DOCUMENT VERSION

17

NodeManagement Design 2.0
Futures Laboratory

Argonne National Laboratory

9700 S. Cass Ave.

Argonne, IL 60439

12/1/2003
Summary
The Node Management subsystem is responsible for aggregating machines and their resources for use in collaboration. This implies a distributed system that includes a central access point, software to allow services to be started and stopped on each machine in the node, and services on each machine.
	
	Requirements
	

	1.0
	Node Service

	1.1
	Add/Remove service managers

	1.2
	Add/Remove services

	1.3
	Configure services

	1.4
	Store/Load node configurations (groups of service managers, services, and service configurations)

	1.5
	Discover node resources (aggregate machine resources)

	1.6
	Handle stream description updates (via VenueClient)

	2.0
	Service Manager

	2.1
	Add services

	2.2
	Discover machine resources

	3.0
	Service

	3.1
	Encapsulate software to provide access to machine resources

	4.0
	Node Management User Interface

	4.1
	Add/Remove Service Manager

	4.2
	Add/Remove Service

	4.3
	Configure Service

	4.4
	Store/Load Configuration

Design
Module Decomposition
The Node Management subsystem of the Access Grid consists of the components AGNodeService, AGServiceManager, and AGService. These components are described in more detail below.

[image: image1.emf]Node

Service

Service

Manager

Audio

Service

Video

Producer

Service

Video

Consumer

Service

Figure 1 Single-machine Node Configuration

[image: image2.emf]Node

Service

Service

Manager

Service

Manager

Service

Manager

Video

Consumer

Service

Video

Producer

Service

Audio

Service

Figure 2 Multiple-machine Node Configuration (machines are distinguished by color)
AGNodeService

The AGNodeService aggregates and stores configuration data for the node. It has a network interface to allow network-based node management tools to configure and operate the node.
AGServiceManager

An AGServiceManager runs on each machine in a node. It is responsible for discovering and reporting resources available on the machine, and providing interfaces for adding and removing services on the machine where it runs.

AGService

AGService is a base class for services to provide access to the resources (e.g. audio, video) on a machine. Multiple AGServices can be added to each service manager running in a node.

Technology Decisions

The Node Management subsystem consists of multiple components, possibly distributed over multiple machines. These components will be implemented in Python. They will communicate using SOAP, which will enable third parties to develop interoperable services in any language.

NodeService-related Classes
AGNodeService (superclass: hosting.pyGlobus.ServiceBase)

The AGNodeService is the central repository of information about a Node. The NodeService communicates with AGServiceManagers on the machines in a Node to discover their resources and configure AGServices to deliver those resources to a Venue. It communicates with AGServices to start, stop, and configure them.

[image: image3.emf]AGServiceManager

Description

1

AGNode

Service

Service Package

Repository

AGService

Description

GSIHTTPTransferServer

0..n

Profile

StreamDescription

0..n

1

Figure 3 Class Diagram: AGNodeService
Attributes

authManager : AuthorizationManager

config : dict (key=configuration option name, value=configuration option value)

configDir : string

defaultConfig : string

profile : ClientProfile
serviceManagers : dict (key=service manager uri, value=AGServiceManagerDescription)

servicePackageRepository : ServicePackageRepository

servicesDir : string

streamDescriptionList : dict (key=media type, value=StreamDescription)
Methods
__init__(self) :
__PushAuthorizedUserList(self) : None

This method supports hierarchical security for the components in a node.
__ReadAuthFile(self) : None

This method supports hierarchical security for the components in a node.
__ReadConfigFile(self) : None

__SendStreamsToService(self, serviceUri) : None

Send streams to the service, if appropriate

__WriteConfigFile(self) : None

LoadDefaultConfig(self) : None

Stop(self) : None
Web Service Methods
AddAuthorizedUser(self, authorizedUser) : None
AddService(self, servicePackageUri, serviceManagerUri, resourceToAssign, serviceConfig) : AGServiceDescription

AddServiceManager(self, serviceManager) : None
AddStream(self, streamDescription) : None

GetAvailableServices(self) : list of ServiceManagerDescription
GetCapabilities(self) : list of Capability
GetConfigurations(self) : list of strings
GetServiceManagers(self) : list of ServiceManagerDescription
GetServices(self) : list of ServiceManagerDescription

LoadConfiguration(self, configName) : None
RemoveAuthorizedUser(self, authorizedUser) : None

RemoveServiceManager(self, serviceManagerToRemove) : None

RemoveStream(self, streamDescription) : None
SetDefaultConfiguration(self, configName) : None
SetIdentity(self, profile) : None
SetServiceEnabled(self, serviceUri, enabled) : None
SetServiceEnabledByMediaType(self, mediaType, enableFlag) : None
SetStreams(self, streamDescriptionList) : None
StopServices(self) : None
StoreConfiguration(self, configName) : None

AGServicePackageRepository
The service package repository distributes service packages from a local store to the service managers. This allows the node service to maintain a single store of service packages that is used for the entire node. The repository is initialized with the directory in which service packages are found, and the port on which to start the https server.

Attribute

httpd_port : int

servicesDir : string

serviceDescriptions : list of ServiceDescription

baseUrl : string

s : DataStore.GSIHTTPTransferServer

running : int

Methods
__init__(self, port, servicesDir) :
__ReadServicePackages(self) : None
GetDownloadFilename(self, id_token, url_path) : string
GetPackageUrl(self, file) : None
GetServiceDescriptions(self) : None
Stop(self) : None

AGServicePackage

An AGServicePackage describes a service package file and provides methods for accessing the contents of the package. The format of service package files is described in Appendix A.
Attribute

file : string

exeFile : string

descriptionFile : string
Methods

__init__(self,file) :

GetServiceDescription(self) : AGServiceDescription

ExtractExecutable(self, path) : None
ServiceManager-related Classes

AGServiceManager (superclass: hosting.pyGlobus.ServiceBase)
An AGServiceManager resides on a machine “in” the Node, to provide information about the machine’s resources to the NodeService, and to respond to requests from the NodeService to configure AGServices to deliver those resources.

[image: image4.emf]AGService

Description

0..n

Process

Manager

AGService

Manager

1

hosting.

pyGlobus.Server

AGResource

Process

Manager

0..n

1

1

Figure 4 Class Diagram: AGServiceManager
Attributes

authManager : AuthorizationManager
processManager : ProcessManager
resources : list of AGResource
server : hosting.pyGlobus.Server
services : dict (key=process id, value=AGServiceDescription)
servicesDir : string
Methods
__init__(self, hosting.pyGlobus.Server) : None
__DiscoverResources(self) : None
__PushAuthorizedUserList(self) : None
__ReadConfigFile(self, configFile) : None
__RetrieveServicePackage(self, servicePackageUrl) : None
Web Service Methods
AddService(self, servicePackageUri, resourceToAssign, serviceConfig) : None
DiscoverResources(self) : None
GetInstallDir(self) : None
GetResources(self) : None
GetServices(self) : None
RemoveService(self, serviceToRemove) : None
RemoveServices(self) : None
SetAuthorizedUsers(self, authorizedUsers) : None
Shutdown(self) : None
StopServices(self) : None
AGServiceManagerDescription

A service manager is referred to by other components with a service manager description.
Attributes

name : string

uri : string

Method Signatures
None
Service-related Classes
AGService (superclass: hosting.pyGlobus.ServiceBase)
An AGService exposes machine resources to the node as a whole, through a configurable software layer. The service can be associated with a particular resource, an executable for exposing the resource, and parameters for configuring the resource and associated software.

To allow the client to configure services generally, a service provides access to its configurable parameters as a list (see ServiceConfiguration), and accepts a list to set the configuration.

[image: image5.emf]AGService

{abstract}

1

0..n

1

Process

Manager

Capability

StreamDescription

hosting.

pyGlobus.Server

0..n

1

AGParameter

Figure 5 Class Diagram: AGService
Attributes

authManager : AuthorizationManager
capabilities : list of Capability
configuration : list of AGParameter
enabled : int
executable : string
processManager : ProcessManager
resource : AGResource
server : hosting.pyGlobus.Server
started : int
streamDescription : StreamDescription
Methods
__init__(self, server) :

_Start(self, options) : None
ForceStop(self) : None
Web Service Methods
ConfigureStream(self, streamDescription) : None
GetCapabilities(self) : None
GetConfiguration(self) : None
GetEnabled(self) : None
GetExecutable(self) : None
GetResource(self) : None
IsStarted(self) : None

SetAuthorizedUsers(self, authorizedUsers) : None
SetConfiguration(self, configuration) : None
SetEnabled(self, enabled) : None
SetExecutable(self, executable) : None
SetIdentity(self, profile) : None

SetResource(self, resource) : None
Shutdown(self) : None

Start(self) : None
Stop(self) : None

AGServiceDescription

An AGService is referenced by other components with a service description. This description includes necessary information (the URI) to call the service’s methods, and other descriptive information needed by such components.
Attributes
name : string

description : string

uri : string

capabilities : list of Capability

resource : AGResource

executable : string

serviceManagerUri : string

servicePackageUrl : string
Methods
None
ServiceConfiguration
The configuration of a service is represented by a ServiceConfiguration object. The configuration consists nominally of an executable and a resource, since services are mostly intended to execute some software to provide access to a resource. Service-specific configuration options are included in the parameters list.
Attributes

executable : string

resource : AGResource

parameters : list of AGParameter

AGParameters

Parameters are types with which services can describe their configurable options in a way that makes them presentable to a user for modification. For example, a TextParameter can be represented with a text field; an OptionSetParameter can be represented with a drop-down box.
ValueParameter
Attributes

name : string
value :

type : string

Methods

SetValue(self, value) : None

TextParameter
Attributes

name : string

value :

type : string

Methods

SetValue(self, value) : None

RangeParameter (superclass : ValueParameter)
Attributes

low : int

high : int

Methods

SetValue(self, value) : None

OptionSetParameter (superclass : ValueParameter)
Attributes

options : list of string
Methods

SetValue(self, value) : None

AGResource

An AGResource describes a resource on a machine.
Attributes

type : string (VIDEO, AUDIO, TEXT)

resource : string

role : string (PRODUCER, CONSUMER)

inUse : int (0, 1)
Methods
GetType(self): string
SetType(self,type) : None

GetResource(self) : string

SetResource(self, resource) : None

AGVideoResource (superclass : AGResource)

Attributes

portTypes : list of string
Capability
A service has one or more capabilities. A capability currently includes a (media) type (e.g. audio, video) and a role (e.g. producer, consumer).
Attributes

role : string
constants are defined for role, including Capability.PRODUCER and Capability.CONSUMER

type : string

constants are defined for these, including Capability.AUDIO and Capability.VIDEO

parms : dict (UNUSED)

intended to further describe the capability, but yet unused

Methods
__init__(self, role=None, type=None):

__repr__(self): string
matches(self, capability): int

Sequence Diagrams

Add/Remove Service Managers

The addition and removal of service managers is simple list management. Service managers are referenced as AGServiceManagerDescription objects. The only condition on the addition of a service manager to a node service (Figure 6) is that it be reachable at the URL specified in its description; removal is unconditional.

[image: image6.emf]AGNode

Service

Service

Manager

AddServiceManager

(ServiceManagerDescription)

IsValid()

Add service manager

to list

SetAuthorizedUsers

(authorizedUsersList)

[service manager

url is valid]

Figure 6 Sequence Diagram: AGNodeService.AddServiceManager
Add/Remove services
Services are added to service managers through the node service, which calls to the appropriate service manager to actually add the service. This is done in two levels so that the node service can message the service once it has been added, to, for example, set stream descriptions, set the identity, etc.

[image: image7.emf]AGNode

Service

Service

Manager

AddService

(servicePackageUri,

serviceManagerUri,

AGResource,

ServiceConfiguration)

AddService

AGService

return

AGServiceDescription

SetIdentity

return

AGServiceDescription

__SendStreamsToService(serviceUri)

GetCapabilities()

ConfigureStream(StreamDescription)

Figure 7 Sequence Diagram: AGNodeService.AddService

[image: image8.emf]Service

Manager

AddService

(servicePackageUri,

serviceManagerUri,

AGResource,

ServiceConfiguration)

MulticastAddressAllocator()

AGService

Package

verify resource

__RetrieveServicePackage(servicePackageUri) :

servicePackageFile

AGServicePackage(servicePackageFile)

GetServiceDescription

AllocatePort()

Multicast

Address

Allocator

Process

Manager

start_process

AGService

IsValid()

SetAuthorizedUsers(authorizedUserList)

SetResource(AGResource)

SetConfiguration(ServiceConfiguration)

GetCapabilities()

execute service

in new process

return

AGServiceDescription

Figure 8 Sequence Diagram: AGServiceManager.AddService
Configure services
Services may have parameters that are configurable by users (for example, the VideoProducerService has parameters for the frame rate and bandwidth). A service configuration comprises these parameters, an executable filename and a resource string. Clients of a service—most notably, the Node Management software—can query the service configuration, present it as a list of modifiable options, and update the service with the modified configuration.
This is done with the GetConfiguration and SetConfiguration methods on an AGService.
Store node configurations

The configuration of a node includes a collection of service managers, services for each one, and a service configuration for each service. To store a node configuration, the current service managers are queried for their services, and the services are queried for their configuration. This content is stored in an INI-formatted file, the format of which is specified in Appendix B.

[image: image9.emf]AGNode

Service

StoreConfiguration(configFile)

Config

Parser

AGService

Manager

GetServices()

for each

service

manager

add service section

to config

check file access

for each

service

create

resource

section

create

service

config

section

create

service

section

add service manager

section to config

write config file

Figure 9 Sequence Diagram: AGNodeService.StoreConfiguration

Load node configurations
Loading a node configuration from a file sets up the node with a particular set of service managers and services, assuming that the specified service managers are reachable.

[image: image10.emf]AGNode

Service

LoadConfiguration(configFile)

for each

service

manager

section

Config

Parser

AGService

Manager

Description

AGResource

Incoming

Service

AGService

Manager

read(configFile)

for each

service

section

build service

configuration

parameter list

append service

manager description

to list

for each

service

manager

description

add service manager to list of

service managers

RemoveServices()

for each

service

AddService(servicePackageUrl

AGResource,

ServiceConfiguration)

[service manager is reachable]

Figure 10 Sequence Diagram: AGNodeService.LoadConfiguration

Discover node resources
The resources of a node are a collection of the resources on each of the machines in the node. On each machine, resources are queried (using the SetupVideo.py script) when the software is installed.
Resources are enumerated in a file (SystemConfigDir/videoresources), the format of which is as follows:

[image: image11]

These two lines are repeated for each device.

Currently, we only detect video resources, so no distinction is made by resource type.
Handle stream description updates
When the node receives new stream descriptions (most commonly when the venue client enters a venue), they must be distributed to services to switch to the new streams. A StreamDescription object has a Capability attribute, so this is matched against services installed on the node to determine which services get which streams.

[image: image12.emf]AGNode

Service

SetStreams(StreamDescription [])

for each

service

store stream

descriptions

GetServices()

__SendStreamsToService(serviceUri)

Figure 11 Sequence Diagram: AGNodeService.SetStreams
Data Flow

The data exchanged among components of the node and with external callers is enumerated here.
VenueClient-AGNodeService

StreamDescription
Capability

ClientProfile

AGNodeService-AGServiceManager
AGResource
AGServiceDescription

ServiceConfiguration

AGNodeService-AGService

ClientProfile

ServiceConfiguration

Capability

StreamDescription

AGServiceManager-AGService

AGResource

ServiceConfiguration
Capability
NodeManagement-AGNodeService

AGServiceManagerDescription
AGResource

NodeManagement-AGServiceManager

AGResource
AGServiceManagerDescription
NodeManagement-AGService

ServiceConfiguration
Appendix A

Service Package Format
A service package is a zip-formatted archive that contains two files: a service description file (.svc) and a Python implementation file. The service description file is an INI formatted file, as follows:

[image: image13]
The Python implementation file should accept the port number on which to listen as its single argument.

Appendix B
Node Configuration File Format

The node configuration file is formatted as below. Aside from the top-level “node” section, there is no reliance on section names.

[image: image14]
[node]

servicemanagers = servicemanager0

[servicemanager0]

url = https://localhost:12000/ServiceManager

services = service0 service1

name = localhost:12000

[service0]

packagename = AudioService.zip

resource = None

executable = rat.exe

serviceconfig = serviceconfig0

 [service1]

packagename = VideoConsumerService.zip

resource = None

executable = vic.exe

serviceconfig = serviceconfig1

[serviceconfig1]

[serviceconfig0]

[ServiceDescription]

name = AudioService

description = Rat-based audio service

capabilities = Capability1 Capability2

executable = AudioService.py

platform = neutral

[Capability1]

role = producer

type = audio

[Capability2]

role = consumer

type = audio

device: <devicename>

portnames: <space-separated list of ports>

Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.

Please send comments to ag-arch@mcs.anl.gov.

This is a DRAFT document and a work in progress. Version: 12/1/2003
Please send comments to ag-arch@mcs.anl.govl address.

_1127825392.vsd
�

�

�

�

�

�

�

�

AGNode
Service�

Service
Manager�

AddService
(servicePackageUri,
serviceManagerUri,
AGResource,
ServiceConfiguration)�

AddService �

SetIdentity�

AGService�

GetCapabilities()�

return
AGServiceDescription�

return
AGServiceDescription�

__SendStreamsToService(serviceUri)�

ConfigureStream(StreamDescription)�

_1127829204.vsd
�

Text�

Node
Service�

Service
Manager�

Service
Manager�

Service
Manager�

Video
Consumer
Service�

Video
Producer
Service�

Audio
Service�

_1127830089.vsd
�

Text�

Node
Service�

Service
Manager�

Video
Producer
Service�

Video
Consumer
Service�

Audio
Service�

_1131877576.vsd
�

�

�

�

�

�

�

�

Service
Manager�

execute service
in new process�

return
AGServiceDescription�

AddService
(servicePackageUri,
serviceManagerUri,
AGResource,
ServiceConfiguration)�

MulticastAddressAllocator()�

AGService
Package�

verify resource�

__RetrieveServicePackage(servicePackageUri) :
servicePackageFile�

AGServicePackage(servicePackageFile)�

GetServiceDescription�

AllocatePort()�

Multicast
Address
Allocator�

Process
Manager�

start_process�

AGService�

IsValid()�

SetAuthorizedUsers(authorizedUserList)�

SetResource(AGResource)�

SetConfiguration(ServiceConfiguration)�

GetCapabilities()�

_1127825623.vsd
�

�

�

�

�

�

�

�

AGNode
Service�

LoadConfiguration(configFile)�

�

for each
service
manager
section�

�

Config
Parser�

AGService
Manager
Description�

AGResource�

�

append service
manager description
to list�

�

for each
service
manager
description�

add service manager to list of
service managers�

RemoveServices()�

Incoming
Service�

AGService
Manager�

�

for each
service �

AddService(servicePackageUrl
	AGResource,
	ServiceConfiguration)�

[service manager is reachable]�

read(configFile)�

�

�

for each
service
section�

�

build service
configuration
parameter list�

_1127825672.vsd
�

�

�

�

�

�

�

�

AGNode
Service�

StoreConfiguration(configFile)�

Config
Parser�

AGService
Manager�

add service manager
section to config�

write config file�

�

�

GetServices()�

�

for each
service
manager�

for each
service �

add service section
to config�

check file access�

create
resource
section�

create
service
config
section�

create
service
section�

_1127825524.vsd
�

�

�

�

�

�

�

�

AGNode
Service�

Service
Manager�

AddServiceManager
(ServiceManagerDescription)�

IsValid()�

SetAuthorizedUsers
(authorizedUsersList)�

[service manager
url is valid]�

Add service manager
to list�

_1127825416.vsd
�

�

�

�

�

�

�

�

store stream
descriptions�

__SendStreamsToService(serviceUri)�

GetServices()�

AGNode
Service�

SetStreams(StreamDescription [])�

�

for each
service �

_1127824602.vsd
�

�

�

�

�

�

1�

AGService Description�

�

0..n�

Process
Manager�

AGService Manager�

hosting.
pyGlobus.Server�

AGResource�

Process
Manager�

0..n�

1�

1�

_1127824632.vsd
�

�

�

�

�

�

AGService
{abstract}�

1�

1�

0..n�

Process
Manager�

Capability�

StreamDescription�

hosting.
pyGlobus.Server�

0..n�

1�

AGParameter�

_1127824571.vsd
�

�

�

�

�

�

GSIHTTPTransferServer�

0..n�

AGServiceManager
Description�

�

Profile�

1�

AGNode
Service�

Service Package
Repository�

AGService Description�

StreamDescription�

0..n�

1�

