree. These excellent warm start properties of the
NLP solver explain the poor parallel efficiency of an earlier implementation in which
each worker solved an NLP. Clearly, any such approach would create a bottleneck at the
master level, as the NLPs are solved too quickly.
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Figure 2: Performance of parallel solver on stockcycle

Figures 2, 3 and 4 show the runs of stockcycle, trimlon7 and trimloss4 respectively
in more detail. The figures show the number of workers, the lower and upper bound,
the number of problems on the stack of the master and the number of NLPs solved per
MINLP task as a function of computing time on the master.

Table 3 shows that the approach presented here is efficient in solving some large
MINLP. The efficiency reaches 80% and is well over 40 % for most problems. The
efficiency is proportional to the number of MINLP tasks that are solved, except for c-
reld-*, where the high efficiency is due to the fact that each NLP is much harder to solve
(as can be seen by comparing the number of QPs per node in Table 2).

The running time for each MINLP is reduced by up to two orders of magnitude,
making these MINLPs solvable in a reasonable amount of time. Another encouraging
result is the fact that the MINLP master is capable of handling huge numbers of MINLP
and NLP subproblems without a degradation in efficiency. That is particularly apparent
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Figure 3: Performance of parallel solver on trimlon7

for trimlon7. This proves in our view that the concept of a master-worker paradigm with
each worker solving MINLP problems is useful for tackling challenging MINLP problems.

For the smaller problems (1-8), only a moderate average number of workers have been
used. This is explained by the relative small number of MINLP tasks which need to be
carried out. These tasks only become available dynamically as new nodes are returned to
the task pool from the workers. Thus, the solver builds up a pool of workers dynamically,
as new tasks are required. This can be seen well in Figure 2, where the number of
workers increases. Once, the solver reaches 70 workers, the problem is already solved
which explains the moderate average number of workers.

The two largest problems (9 and 10) each require a considerable amount of compu-
tational resources as can be seen from Table 3 and Figures 3 and 4. In both cases, the
solver rapidly requests idle machines as the task pool increases in size. As machines be-
come unavailable at times, the number of workers falls. Note that the number of workers
varies considerably during each of the runs. This is handled automatically by the MW
framework.

It can be observed in Figure 3 that the behaviour for the first 5 hours differs from the
remainder. This illustrates the effect of the lazy-best-first strategy. Initially, lazy-best-
first is performed until the task pool at the master exceeds max_lazy best first, which
is 2100 in this run. At that point, the master resorts to depth-first-search, resulting
in a reduction in the number of nodes at the master. Once this number drops below
min_lazy best _first (1900 here), lazy-best-first resumes. This results in the number of
problems oscillating around 2000 for this run until the first integer solution is found and
a large proportion of problems are removed from the tree. The remainder of the time is
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Figure 4: Performance of parallel solver on trimloss4

spend verifying this solution by pruning the remainder of the tree.

An interesting point about Figure 3 is that the lower bound is not monotonic. The
reasons for this is that problem 9 is nonconvexr. Thus the bounds cannot be expected to
be monotone (in fact the lower bound is not strictly speaking a bound at all).

It can be seen from both Figure 3 and 4 that the size of each task remains of roughly
equal size. This is important, as it ensures that the grain size of the tasks is large enough
so as not to be dominated by communication costs and over-heads. This is also reflected
in the efficiency of the solves.

5 Conclusions

We have presented a parallel implementation of nonlinear branch-and-bound on a com-
putational grid. The parallelization strategy employs a master-worker paradigm in which
the master manages a pool of MINLP tasks corresponding to subtrees of the branch-and-
bound tree. Each worker solves a MINLP task by nonlinear branch-and-bound.

Preliminary numerical experience demonstrates the efficiency of this approach. The
master is able to manage large numbers of MINLP tasks without any drop in parallel
efficiency. Many hard MINLP problems are solved up to 2 orders of magnitude faster
than a serial implementation could achieve. The approach is efficient both at finding
optimal solutions and at verifying their optimality. This makes this approach suitable
for solving computationally challenging MINLP problems.

There are various ways in which the current approach can be improved. For instance,



it is possible to improve the branch-and-bound solver at the worker level by using early
branching [5]. This has been shown to improve on branch-and-bound by a factor of 2-
3 [43] albeit at the cost of being less reliable at finding global solutions for nonconvex
MINLPs.

Another way to improve the worker’s branch-and-bound solver would be to derive
cutting planes, e.g. [57] and [1] and to use these in a branch-and-cut framework. Note
that, the validity of these cuts depends crucially on the convexity of f and g and it is not
clear that nonconvex MINLPs can be solved satisfactorily with this approach. However,
it would be interesting to explore the generation of cuts in parallel, possibly by having a
small number of workers dedicated to the generation of strong cuts.
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