Virtual Venues Shared Data Store: Architecture and Design Notes

Robert Olson

January 29, 2003

Introduction

We describe a shared datastore into which Access Grid Virtual Venue users can store arbitrary data files for access by other users of the Venue.

The datastore maintains knowledge of the ownership of files, and optionally provides finer-grain control over the access of these files.

The interface to the datastore is via a web services interface. The address of the datastore interface is discovered via the Virtual Venue service discovery mechanism.

User operations

In order to motivate the design of the datastore interface, we discuss the user operations that result in interactions with the data store:

A. A user enters a venue. His client interface fills up with a list of files and directories available in the venue.

B. User double-clicks on a file. The file is downloaded and the appropriate application is launched on his computer.

C. User drags a file from his desktop into the file share. The file is copied to the venue and made available. The list of files in the venue updates with that new file.

D. User brings up file properties window for a file. It shows who created the file, when it was uploaded, and any access properties on it. User renames the file.

E. User wants to add a file or directory to his local exported datastore. He drags the file or directory into the transient files section in the client GUI.

Extended discussion.

(A) Discovery of files.

The venue description returned from the Venue Enter() operation includes a set of data item descriptions that describe the data objects present in the venue and in all of the clients’ transient data stores.

This description includes entries for both files and directories; that is, the data server supports arbitrary directory trees.

Each file descriptor will look something like this:

 name: name of this file

 directory: full path to containing directory

 owner: DN

 size: size in bytes

 upload_time: date/time

 acl: acl for access to file

 transfer_spec: information required to download this file

The transfer spec contains the information required for a client to download the file. This will likely be (for GASS-based transfers) the URL from which the file can be obtained along with the DN of the identity of the server holding the file.

Each directory descriptor will look like this:

 pathname: full path to directory

 owner: DN

 acl: acl for access to directory

 upload_transfer_spec: information required for upload of file to dir

The aggregate description as sent to the client is a depth-first traversal of the directory structure (so that the client always has knowledge of directory before it receives the list of files for that directory).

Alternatively, the interface could be directory based. Given a directory name, the server returns the list of files and subdirectories in that directory.

Data store operations to support this functionality:

RetrieveDirectory(path) => ([files], [directories])

 Retrieve the contents of the directory rooted at <path>. Return a tuple containing the list of files in that directory and a list of subdirectories of that directory.

 Each entry in the file and directory lists is a descriptor as described above.

Additional notes:

If files or directories are added, a notification can be sent asynchronously to clients who have registered for these notifications. The information in the notification can contain the descriptor for the file or directory; these descriptors contain all the information necessary for the client to make use of the information.

(B) File Transfer, Venue to User

Given the transfer spec in the file description, this is straightforward. It's likely just an HTTP GET or a FTP operation, possibly requiring the GASS libraries for secured transfers.

(C) Desktop upload.

The user has specified (perhaps implicitly via the GUI) the directory into which the file should be uploaded. The file can be either pushed to the server from the client or pulled from the client to the server. The interaction with the server may be simpler with a client pull, but site-local firewall rules may forbid connections incoming to a client. A server pull also requires the client to act as a server.

Hence, we choose to first define a client-push based mechanism. In the upload_transfer_spec for a directory the client will find the information required to effect a transfer. This may be a URL to which a GASS-based HTTP PUT operation can be performed, or perhaps a FTP url to which a put is allowed.

(D) File properties and directory operations.

The client, upon receiving the file description, has the metainformation about the file available for display.

Directory operations, such as renaming, moving, and deletion are provided as a family of operations on the datastore service:

FileRename(oldname, newname)

Returns: descriptor for newly named file

Rename the given file.

FileDelete(name)

Returns: success/failure

Delete the given file.

DirCreate(full path)

Returns: descriptor for directory

Create a new directory.

DirRename(oldpath, newpath

Returns: descriptor for directory plus updated descriptors for all files that have new names.

Rename a directory.

DirDelete(path)

Delete a directory. This results in all files below that directory also being deleted.

(E) Transient datastores.

A transient datastore is one that is provided from a user’s personal machine; that is, it is not a persistent Venue resource.

A transient datastore uses the same core datastore engine that the venue datastore does; the primary difference lies in the mechanism by which the datastore and its contents are discovered. Whereas the location of the Venue’s datastore is found in the description of the Venue itself, the location of a transient datastore is an attribute of the description of the user who is hosting that transient datastore.

All the same operations apply - file discovery, transfer, renaming, etc. A transient datastore, however, is likely to have much different access control policies. For instance, it is likely that a user would not allow others en masse to have the ability to transfer files to his machine, or to delete or rename files resident there.

Data store implementation notes.

The hierarchical directory of files as presented by the datastore API may or may not be bound to an actual hierarchical directory of files. For a Venue datastore, it may be reasonable for that to be the case. For a transient user-based datastore, it may be reasonable to present that view, while the files that are being exported in this manner actually reside at varied places on the user’s filesystem (having arrived in the datastore by being dragged as needed into the datastore’s user interface).

The Python implementation of the datastore is split into two main objects: a DataStore which provides the hierarchical file storage abstraction with the internal bookkeeping of matching virtual filename space to physical files, and a TransferEngine which provides the functionality required for the actual upload and download of files.

The DataStore relies on the TransferEngine to provide it with the transfer_spec portion of the file description, for any given file.

The DataStore API closely follows the API described in (A) - (D) above; however, this API is a Python object API rather than a web services API.

The API is split into local and remote operations:

· Local operations modify the local files which are bound into the exported hierarchical directory structure.

· Remote operations manipulate files via the exported directory structure.

We define the "export" operation as:

Export(local-file, destination-path)

Make local-file available as destination-path on the remote side of the interface.

The directory part of destination-path must already exist. This operation creates an entry in the virtual->real mapping table for local-file.

A local directory can also be exported. The semantics of this are that the local directory is periodically queried, and file-exports performed to the directory.

Bindings between DataStore and TransferEngine

A datastore may have multiple TransferEngines at its disposal to provide for remote upload and download access to its files. Virtual datastore pathnames are used as identifiers for files; that is, URLs identifying files will use the virtual pathname in the URL as the path component of the URL. The host identification component of the URL is bound to the TransferEngine instance.

In other words, when a DataStore wishes to advertise a URL for access to a file or directory, it constructs that URL based on the scheme and authority provided by the TransferEngine (e.g. http://hostname:port) and the virtual path of the file or directory in the DataStore.

When the TransferEngine receives a request to GET or PUT a file at a URL, it then is able to use the DataStore map this request to physical file or directory and to perform authorization checks.

The binding between a DataStore and a TransferEngine is made at the time these objects are created.

Access control for a node is inherited from its parent, unless it defines its own policy. This allows a venue server to create a single datastore and transfer server for all the venues it runs, assign a directory to each venue, and allow the venue to manage the access control on that venue.

Access Control

Each file and directory has an access control list. This ACL is defined in terms of a fixed set of permissions. For files, we have the following permissions:

· read: Access allows the user to download the file.

· write: Access allows the user to overwrite or delete the file.

Directories have the following permissions:

· list: Access allows the user to list the contents of the directory.

· upload: Access allows the user to upload a new file into this directory. If the file already exist, he must have write access to the file.

· write: Access allows the user to delete or rename files, or to create new directories.

· read: Access allows user to read files in the directory.

· administer: Allows user to change access to the directory or contents of the directory

Note that these access rights are for external users coming through the web services interface. The local user (the venue server process itself, the client running a transient datastore) has complete control through the local datastore API.

ACL use-cases

Consider the following use-cases for the datastore access control mechanism.

(A)
User uploads a file.

User must have upload perms on the directory. When the file has been transferred, the user is given write permission on it. Read permission on the file is set to “inherit”, which means that read access is inherited from the ACL of the containing directory.

(B)
User creates a directory.

User must have write access to the containing directory. The new directory is created with permissions copied from the containing directory. The user is granted administer privileges on the new directory.

(C)
User uploads a directory.

The new directory is created as in (B), then each file uploaded as in (A). If the user is uploading an entire directory hierarchy, the empty directory hierarchy is created first, then the files uploaded.

(D)
Permissions for a venue datastore

A per-venue file store will have directories with list, upload, read, write access given to the users of the venue (via an indirection mechanism in the datastore). administer privileges go to the owner of the venue.

(E)
Permissions for a per-client transient datastore.

A transient datastore will have directories with list and read permissions given to the current users of the venue (via an indirection to the venue client. If the user desires, he could allow transfers by opening upload or write permission to the datastore.

ACL Design

Each object to which access is controlled has an associated access control list.

An access control list is a list of access control entries.

Each access control entry is a tuple (permission, principal-list).

Permission is one of the permissions listed above.

Principal-list is a list of principals, which are each either (“user”, user-identifier) or (“role”, “role-identifier”).

� This is the clients-advertise-all-data model. The alternative is to require clients to query all other clients for their transient data. This has issues with latency and with the possibility that inbound connections to clients may be forbidden by site firewalls.

� This argues actually for giving files unique IDs and having the directory information just be advisory.

Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.

