AG Toolkit Design: Certificate Management Subsystem

Robert Olson

Mathematics and Computer Science Division

Argonne National Laboratory

November 24, 2003

Summary

The Access Grid 2.0 software suite utilizes the Globus Toolkit mechanisms for authentication and user identification [1]. These mechanisms are based on a public key infrastructure, and hence the use of X.509 identity certificates [2]. While users of supercomputers and grid-based computing systems may be willing to pay the price of inconvenience in requesting, installing, renewing, and otherwise managing their certificates, casual users of the Access Grid are more likely to find these requirements baffling and annoying.

Design Overview

Ideally, a user should have no idea that he has an identity certificate. He should be able to start the software, and it works properly. In reality, of course, the process is more complex. To understand the problem more completely let us consider the classes of user that we wish to enable to use the Access Grid software, and what the implications with respect to authentication, identification, and certificate management are.

The first user type we consider is the hit and run user. This is a person who is trying out the software for the first time, or who doesn’t know or care about the details of certificate-based authentication.

A hit and run user must be able to use the AG software to connect to a public venue server and see its full functionality in action. However, because he would not have a verifiable identity presented to the venue server, he would not be able to participate in any closed sessions or access any protected data or other resources.

Next, we consider a basic user. This is a user who is working at or in collaboration with an institution that uses the Access Grid on a regular basis, and which expects that its collaborators using the Access Grid have identities that are verifiable through the AG security mechanisms.

This user should only be required to do the minimum of work necessary to acquire the credentials required to participate at this level. This implies that the AG software should be the primary interface he uses to view any credentials he may have, to determine from what provider he should request any credentials he does not have, and to perform the actual credential request and installation of credentials when they become available.

Finally, we consider an advanced user. This user is familiar with public key certificates (perhaps he is a supercomputing Grid user already, or has credentials that have been created for him by his home institution for use in other applications) and has experience in other applications in their use and manipulation.

Technology Decisions

Access Grid identity certificates are X.509 certificates. The Certificate Management subsystem manipulates these certificates at the lowest level using the OpenSSL [3] library, exposed to the Python code via the pyOpenSSL bindings [4].

Before detailing the other technology decisions, let us discuss the requirements that the AG software has for the management of certificates.

1. To participate in an AG session, a user must have an identity certificate of some sort. We will discuss the options for this later.

2. If the certificate has a passphrase, the user must only be required to enter this passphrase once at the beginning of a session.

3. A user must be able to use multiple certificates if he chooses; however, the system may require that only one certificate may be used in any particular invocation of the client software.

4. The installation of the AG software will ship with a default set of trusted CA certificates.

5. This set of certificates must be modifiable by the user. A user can have a customized set of CA certificates that his sessions will trust.

6. Administrators of a site can install new trusted CA certificates, which will be inhered by users if they desire.

7. Services execute with their own identity certificate, separate from that of any user.

8. A service installation also has its own set of trusted CA certificates.

9. These certificates are modifiable by the “Administrator” for the service installation.

Due especially to requirements (3) and (5), we propose that the AG software define its own repository of certificates for both users’ identity certificates and for trusted CA certificates.

Resolution of requirements (4) and (6) requires that the AG client software be aware of a site-wide repository of trusted CA certificates, and handle the import of those certificates into a user’s environment properly. The exact definition of proper import may not be obvious, and will hence need to be specified clearly in the definition of this process.

Requirements (7), (8), and (9) imply that a service, while not being directly attached to a GUI and driven by a user, has similar requirements for the management of identity and trusted CA certificates. However, services typically do not use proxy certificates; rather, their identity certificates are created with private keys that are not protected with passphrases.

We may now define the major components of the implementation technology.

Certificate Repository

We define a certificate repository as a collection of X509 certificates that are related in some manner. These may be a user’s set of identity certificates, a set of trusted CA certificates, etc.

A repository is a directory in the local computer’s filesystem. Each certificate and private key is stored in a file in that directory. The directory also contains database files that map from high-level information about the certificates in the repository to the files comprising the certificates. We store the certificates in individual files, rather than directly in the database files, because many tools that utilize certificates expect them to reside in individual files in the filesystem.

User Certificates

Each user has certificate repository for his personal identity certificates. The repository directory is located in the user’s Access Grid Toolkit per-user configuration directory.

Service Certificates

A service is configured to have its own certificate respository, into which are installed the service’s identity certificate and required trusted CA certificates.

Trusted CA Certificates

Trusted CA certificates are also stored in a certificate repository. A system may define a shared central location for trusted CA certificates to be used by all users of the system; application software that utilizes the certificate repository may check at startup or otherwise as necessary for the existence of new CA certificates in that directory, or removal of previously-installed CA certificates, and updated its certificate respository as desired by the application or user.

Module Decomposition

The certificate management subsystem is composed of the following classes (some of which have specific subclasses for particular uses):

[image: image1.wmf]

Certificate

Certificate

Request

Certificate

Repository

Certificate

Manager

Certificate

Manager

UserInterface

Certificate

RequestTool

The Certificate and CertificateRepository classes form the foundation of the certificate management infrastructure. Upon these is built the CertificateManager, which provides the aggregate management of sets of certificates. Upon that are built the user interaction tools, the certificate request tool and the user interface.

Specifications

Certificate
A Certificate wraps the underlying PyOpenSSL certificate object.

Data

path: Pathname in the filesystem of the X.509 certificate file which this instance is wrapping.

keyPath: Pathname of the file containing the private key for this certificate.

repo: If not None, the CertificateRepository in which this Certificate is located.

subjectHash, issuerSerialHash, modulusHash: Cached md5 hashes of the subject name, issuer and serial number, and public-key modulus.

Internal Method Signatures
_GetMetadataKey(self, key): string

External Method Signatures
GetFilePath(self, filename): string

GetIssuer(self): X509Name
GetIssuerSerialHash(self): string
GetKeyPath(self): string
GetMetadata(self, key): string
GetModulus(self): string
GetModulusHash(self): string
GetNotValidAfter(self): string
GetNotValidBefore(self) string
GetPath(self) : string

GetSubject(self) : X509Name

GetSubjectHash(self) : string

GetVerboseText(self) : string

IsExpired(self): boolean
IsGlobusProxy(self): boolean
SetMetadata(self, key, value): None
WriteCertificate(self, file): None
Web Service Method Signatures
None.

CertificateDescriptor

A CertificateDescriptor wraps a Certificate object which is specifically part of a CertificateRepository. As such, it requires and holds a reference to a CertificateRepository.

Data

cert: The wrapped Certificate instance.

repo: The CertificateRepository to which this Certificate belongs.

Internal Method Signatures
None

External Method Signatures
GetPath(self): string

GetKeyPath(self): string

GetIssuer(self): X509Name

GetSubject(self): X509Name

GetMetadata(self, k): string

SetMetadata(self, k, v): None

GetFilePath(self, file): string

GetVerboseText(self): string

GetModulus(self): string

GetModulusHash(self): string

HasEncryptedPrivateKey(self): boolean

GetNotValidBefore(self): string

GetNotValidAfter(self): string

IsExpired(self): boolean
Web Service Method Signatures
None.

CertificateRequestDescriptor

A CertificateRequestDescriptor wraps an underlying PyOpenSSL X.509 certificate request object.

Data
req: The PyOpenSSY X509Req object.

repo: The CertificateRepository in which the certificate request resides.

modulusHash: The cached value of the public-key modulus hash for this request.

Internal Method Signatures

_GetMetadataKey(self, key): string

External Method Signatures
GetSubject(self): X509Name

GetModulus(self): string

GetModulusHash(self): string

GetMetadata(self, key): string

SetMetadata(self, key, value): None

ExportPEM(self): string
Web Service Method Signatures

None

CertificateRepository

A CertificateRepository stores a collection of certificates, certificate requests, and private keys. It also maintains metadata for each.

Data

Internal Method Signatures
_ImportCertificate(self, cert, path): None

_ImportCertificateRequest(self, req): None

_GetPrivateKeyPath(self, hash): string

_ImportPrivateKey(self, pkey, passwdCB): None

_GetCertDirPath(self, cert): string

_GetCertificates(self): (Generator function) CertificateDescriptor

_GetCertificateRequests(self): (Generator function) CertificateRequestDescriptor
External Method Signatures
ImportCertificatePEM(self, certFile, keyFile = None, passphraseCB = None): None

ImportRequestedCertificate(self, certFile, passphraseCB = None): None

RemoveCertificate(self, cert): None

CreateCertificateRequest(self, nameEntries, passphraseCB,

 keyType = KEYTYPE_RSA,

 bits = 1024,

 messageDigest = "md5",

 extensions = None): CertificateRequestDescriptor

RemoveCertificateRequest(self, req): None

GetAllCertificates(self): (Generator function) CertificateDescriptor

FindCertificates(self, pred): [CertificateDescriptor]

FindCertificatesWithSubject(self, subj): [CertificateDescriptor]

FindCertificatesWithIssuer(self, issuer): [CertificateDescriptor]

FindCertificatesWithMetadata(self, mdkey, mdvalue): [CertificateDescriptor]

GetAllCertificateRequests(self): (Generator function) CertificateRequestDescriptor

FindCertificateRequests(self, pred): [CertificateRequestDescriptor]

FindCertificateRequestsWithSubject(self, subj): [CertificateRequestDescriptor]

FindCertificateRequestsWithMetadata(self, mdkey, mdvalue): [CertificateRequestDescriptor]

SetPrivatekeyMetadata(self, modulus, key, value): None

GetPrivatekeyMetadata(self, modulus, key): string

SetMetadata(self, key, value): None

GetMetadata(self, key): string
Web Service Method Signatures
None

CertificateManager

A CertificateManager is the entry point for all certificate-related management services for an application.

Data
userInterface: Current user interface object

userProfileDir: Current user’s AG profile directory

certRepoPath: Path in which the certificate repository is stored

caDir: Path in which the Globus trusted CA certificate directory is to be maintained

defaultIdentity: CertificateDescriptor representing the current default identity

certRepo: CertificateRepository instance being managed
Internal Method Signatures
_InitializeCADir(self): None

_InitEnvWithProxy(self): None

_FindProxyCertificatePath(self, identity = None): string

_VerifyGlobusProxy(self): CertificateDescriptor

_InitEnvWithCert(self): None
External Method Signatures
InitializeRepository(self): None

InitRepoFromGlobus(self, repo): None

ImportRequestedCertificate(self, userCert): CertificateDescriptor

ImportIdentityCertificatePEM(self, repo, userCert, userKey, passphraseCB): CertificateDescriptor

ImportCACertificatePEM(self, repo, cert): CertificateDescriptor

VerifyCertificatePath(self, cert): boolean

GetUserInterface(self): CertificateMangerUserInterface

GetCertificateRepository(self): CertificateRepository

CreateProxy(self): None

CreateProxyCertificate(self, passphrase, bits, hours): None

HaveValidProxy(self): boolean

InitEnvironment(self): None

SetDefaultIdentity(self, certDesc): None

GetDefaultIdentity(self): CertificateDescriptor

GetProxyPath(self): string

GetIdentityCerts(self): [CertificateDescriptor]

IsDefaultIdentityCert(self, c): boolean

GetDefaultIdentityCerts(self): [CertificateDescriptor]

GetCACerts(self): [CertificateDescriptor]

CheckConfiguration(self): None

GetPendingRequests(self): [CertificateRequestDescriptor]

CheckRequestedCertificate(self, req, token, server, proxyHost = None, proxyPort = None): tuple(boolean, CertificateDescriptor | string)

Web Service Method Signatures

None

CertificateManagerUserInterface

A CertificateManagerUserInterface provides the common user-interface methods used by the certificate management system. The CertificateManagementUserInterface baseclass implements a command-line interface; it is designed to be subclassed to provide other mechanisms. The CertificateManagementWXGUI subclass, for instance, provides a wxPython-based GUI interface.

Data
certificateManager: the CertificateManager instance with which this user interface object is associated.
Internal Method Signatures
None

External Method Signatures
SetCertificateManager(self, cm): None

GetCertificateManager(self): CertificateManager

GetProxyInfo(self, cert, userMessage = ""): tuple(string, int, int)

ReportError(self, err): None

ReportBadPassphrase(self): None

GetPassphraseCallback(self, caption, message): callable

InitGlobusEnvironment(self): None

CreateProxy(self): None
Web Service Method Signatures
None

References

1.
Foster, I., et al. A Security Architecture for Computational Grids. in 5th ACM Conference on Computer and Communications Security Conference. 1998.

2.
Housley, R., et al., RFC 3280: Internet X.509 Public Key Infrastructure Certificate and CRL Profile. http://www.ietf.org/rfc/rfc3280.txt
3.
The OpenSSL Project. http://www.openssl.org/
4.
Shannon, P., Python OpenSSL Wrappers. http://sourceforge.net/projects/pow

�

