
Noncontiguous MPI-IO Performance on PVFS

Rob Latham, Rob Ross

Abstract

Performance could be better.

1 Introduction

On April 10, 2003, a PVFS user reported particularly low performance for a modified noncontiguous testing
application that they were using to test their system. This led us into an investigation of the problem and the
implementation of solutions.

This resulted in a series of experiments to determine exactly what was going on and to hopefully “fix”
the problem.

This highlights the complexities in MPI-IO implementations. Maybe this is useful as part of a paper later
on.

2 The noncontig Test

By default the test works on noncontiguous regions of 4 bytes (MPI INTs).

2.1 Parameters
� fsize - file size in MB

� elmtcount - number of elements (MPI INTs) in a contiguous chunk

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

	
	
	
	










�
�
�
�

�
�
�
�






��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

���
���
���
���

�
�
�
�

���
���
���
���

���
���
���
���

�
�
�
�

�
�
�
�

���
���
���
���

���
���
���
���

���
���
���
���

�
�
�
�

���
���
���
���

�
�
�
�

  
  
  
  

!!
!!
!!
!!

"�""�"
"�""�"
"�""�"
"�""�"

##
##
##
##

$�$$�$
$�$$�$
$�$$�$
$�$$�$

%%
%%
%%
%%

&�&
&�&
&�&
&�&

'�'
'�'
'�'
'�'

(�(
(�(
(�(
(�(

)
)
)
)

*�*
*�*
*�*
*�*

+
+
+
+

,�,
,�,
,�,
,�,

-
-
-
-

.�.
.�.
.�.
.�.

/�/
/�/
/�/
/�/

0�0
0�0
0�0
0�0

1�1
1�1
1�1
1�1

22
22
22
22

33
33
33
33

44
44
44
44

55
55
55
55

66
66
66
66

77
77
77
77

VECLEN

ELMTCOUNT

FSIZE

Figure 1: Access pattern of noncontig test

1



� displs - emulates a “header” on the data, size in bytes

� cbsize - size in KB passed as the “cb buffer size” hint

� coll - use collective MPI-IO calls rather than independent ones

� bufsize - size of memory buffer, in MB

3 ROMIO Hints and I/O Methods

So there are actually three ways (at least) that a collective call can be serviced:

� no two-phase, using contiguous I/O

� no two-phase, using noncontiguous I/O (for PVFS, listio)

� two-phase

You can ensure that the third one WON’T happen by setting “romio cb write” to “disable”, or that it will
with an “enable”.

By default the two-phase optimization is applied if the accesses of the processes are interleaved, but not
otherwise.

And it gets trickier! There’s also some aggregation control going on. By default ROMIO uses exactly
one process per node for I/O in the collective case. See the notes on “cb config list” in the ROMIO User’s
Guide. This is probably not helping your performance either in this particular case.

3.1 Further Study

Further investigation noted a number of things.
First, in the read case data sieving will be used for cases where the data is noncontiguous in file. It is not

used in the case where the data is contiguous in file. In all these cases, the macro ADIOI BUFFERED READ
is used, which does a lot of memory allocation and freeing.

In the contig/contig case, data is read straight into the user’s buffer.
For writes, data sieving is not used with PVFS. Instead, by default, a “naive” write approach is used for

cases where data is noncontiguous in file. For the case where data is contiguous in file but noncontiguous in
memory, pvfs writev is used instead. For contig/contig cases the data is read straight into the buffer.

From Joachim’s data, and subsequent tests, we see:

� read performance is typically considerably lower for all noncontiguous file cases than the contiguous
ones (and later we see that contig in file but noncontig in memory is pretty bad too)

� write performance is bad in all cases but contig/contig, but is particularly bad in the case where
pvfs writev is used (contiguous in file, noncontiguous in memory)

From this we determined that we should do a quick parameter sweep to try to isolate some of the artifacts
seen here. In particular we want to see how much of an effect data sieving is having on performance, what
impact this 4 byte element size is having, and how the more recent “list I/O” code impacts performance. In
the process too we quickly realized that the use of pvfs writevwas a poor one, and implemented a fix for
this.

By default, ROMIO only applies the two-phase optimization in cases where data is “interleaved”, that is,
the regions of different processes overlap. So we would expect that use of collective I/O would only really
be of benefit in cases where data is noncontiguous in file.

2



0

50

100

150

200

250

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

noncontig in memory, contig in file (reads)

default
list IO

contig-contig (read)

0

50

100

150

200

250

300

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

noncontig in memory, contig in file (write)

default
write combining

list IO
contig-contig (write)

Figure 2: Noncontiguous in memory, contiguous in file access

4 Testing

Testing was performed with PVFS version 1.5.7-pre3 and ROMIO 1.2.5. Debugging was enabled in the
ROMIO code, leading to some small amount of performance degredation.

All tests were run on the data grid nodes. There are 19 I/O nodes on the data grid nodes at MCS. All tests
were run with 8 compute processes, on separate nodes which were also serving as I/O nodes.

File size was fixed at 2MB. Veclen times elmtcount was fixed at 1024 (so as we increase elmtcount we
decrease veclen, thus maintaining a fixed file size). The elmtcount was tested between 1 and 128.

In all graphs we show the peak performance obtained for accesses that were contiguous in file and mem-
ory as a horizontal line at the top of the graph in order to provide perspective on relative performance. [
Should we normalize values instead? ]

Peak aggregate bandwidth for the contiguous in memory, contiguous in file case runs was approximately
240 Mbytes/sec for reads and 280 Mbytes/sec for writes.

[ Say something about how small these accesses are, total, etc. ]
Figure 2 shows performance for a pattern with data being accessed from contiguous regions in file, but

noncontigous in memory. In these cases ROMIO will not use the two-phase optimization by default. In the
read case the generic read strided code is used, and a buffered read is performed. If we turn on list I/O reads,
ROMIO will use PVFS listio.

In the default case ROMIO obtains about 15% of peak performance regardless of the element size. We
believe this is due to inefficiencies in the ROMIO ADIOI BUFFERED READmacro, which performs a large
number of memory allocations, frees, and copies. We will see that a more direct approach obtains a signifi-
cantly higher fraction of peak for writes. At an element count of 32, list I/O begins to beat the default scheme
and in the end provides approximately 40% of peak performance. List I/O is also to some extent hindered by
memory allocation and freeing in the access list code in the PVFS library.

In the write case, by default, pvfs writev is used for this access pattern. We can turn on list I/O writes,
in which case ROMIO will use PVFS listio instead. A third option is to patch ROMIO so that it combines
data to write on each node before writing, using the value of the ind wr buffer size hint as a maximum
size.

We see that the default approach of using pvfs writev is particularly poor. The pvfs writev im-
plementation simply writes each small piece as an individual write, causing extremely poor performance. List
I/O, despite providing relatively low performance, does consistently better, providing in the end 37% of peak.
Our patched ROMIO does quite a bit better. Using a dynamically allocated buffer of ind wr buffer size

3



0

50

100

150

200

250

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

contig in memory, noncontig in file (reads)

default
list IO

collective
contig-contig (read)

0

50

100

150

200

250

300

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

contig in memory, noncontig in file (writes)

default
list IO

collective
contig-contig (write)

Figure 3: Contiguous in memory, noncontiguous in file access

bytes, data is combined into large buffers to write. Using this approach we obtain 77% of peak, and maintain
33% of peak even for an element size of 1.

Figure 3 shows performance for a pattern with data being accessed from noncontiguous regions in the
file, contiguous in memory. In these cases ROMIO will use the two-phase optimization if collective I/O calls
are made. For independent calls, by default ROMIO will use data sieving for reads. List I/O reads may be
enabled through a hint.

In the default case we obtain about 15% of peak performance doing data sieving. This is actually to be
expected, since with 8 processes we are reading roughly 8 times our desired data size in order to obtain the
needed data. Two-phase obtains a slight improvement, but the cost of redistribution appears to outweigh most
of the benefits of the optimization at this number of processes. List I/O performs worst in this case, never
beating either of the other two methods. That the description of the I/O regions (each of which is 16 bytes,
8 bytes of length and 8 bytes of position) is not particularly concise, causing a great deal of overhead in the
request processing portion of this operation.

ROMIO will write out individual pieces one at a time for writes on PVFS (because we cannot lock).
Again we have the option of using list I/O.

Default writing using many individual writes performance extremely poorly, on par with the performance
of pvfs writev in previous cases. Two-phase performs similarly to its behavior in the read case, although
it obtains somewhat lower percentage of peak performance. List I/O writes begin to show their merit at the
largest element sizes (25% of peak), indicating that while extremely small accesses are still performed poorly
with listio, only slightly larger accesses would likely fare well.

The most difficult case, from the perspective of maintaining performance, is when data is both noncon-
tiguous in file and memory. Figure 4 shows performance for a pattern where data is noncontiguous in both
file and memory. In this case, for reads ROMIO will use data sieving combined with intermediate buffering.
List I/O may be enabled for PVFS through the hint. Finally, for collective operations two-phase I/O will be
used, because data is interleaved.

The default read option, data sieving, performs at approximately 10-15% of peak again, due to reading
of extra data. Two-phase does slightly better in some cases, however, and maintains 15% of peak more
consistently. List I/O again does not show its real benefits until we hit the largest of the element sizes. Again
it appears that slightly larger element sizes would begin to leverage this optimization more effectively.

For writes ROMIO will by default write each piece individually, since PVFS does not provide the locking
infrastructure that ROMIO needs to implement data sieving. The PVFS list I/O enhancement may be turned
on with a hint, and in the case of collective I/O ROMIO will use two-phase I/O.

4



0

50

100

150

200

250

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

noncontig in memory, noncontig in file (reads)

default
list IO

collective
contig-contig (read)

0

50

100

150

200

250

300

1 10 100

B
an

dw
id

th
 (

M
B

/s
ec

)

element count

noncontig in memory, noncontig in file (write)

default
list IO

collective
contig-contig (write)

Figure 4: Noncontiguous in memory, noncontiguous in file access

Write performance is extremely low in all cases tested. Two-phase appears to be the best overall choice,
while list I/O again begins to be a win at the largest element sizes.

5 Future Work

Get rid of crufty buffered read code in ROMIO.
Examine the cost of memory allocation and deallocation in the list io code.
Try this with datatype I/O once available.

5


