Access Grid Virtual Venues Design 2.0

15

Virtual Venues Design 2.0

The Futures Laboratory

Mathematics and Computer Science Division

Argonne National Laboratory

6/2/2003

Summary
This document starts with a review of the architectural requirements of the Virtual Venues, then describes what those requirements mean and how they are solves in the current design. Following that is a complete specification of the current design.

	
	Architectural Requirements

	1.0
	Venue Data is persistent

	2.0
	Venues are Coherently Experienced

	3.0
	Venues are Collaboration Scopes

	4.0
	Venues are Extensible

	5.0
	Venues Broker Capabilities

	6.0
	Venues Fabrics are Scalable

	7.0
	Venues Fabrics are Topological

Table 1: Architectural requirements of the Virtual Venues
The Virtual Venues Server and Virtual Venues provide infrastructure for doing advanced collaboration. The architectural requirements enumerated in Table 1 enumerate the basic capabilities needed to support collaboration, but they need to be further refined to provide constraints that the design can fulfill. Each requirement will be briefly discussed and an initial set of constraints proposed so that the included design can be evaluated against those goals.
1. Venue Data is persistent

Venue data persistence is desired for many obvious reasons, it’s an inherent expectation carried over from real world interactions that should be provided by this design. The persistence should have the characteristics that data should remain where it is placed in the virtual space until it is explicitly moved or removed.

2. Venues are Coherently Experienced

The Virtual Venues as a scoping, discovery and coherence mechanism provides a strongly coherent distributed experience. That means that at any given moment the users should be able to assume every user has the same state. This is important because it provides a collaboration reference. The current design uses an event distribution mechanism and heartbeats to monitor connectivity which allows the coherence of the venue to be maintained.
3. Venues are Collaboration Scopes

The venues provide content and space for doing collaboration; they also define who is part of a collaboration. The users in a venue are a single collaboration scope; the users within one scope can all see and hear each other, but they cannot see and hear users not in the scope. The scope is the venue.

4. Venues are Extensible

In order for developers to add content to the Access Grid, the venue provides interfaces and infrastructure for developing software that extends the abilities of the collaborators. Currently, every venue has an Application Service which provides a factory for shared application instances. Shared application clients are integrated with the venue client software and enable users to interact together with shared application instances in the venue.

5. Venues Broker Capabilities

Because users don’t all have the same capabilities (meaning network, audio, video, applications, etc) the venue provides a capability brokering service. Currently this is doing a trivial match, new user capabilities must match what’s already in the venue or new stream configurations are created. The current solution does create the effect that users with differing capabilities cannot use each others streams (meaning for video they can’t see each other, for example).

6. Venue Fabrics are Scalable

The Venue Server can hold a number of venues, each of these venues can be connected to any number of other venues. The connection between venues doesn’t care if the venue they are connected to is on the local server or another server, which is transparent to the venue. This provides the ability to scale the number of the virtual venues arbitrarily.

The number of entities (clients, services, and shared application clients) that can be connected to a virtual venue is currently limited by the fact that each of these things is making an event connection to an event service instance on the server. The server is running the venue server, the event service, the text service and the data service all in the same “resource space”. Because the event service and text service maintain persistent connection objects (a thread and a file descriptor) the number of entities is limited by the globus file descriptor limit (currently 1024 – Linux, 2048 - Windows) and/or the system resource limit on file descriptors (usually 1024). There is a small number of threads and file descriptors that are required for the rest of the system, but these are an insignificant number compared to the client connections.
7. Venue Fabrics are Topological

The connectivity between venues provides a topological framework that allows the navigation of virtual venues through the virtual venues client.

[image: image1.emf]VenueServer

Venue Management

Client

Data Transfer

Server

1

1

1

1

1

1

0..n

0..n

1

1

Event

Service

Multicast

Address

Allocator

Venue

Text

Service

1

1

Virtual Venue

Client

1 0..n

Application

Factory

Data

Description

Service

Description

0..n

0..n

1

1

1

1

1

1

0..n

1

Application

Stream

Description

List

Shared Application

Client

1

1

Administrator

List

1

1

Administrator

List

1

1

Hosting

Environment

Connection

Description

0..n

1

Client Profile

0..n

1

Figure 1: The Venue Server Class Diagram

Design Overview
The Virtual Venues Design consists of the Virtual Venue Server, Virtual Venues and the services required to support the architectural requirements specified. The Virtual Venues assume the underlying technology addresses the identification and authentication aspects security, further that each user is uniquely identifiable. Virtual Venues and the Virtual Venues server are intended to be long living (nearly permanent) services. They are in some ways very much like web servers and web pages, providing a network of information. However the virtual venues provide much more than the static information found on web pages, since they provide a dynamic user modifiable environment where multiple users of the venue can interact with each other and the contents of the venue. This design document describes the virtual venue server and the virtual venue.
The data store that is part of the venue server is described in detail in the data store design document [CITE]. The Data store is accessed through the Virtual Venue. The data store is the place where venue resident data is kept so that it is present in the venue over long periods of time. The data store currently implements no authorization policy so anybody in a venue can add, modify, and delete data within that venue.

Technology Decisions

The AGTk is written in Python, which is clear and easy to use, but syntactically constrained so that collaborative programming is easier than many languages.

The AGTk 2.0 uses the Web Service Model and has adopted the Globus Toolkit for Grid Computing functionality, which includes security. In order to support this combination pyGlobus functionality provides the basis for creating a web services hosting abstraction. This abstraction provides a clean interface between the web services hosting environment being used and the Access Grid Toolkit.

To use the web services model and provide the functionality that the Access Grid Toolkit needs to provide we have a dual layer network architecture where control and configuration is done via web services, but coherence, streaming data, and file transfer is happening with protocols other than SOAP.

Module Decomposition

The current design breaks the code down into the following python modules. This modular breakdown shows the classes that are found in each module.
VenueServer.py

VenueServer : Exception

NotAuthorized : Exception

InvalidVenueURL : Exception

VenueNotFound : Exception

InvalidVenueDescription : Exception

VenueServer : ServiceBase

Venue.py

VenueException : Exception

BadServiceDescription : Exception

BadConnectionDescription : Exception

BadStreamDescription : Exception

InvalidClientProfile : Exception

InvalidVenueState : Exception

AdministratorAlreadyPresent : Exception

AdministratorNotFound : Exception

AdministratorRemovingSelf : Exception

ConnectionNotFound : Exception

ApplicationNotFound : Exception

ApplicationUnbindError : Exception

NotAuthorized : Exception

DataNotFound : Exception

StreamAlreadyPresent : Exception

StreamNotFound : Exception

ServiceAlreadyPresent : Exception

ServiceNotFound : Exception

ClientNotFound : Exception

VenueClientState

Venue : ServiceBase

StreamDescriptionList

EventServiceAsynch.py

ConnectionHandler

EventChannel

EventService

TextServiceAsynch.py

ConnectionHandler

TextChannel

TextService

MulticastAddressAllocator.py

MulticastAddressAllocator
Descriptions.py

ObjectDescription

BadDescription : Exception

DataDescription : ObjectDescription

InvalidStatus : Exception

ConnectionDescription : ObjectDescription

VenueDescription : ObjectDescription

BadServiceDescription : Exception

ServiceDescription : ObjectDescription

ApplicationDescription : ObjectDescription

StreamDescription : ObjectDescription

AGServiceManagerDescription

AGServiceDescription
Types.py

VenueState

AGResource

AGVideoResource : AGResource

Capability

InvalidServicePackage : Exception

InvalidServiceDescription : Exception

AGServicePackage

ServiceConfiguration

NetworkLocation.py

ProviderProfile

NetworkLocation

UnicastNetworkLocation : NetworkLocation

MulticastNetworkLocation : NetworkLocation

NetService.py

UnknownNetServiceType : Exception

NetService

BridgeNetService : NetService

DataStoreNetService : NetService

AppService.py

AppObject : ServiceBase

InvalidPrivateToken : Exception

AppObjectImpl

ChannelHandler

ClientProfile.py

InvalidProfileException : Exception

ClientProfile

ClientProfileCache

Specifications
Note: Role Manager, Data Store and Data Descriptions not included.

Virtual Venue Server
The Virtual Venue Server provides a management interface for creating, destroying and configuring Virtual Venues. The Virtual Venue includes a data store, multicast address allocator, event service, and a text service. These are used by all the venues hosted by the server. The Virtual Venue Server also has a list of administrators with privileges to configure the server, create, modify, and destroy virtual venues. Any venue server administrator can give administrative rights to another user. The virtual venue server is exposed to the network via SOAP.

The venue server handles venue persistence, periodic tasks like dead client cleanup, and currently encapsulates a Data Store to provide persistent file storage in the virtual venues.

Data

venues : list of Venues

services : list of Service Descriptions UNUSED

hostingEnvironment : hosting:pyGlobus:Server

persistenceFilename : string

houseKeeperFrequency : integer

venuePathPrefix : string

defaultVenue : string

multicastAddressAllocator : MulticastAddressAllocator

hostname : string

configFile : string

dataStorageLocation :

dataPort : int

eventPort : int

textPort : int

roleManager : RoleManager

simpleLock : ServerLock

dataTransferServer : GSIHTTPTransferServer

eventService : EventService

textService : TextService
Internal Method Signatures
 def __init__(self, hostEnvironment = None, configFile=None):

 def BindRoleManager(self):

 def SetRoleManager(self, role_manager):

 def GetRoleManager(self):

 def RegisterDefaultRoles(self):

 def RegisterDefaultSubjects(self):

 def LoadPersistentVenues(self, filename):

 def _IsInRole(self, role_name=""):

 def InitFromFile(self, config):

 def IdFromURL(self, URL):

 def MakeVenueURL(self, uniqueId):

 def CleanupVenueClients(self):

External Method Signatures
 def Checkpoint(self):

 def AddVenue(self, venueDesc):

 def ModifyVenue(self, id, venueDesc):

 def RemoveVenue(self, id):

 def AddAdministrator(self, string):

 def RemoveAdministrator(self, string):

 def GetAdministrators(self):

 def GetVenues(self):

 def GetDefaultVenue(self):

 def SetDefaultVenue(self, venueURL):

 def SetStorageLocation(self, dataStorageLocation):

 def GetStorageLocation(self):

 def SetEncryptAllMedia(self, value):

 def GetEncryptAllMedia(self):

 def SetBackupServer(self, server):

 def GetBackupServer(self):

 def SetAddressAllocationMethod(self, addressAllocationMethod):

 def GetAddressAllocationMethod(self):

 def SetBaseAddress(self, address):

 def GetBaseAddress(self):

 def SetAddressMask(self, mask):

 def GetAddressMask(self):

 def Shutdown(self):
Web Service Method Signatures
 def wsAddVenue(self, venueDescStruct):

 def wsModifyVenue(self, URL, venueDescStruct):

 def wsRemoveVenue(self, URL):

 def wsAddAdministrator(self, string):

 def wsRemoveAdministrator(self, string):

 def wsGetVenues(self):

 def wsGetDefaultVenue(self):

 def wsSetDefaultVenue(self, URL):

 def wsSetStorageLocation(self, location):

 def wsGetStorageLocation(self):

 def wsSetAddressAllocationMethod(self, method):

 def wsGetAddressAllocationMethod(self):

 def wsSetEncryptAllMedia(self, value):

 def wsGetEncryptAllMedia(self):

 def wsSetBackupServer(self, server):

 def wsGetBackupServer(self):

 def wsSetBaseAddress(self, address):

 def wsGetBaseAddress(self):

 def wsSetAddressMask(self, mask):

 def wsGetAddressMask(self):

 def wsShutdown(self, secondsFromNow):

 def wsCheckpoint(self):

[image: image2.wmf]ConnectionHandler

+id:

+lsocket:

+server:

+wfile:

+dataBuffer:

+bufsize:

+buffer:

+waitingLen:

+acceptCallbackHandle:

+socket:

+cbHandle:

+closing:

+__init__(self, lsocket, eservice)

+__del__(self)

+GetId(self)

+registerAccept(self, attr)

+acceptCallback(self, arg, handle, result)

+registerForRead(self)

+readCallbackWrap(self, arg, handle, result, buf, n)

+writeMarshalledEvent(self, mEvent)

+readCallback(self, arg, handle, result, buf, n)

+stop(self)

+handleData(self, pdata, event)

+handleEOF(self)

EventChannel

+server:

+id:

+connections:

+typedHandlers:

+channelHandlers:

+authCallback:

+__init__(self, server, id, authCallback)

+__del__(self)

+RegisterCallback(self, eventType, callback)

+RegisterChannelCallback(self, callback)

+AuthorizeNewConnection(self, event, connObj)

+HandleEvent(self, event, connObj)

+Distribute(self, data)

+RemoveConnection(self, connObj)

+AddConnection(self, event, connObj)

+GetId(self)

EventService

+location:

+channels:

+connectionMap:

+allConnections:

+socket:

+attr:

+queue:

+queueThread:

+listenCallbackHandle:

+waiting_socket:

+running:

+__init__(self, server_address)

+findConnectionChannel(self, id)

+GetChannel(self, id)

+start(self)

+registerForListen(self)

+listenCallback(self, arg, handle, result)

+CloseConnection(self, connObj)

+Stop(self)

+EnqueueQuit(self)

+EnqueueEvent(self, event, conn)

+EnqueueEOF(self, conn)

+QueueHandler(self)

+HandleEvent(self, event, connObj)

+HandleEOF(self, connObj)

+HandleEventForDisconnectedChannel(self, event, connObj)

+RegisterCallback(self, channelId, eventType, callback)

+RegisterChannelCallback(self, channelId, callback)

+RegisterObject(self, channel, object)

+Distribute(self, channelId, data)

+GetLocation(self)

+AddChannel(self, channelId, authCallback)

+RemoveChannel(self, channelId)

*

*

*

Figure 2: Event Service Class Diagram.

Event Service

The Event Service is a simple event distribution mechanism. The Event Service has a set of event channels that can be independently used. Each event client connects to the event channel and sends a connect event, telling the service that it is present. Event clients send disconnect events to indicate they are no longer participating in the channel. Between connect and disconnect clients can send various events to the channel. To receive events, clients register event handlers for the events they want to receive. One place this event service is used is within the virtual venues. A virtual venue event channel clients send periodic heartbeat events that the venue listens for to maintain a connectivity table. This table is periodically scanned for clients that have not reported since some threshold time value and those clients are cleaned out of the venue. In order to keep things secure the event channel communication has to be carefully designed so that information doesn’t leak from peer to peer, when it is meant to be client to server. The heartbeat information is a good example of this; a heartbeat event contains the private Id of a client (which is used to securely identify the client to the venue), so that event should be delivered to the venue but not to other venue clients.

Data
location : Tuple (host, port)

channels : dictionary of Event Channels (key: channel id)

connectionMap : dictionary of Event Channels (key: ConnectionHandler id)

allConnections : list of Connection Handlers

socket : GSITCPSocket

socket.allow_reuse_address : 1

attr : hosting:pyGlobus:Utilities:CreateTCPAttrAlwaysAuth

queue : Queue

queueThread : Thread
Method Signatures

 def __init__(self, server_address):

 def findConnectionChannel(self, id):

 def GetChannel(self, id):

 def start(self):

 def registerForListen(self):

 def listenCallback(self, arg, handle, result):

 def CloseConnection(self, connObj):

 def Stop(self):

 def EnqueueQuit(self):

 def EnqueueEvent(self, event, conn):

 def EnqueueEOF(self, conn):

 def QueueHandler(self):

 def HandleEvent(self, event, connObj):

 def HandleEOF(self, connObj):

 def HandleEventForDisconnectedChannel(self, event, connObj):

 def RegisterCallback(self, channelId, eventType, callback):

 def RegisterChannelCallback(self, channelId, callback):

 def RegisterObject(self, channel, object):

 def Distribute(self, channelId, data):

 def GetLocation(self):

 def AddChannel(self, channelId, authCallback = None):

 def RemoveChannel(self, channelId):

Event Channel

Data
server : Event Service

id : string

connections : dictionary of ConnectionHandlers (Key: Connection Handler id)

typedHandlers : dictionary of ConnectionHandlers (Key: Message Type)

channelHandlers : list of ConnectionHandlers

authCallback : authorization callback function
Method Signatures

 def __init__(self, server, id, authCallback):

 def __del__(self):

 def RegisterCallback(self, eventType, callback):

 def RegisterChannelCallback(self, callback):

 def AuthorizeNewConnection(self, event, connObj):

 def HandleEvent(self, event, connObj):

 def Distribute(self, data):

 def RemoveConnection(self, connObj):

 def AddConnection(self, event, connObj):

 def GetId(self):

Connection Handler

Data
id : string

lsocket : GSITCPSocket

server : Event Service

wfile : File

dataBuffer : string

bufsize : integer

buffer : pyGlobus Buffer

waitingLen : integer
Method Signatures

 def __init__(self, lsocket, eservice):

 def __del__(self):

 def GetId(self):

 def registerAccept(self, attr):

 def acceptCallback(self, arg, handle, result):

 def registerForRead(self):

 def readCallbackWrap(self, arg, handle, result, buf, n):

 def writeMarshalledEvent(self, mEvent):

 def readCallback(self, arg, handle, result, buf, n):

 def stop(self):

 def handleData(self, pdata, event):

 def handleEOF(self):

[image: image3.wmf]TextChannel

+server: TextService

+id:

+connections: ConnectionHandler

+typedHandlers: ConnectionHandler

+channelHandlers: TextChannel

+authCallback:

+__init__(self, server, id, authCallback)

+__del__(self)

+RegisterCallback(self, eventType, callback)

+RegisterChannelCallback(self, callback)

+AuthorizeNewConnection(self, event, connObj)

+HandleEvent(self, event, connObj)

+Distribute(self, data)

+RemoveConnection(self, connObj)

+AddConnection(self, event, connObj)

+GetId(self)

TextService

+location:

-channels: TextChannel

+connectionMap: ConnectionHandler

+allConnections: ConnectionHandler

+socket:

+attr:

+queue:

+queueThread:

+listenCallbackHandle:

+waiting_socket:

+running:

+__init__(self, server_address)

+findConnectionChannel(self, id)

+GetChannel(self, id)

+start(self)

+registerForListen(self)

+listenCallback(self, arg, handle, result)

+CloseConnection(self, connObj)

+Stop(self)

+EnqueueQuit(self)

+EnqueueEvent(self, event, conn)

+EnqueueEOF(self, conn)

+QueueHandler(self)

+HandleEvent(self, event, connObj)

+HandleEOF(self, connObj)

+HandleEventForDisconnectedChannel(self, event, connObj)

+RegisterCallback(self, channelId, eventType, callback)

+RegisterChannelCallback(self, channelId, callback)

+RegisterObject(self, channel, object)

+GetLocation(self)

+Distribute(self, channelId, data)

+AddChannel(self, channelId, authCallback)

+RemoveChannel(self, channelId)

ConnectionHandler

+id:

+lsocket:

+server: TextService

+wfile:

+dataBuffer:

+bufsize:

+buffer:

+waitingLen:

+acceptCallbackHandle:

+socket:

+cbHandle:

+closing:

+__init__(self, lsocket, eservice)

+__del__(self)

+GetId(self)

+registerAccept(self, attr)

+acceptCallback(self, arg, handle, result)

+registerForRead(self)

+readCallbackWrap(self, arg, handle, result, buf, n)

+writeMarshalledEvent(self, mEvent)

+readCallback(self, arg, handle, result, buf, n)

+stop(self)

+handleData(self, pdata, event)

+handleEOF(self)

*

*

*

Figure 3: Text Service Class Diagram.
Text Service
The Text Service is very similar to the Event Service; however it is designed to deliver the text communication portion of the venue collaboration to all users. Text Service clients have to use connect and disconnect events to indicate their participation in the text channel. The text service is more flexible, that is the information should be user routed to the destination. This is supported by having custom text events that include fields for who is supposed to get the text event (empty implies everybody) and a flag for whether the text is public or private (this differentiates between a public, directed comment and a whisper).
Data
location : Tuple (host, port)

channels : dictionary of Text Channels (Key: Channel id)

connectionMap : dictionary of Connection Handlers (Key: Connection Handler id)

allConnecitons : list of Connection Handlers

socket : GSITCPSocket

socket.allow_reuse_address : 1

attr : hosting:pyGobus:Utilities:CreateTCPAttrAlwaysAuth
Method Signatures

 def __init__(self, server_address):

 def findConnectionChannel(self, id):

 def GetChannel(self, id):

 def start(self):

 def registerForListen(self):

 def listenCallback(self, arg, handle, result):

 def CloseConnection(self, connObj):

 def Stop(self):

 def EnqueueQuit(self):

 def EnqueueEvent(self, event, conn):

 def EnqueueEOF(self, conn):

 def QueueHandler(self):

 def HandleEvent(self, event, connObj):

 def HandleEOF(self, connObj):

 def HandleEventForDisconnectedChannel(self, event, connObj):

 def RegisterCallback(self, channelId, eventType, callback):

 def RegisterChannelCallback(self, channelId, callback):

 def RegisterObject(self, channel, object):

 def GetLocation(self):

 def Distribute(self, channelId, data):

 def AddChannel(self, channelId, authCallback = None):

 def RemoveChannel(self, channelId):

Connection Handler
Data
id : string

lsocket : GSITCPSocket

server : Text Service

wfile : File

dataBuffer : string

bufsize : integer

buffer : pyGlobus Buffer

waitingLen : integer
Method Signatures

 def __init__(self, lsocket, eservice):

 def __del__(self):

 def GetId(self):

 def registerAccept(self, attr):

 def acceptCallback(self, arg, handle, result):

 def registerForRead(self):

 def readCallbackWrap(self, arg, handle, result, buf, n):

 def writeMarshalledEvent(self, mEvent):

 def readCallback(self, arg, handle, result, buf, n):

 def stop(self):

 def handleData(self, pdata, event):

 def handleEOF(self):

Text Channel

Data
server : Text Service

id : string

connections : dictionary of Connection Handlers (Key: Connection Handler id)

typedHandlers : dictionary of Connection Handlers (Key: message type)

channelHandlers : list of ConnectionHandlers

authCallback : authorization callback function
Method Signatures

 def __init__(self, server, id, authCallback):

 def __del__(self):

 def RegisterCallback(self, eventType, callback):

 def RegisterChannelCallback(self, callback):

 def AuthorizeNewConnection(self, event, connObj):

 def HandleEvent(self, event, connObj):

 def Distribute(self, data):

 def RemoveConnection(self, connObj):

 def AddConnection(self, event, connObj):

 def GetId(self):

[image: image4.emf]Asynchronous Service using GSI Sockets

Connection

Handler:

Connection

Handler:

Connection

Handler:

Listen Callback

Channel

Object

The service maintains

multiple channels. The

service and all channels

know about each other.

However, the connections

know only about the channel

they are connected to and

the service.

Event Queue

Processing

Thread

E

v

e

n

t

s

Event Queue

Event

s

Connection

Handler:

Channel

Object

1. The listen callback is

invoked asynchronously

when a new connection is

made. It creates a new

connection handler, then

registers that handlers

accept callback.

2. When the accept callback is

invoked on the connection handler

the handler is initialized and

registers a read callback that gets

invoked when an event is read to be

processed from the network. The

read callback moves the event from

the network to the event queue.

3. The Event Queue

Processing Thread spins

processing events from the

single event queue for the

asynchronous service. This

reduces the number of threads

required from one per channel

to one per service.

4. The Event Queue

Processing Thread

processes an event then

hands it to the channel

object to be processed for

that channel.

5. The channel object

distributes the event to the

connections according to

the purpose and protocol

of the channel.

Multicast Address Allocator

The Multicast Address Allocator that is part of the venue server is used by each of the venues when they need to get a multicast address. The allocator is designed to allocate from the standard pool for multicast addresses that’s defined by the Session Description Protocol, as implemented by the SDP program. Alternatively, the allocator can be told to allocate from a range of multicast addresses. This is to allow sites that have requested (or already have) GLOP address space to allocate out of their own address space. There is no guarantee that the allocator will give an unused address, but the likelihood is very low that addresses will collide.
Enumerated Variables

RANDOM : ‘random’

INTERVAL : ‘interval’

SDR_BASE_ADDRESS : ‘224.2.128.0’

SDR_MASK_SIZE : 17
Data
baseAddress : string

addressMaskSize : integer

portBase : integer

allocatedAddresses : list of strings

allocatedPorts : list of integers
Method Signatures

 def __init__(self, baseAddress = None, addressMaskSize = 24,

 def SetBaseAddress(self, baseAddress):

 def GetBaseAddress(self):

 def SetAddressMask(self, addressMaskSize = 24):

 def GetAddressMask(self):

 def SetAddressAllocationMethod(self, method):

 def GetAddressAllocationMethod(self):

 def AllocatePort(self):

 def RecyclePort(self, port):

 def AllocateAddress(self):

 def RecycleAddress(self, address):

Server Lock
Data

verbose : integer

lock : Condition

name : string
Method Signatures

 def __init__(self, name = ""):

 def acquire(self):

 def release(self):
Virtual Venue
The Virtual Venue provides a coherent, secure scope for collaboration. The Virtual Venues provide both a Management interface and a Client interface; the management interface is used by administrative users, either through the venue server management tool or directly through the virtual venue client.

Virtual Venues are designed to follow a hybrid hypertext and spatial metaphor, each venue can be linked to as many other venues as the owner wants, but each venue is modeled after a real space. In order to provide coherence among the participants within a venue a persistent connection to all users is maintained via an event channel. This event channel is used to send updates to the Venue state so that coherence can be maintained. Events that are sent include clients entering and exiting, data being added and removed, events indicating a client has updated their profile, etc. The central parts of the Virtual Venue in the 2.0 design are the shared data and shared applications. The rest of the 2.0 Venue design is targeted at providing the same functionality that was available in 1.0, but in a more architecturally sound way. Currently, the data descriptions and application descriptions, which are what the venue client gets from the virtual venue, are typed by using MIME types. This provides a reasonably good mechanism to query a local environment for user preferences for different application and data types. The current design does not address the creation of new MIME type handlers in the local environment.

The venue provides the basic collaboration facilities in the Access Grid. It brokers client capabilities, provides coherence, data persistence, and security. The venue provides two types of interfaces, a client interface and an administrative interface. The venue uses services from the venue server for event distribution (part of the coherence solution), the text services (which provides a basic text chat), and the data transfer service.
The venue provides client capability negotiation, through the NegotiateCapabilties method. Currently that only does a matching of the current streams in the venue and the new user’s capabilities. Once client capabilities are negotiated the venue keeps track of all of the media stream configuration information.
Data
server : Hosting:pyGlobus:Server

name : string

description : string

roleManager : Role Manager()

encryptMedia : integer

encryptionKey : string

simpleLock : Server Lock

heartbeatLock : Server Lock

clientDisconnectedOk : dictionary of integers (key: privateId)

uniqueId : string

cleanupTime : integer

connections : dictionary of Connection Descriptions (key: connection URI)

applications : dictionary of Application Descriptions (key: appId)

services : dictionary of Service Descriptions (key: service name)

streamList : Stream Description List

clients : dictionary of Venue Client States (key: privateId)

netServices : dictionary of Net Services (key: privateId)

clientsBeingRemoved : dictionary of integers (key: privateId)

clientBeingRemovedLock : Server Lock

dataStore : DataStore

producerCapabilities : UNUSED

consumerCapabilities : UNUSED

uri : string

dataStorageLocation : string
Method Signature

 def __init__(self, server, name, description, roleManager,

 def __repr__(self):

 def _IsSubjectInRole(self, subject, role_name=""):

 def _IsInRole(self, role_name=""):

 def BindRoleManager(self):

 def SetRoleManager(self, role_manager):

 def GetRoleManager(self):

 def RegisterDefaultRoles(self):

 def RegisterDefaultSubjects(self):

 def RegisterRole(self, role_name):

 def AsINIBlock(self):

 def AsVenueDescription(self):

 def AsVenueState(self):

 def StartApplications(self):

 def CleanupClients(self):

 def RemoveNetService(self, privateId):

 def ClientHeartbeat(self, event):

 def EventServiceDisconnect(self, event):

 def EventServiceClientExits(self, event):

 def Shutdown(self):

 def NegotiateCapabilities(self, vcstate):

 def AllocateMulticastLocation(self):

 def GetNextPrivateId(self):

 def FindUserByProfile(self, profile):

 def RemoveUser(self, privateId):

 def SetConnections(self, connectionDict):

 def DistributeEvent(self, event):

 def channelAuthCallback(self, event, connObj):

 def Enter(self, clientProfile):

 def AddService(self, serviceDescription):

 def RemoveService(self, serviceDescription):

 def AddConnection(self, connectionDescription):

 def AddData(self, dataDescription):

 def GetRole(self, role_name):

 def FlushRoles(self):

 def RemoveData(self, dataDescription):

 def UpdateData(self, dataDescription):

 def RemoveNetworkLocationsByPrivateId(self, privateId):

 def RegisterDefaultVenueRoles(role_manager):
Web Service Method Signatures

 def wsAddService(self, servDescStruct):

 def wsRemoveService(self, servDescStruct):

 def wsSetConnections(self, connectionList):

 def wsAddConnection(self, connectionDescStruct):

 def wsEnter(self, clientProfileStruct):

 def wsAddData(self, dataDescriptionStruct):

 def wsRemoveData(self, dataDescriptionStruct):

 def wsAddSubjectToRole(self, subject, role_string):

 def wsRemoveSubjectFromRole(self, subject, role):

 def wsSetSubjectsInRole(self, subject_list, role_string):

 def wsAddRole(self, role_string):

 def wsGetUsersInRole(self, role_string):

 def wsGetRoleNames(self):

 def wsGetAvailableGroupRoles(self):

 def wsDetermineSubjectRoles(self):

 def AddNetworkLocationToStream(self, privateId, streamId, networkLocation):

 def RemoveNetworkLocationFromStream(self, privateId, streamId, networkLocationId):

 def AddNetService(self, clientType):

 def AddStream(self, inStreamDescription):

 def CreateApplication(self, name, description, mimeType, id = None):

 def DestroyApplication(self, appId):

 def Exit(self, privateId):

 def GetStreams(self):

 def GetStaticStreams(self):

 def GetConnections(self):

 def GetDescription(self):

 def SetName(self, name):

 def GetUploadDescriptor(self):

 def GetApplication(self, id):

 def RemoveConnection(self, connectionDescription):

 def RemoveStream(self, inStreamDescription):

 def SetEncryptMedia(self, value, key=None):

 def GetName(self):

 def GetDataStoreInformation(self):

 def GetEncryptMedia(self):

 def GetEventServiceLocation(self):

 def SetDescription(self, description):

 def UpdateClientProfile(self, clientProfileStruct):

Venue Client State

Data
venue : Venue

privateId : string

clientProfile : Client Profile

lastHeartbeat : float
Method Signatures

 def __init__(self, venue, privateId, profile):

 def __repr__(self):

 def SendEvent(self, marshalledEvent):

 def SetConnection(self, connObj):

 def CloseEventChannel(self):

 def UpdateAccessTime(self):

 def UpdateClientProfile(self, profile):

 def GetLastHeartbeat(self):

 def GetTimeSinceLastHeartbeat(self, now):

 def GetPrivateId(self):

 def GetPublicId(self):

 def GetClientProfile(self):

Object Description

Data
id : string

name : string

description : string

uri : string

Method Signatures

 def __init__(self, name, description = None, uri = None):

 def __repr__(self):

 def AsINIBlock(self):

 def SetId(self, id):

 def GetId(self):

 def SetName(self, name):

 def GetName(self):

 def SetDescription(self, description):

 def GetDescription(self):

 def SetURI(self, uri):

 def GetURI(self):

Connection Description : Object Description

Stream Description List

Data
streams : list of Stream Descriptions

Method Signatures

 def __init__(self):

 def __RemoveProducer(self, producingUser, inStream):

 def AddStream(self, stream):

 def RemoveStream(self, stream):

 def AddStreamProducer(self, producingUser, inStream):

 def RemoveStreamProducer(self, producingUser, inStream):

 def RemoveProducer(self, producingUser):

 def CleanupStreams(self):

 def GetStreams(self):

 def GetStaticStreams(self):

 def FindStreamByDescription(self, inStream):

Stream Description : Object Description
Data
location : Network Location

capability : Capability

encryptionFlag : integer

encryptionKey : string

static : integer

networkLocations : list of Network Locations

Method Signatures

 def AsINIBlock(self):

 def __init__(self, name=None,

 def AddNetworkLocation(self,networkLocation):

 def RemoveNetworkLocation(self, networkLocationId):

 def AsINIBlock(self):

Network Location

Data
host : string

port : int

type : string

profile : Provider Profile

Method Signatures

 def __init__(self, host, port):

 def SetHost(self, host):

 def GetHost(self):

 def SetPort(self, port):

 def GetPort(self):

 def __repr__(self):

Unicast Network Location : Network Location
Data
type : ‘unicast’
Method Signatures
 def __repr__(self):

Multicast Network Location : Network Location

Data

ttl : integer

type : ‘unicast’
Method Signatures

 def __init__(self, host=None, port=0, ttl=0):

 def __repr__(self):

 def SetTTL(self, ttl):

 def GetTTL(self):
Provider Profile

Data
name : string

location : string

Capability

Enumerated Variables

PRODUCER : ‘producer’

CONSUMER : ‘consumer’

AUDIO : ‘audio’

VIDEO : ‘video’

TEXT : ‘text’
Data
Role : string

Type : string

Parms : dictionary of XXX (key: YYY)
Method Signatures

 def __init__(self, role=None, type=None):

 def __repr__(self):

 def matches(self, capability):

Net Service

Data
venue : Venue

privateId : string

type : string

connObj : XXXX

Method Signatures

 def SetConnection(self, connObj):

 def Stop(self):

Service Description : Object Description
Data
mimeType : string
Method Signatures

 def __init__(self, name, description, uri, mimetype):

 def GetMimeType(self):

 def AsINIBlock(self):

 def SetMimeType(self, mimetype):

Shared Applications

The shared applications that are now part of AGTk 2.0 are provided through the Virtual Venues. The venue provides interfaces to the venue client for creating, destroying, and joining shared applications. These applications expose a web service interface and an event channel. The event channel provides coherence among all shared application clients. The web services interface provides the ability to interact with the shared application. A shared application can maintain state in the virtual venue. Application state in the virtual venue is helpful if the shared application can be joined while it is being used, so new clients can get the latest state

Application Service

Method Signatures
def CreateApplication(name, description, mimeType, eventService, id=None):

Application Object
Data
impl : Application Object Implementation
Method Signatures

 def __init__(self, impl):

Web Service Method Signatures

 def GetId(self):

 def Join(self):

 def GetComponents(self):

 def Leave(self, private_token):

 def SetData(self, private_token, key, value):

 def GetData(self, private_token, key):

 def GetDataChannel(self, private_token):

 def GetVenueURL(self, private_token):

Application Object Implementation
Data
name : string

description : string

mimeType : string

eventService : Event Service

components : dictionary of XXX (key: YYY)

channels : list of strings

app_data : dictionary of strings (key: arbitrary)
Method Signatures

 def __init__(self, name, description, mimeType, eventService, id = None):

 def AsINIBlock(self):

 def AsApplicationDescription(self):

 def Awaken(self, eventService):

 def Shutdown(self):

 def GetState(self):

 def SetVenueURL(self, url):

 def GetVenueURL(self):

 def GetEventServiceLocation(self):

 def SetHandle(self, handle):

 def GetHandle(self):

 def GetId(self):

 def Join(self):

 def Leave(self, private_token):

 def GetDataChannel(self, private_token):

 def GetVenueURL(self, private_token):

 def GetComponents(self, private_token):

 def SetData(self, private_token, key, value):

 def GetData(self, private_token, key):

 def __CreateDataChannel(self):

 def __InitializeDataChannel(self, channel_id):

 def __AwakenChannels(self):

Application Description : Object Description
Data
id : string

Method Signatures

 def __init__(self, name, description, uri, mimetype):

 def GetMimeType(self):

 def AsINIBlock(self):

 def SetMimeType(self, mimetype):

Client Profile
Data
location : string

email : string

name : string

distinguishedName : string

phoneNumber : string

venueClientURL : string

technicalSupportInformation : string

publicIc : string

homeVenue : string

profileType : string
Method Signatures

 def __init__(self, profileFile = None):

 def _SetFromConfig(self):

 def __str__(self):

 def Dump(self):

 def Load(self, fileName, loadDnDetails=0):

 def Save(self, fileName, saveDnDetails=0):

 def IsDefault(self):

 def CheckProfile(self):

 def InformationMatches(self, obj):

 def SetProfileType(self, profileType):

 def GetProfileType(self):

 def SetLocation(self, location):

 def GetLocation(self):

 def SetEmail(self, email):

 def GetEmail(self):

 def SetName(self, name):

 def GetName(self):

 def GetDistinguishedName(self):

 def SetPhoneNumber(self, phoneNumber):

 def GetPhoneNumber(self):

 def SetVenueClientURL(self, venueClientURL):

 def GetVenueClientURL(self):

 def SetTechSupportInfo(self, techSupportInfo):

 def GetTechSupportInfo(self):

 def SetPublicId(self, publicId):

 def GetPublicId(self):

 def SetHomeVenue(self, venue):

 def GetHomeVenue(self):

Venue Server Sequence Diagrams
[image: image26.emf]VenueServer

VenueServer(Server, ConfigFile) Server

[if Server is None:]

Server(defaultPort)

[if ConfigFile is not None:]

InitFromFile(ConfigFile)

[if administratorList is empty:]

administratorList.append(GetDefaultIdentityDN())

GSIHTTPTransferServer

GSIHTTPTransferServer((‘’, dataPort), numThreads = 4, sslCompat = 0)

run()

Event Service

Text Service

EventService((hostname, eventPort))

start()

TextService((hostname, eventPort))

start()

LoadPersistentVenues(persistenceFilename)

BindService(self, ‘VenueServer’)

Scheduler

Scheduler()

StartAllTasks()

AddTask(Checkpoint, houseKeeperFrequencey, 0)

AddTask(CleanupVenueClients, 10)

[if there is a default Venue:]

SetDefaultVenue(MakeVenueURL(defaultVenue))

[if there is not a default Venue:]

AddVenue(defaultVenueDesc)

VenueServer

Figure 4: Venue Server Creation.

[image: image5.emf]wsAddVenue(Venue Description Struct)

_Authorize

Lock

Release

AddVenue(Venue Description)

Venue URL

CreateVenueDescription(Venue Description Struct [vds])

BindService(Venue, venuePath)

[if this is the first venue]

SetDefaultVenue(Venue.uri)

Venue(vds.name,

 vds.description,

 vds.administrators,

 vds.dataStorageLocation)

SetConnections(vds.connections)

Venue URL

Venue Server

Venue

hosting.pyGlobus.Server

for each stream in vds.streams:

AddStream(stream)

Figure 5: Adding a Venue.

[image: image6.emf]Venue Server

wsModifyVenue(URL, Venue Description Struct)

_Authorize

Lock

Release

ModifyVenue(id, Venue Description)

CreateVenueDescription(Venue Description Struct)

IdFromURL(URL)

Figure 6: Modifying a Venue.

[image: image7.emf]VenueServer

wsShutdown(secondsFromNow) Server

_Authorize()

GSIHTTPTransferServer

stop()

Event Service

Text Service

stop()

stop()

Checkpoint()

stop()

Scheduler

StopAllTasks()

Shutdown()

_Authorize()

Venue

For each venue:

Shutdown()

Figure 7: Venue Server Shutdown.

[image: image8.emf]VenueServer

Checkpoint()

Venue

For each venue:

Shutdown()

File

File(persistenceFilename)

AsINIBlock()

returnString

write(returnString)

close()

SaveConfig(configFilename, config)

We modify the

URL for the

venue to remove

the host and port

so that venues

can be shutdown

on one machine

and restarted on

another.

Figure 8: Venue Server Periodic Checkpoints.

[image: image9.emf]VenueServer

CleanupVenueClients()

Venue

For each venue:

CleanupClients()

Figure 9: Venue Server Periodic Client Cleanup.

Venue Sequence Diagrams

[image: image10.emf]Venue

Venue(server, name,

 description, administrators,

 dataStoreLocation, id = None)

Venue Server

GetEncryptAllMedia()

defaultEncrypt

[if defaultEncrypt]

AllocateEncryptionKey()

Venue

Lock

Heartbeat

Lock

Lock(“venue”)

Lock(“heartbeat”)

Stream

Description List

StreamDescriptionList()

Client Being

Removed Lock

Lock(“clientRemove”)

VenueServer.

eventService

VenueServer.

textService

AddChannel(id)

AddChannel(id)

RegisterCallback(id, HEARTBEAT, ClientHeartbeat)

RegisterCallback(id, DISCONNECT, EventServiceDisconnect)

RegisterCallback(id, CLIENT_EXITING, EventServiceClientExits) Data Store

VenueServer.

dataTransfer

Server

RegisterPrefix(string(id))

DataStore(path, id)

SetTransferEngine(server.dataTransferServer)

Figure 10: Venue Creation and Startup.

[image: image11.emf]wsEnter(Client Profile Struct)

CreateClientProfile(Client Profile Struct)

Release

Enter(Client Profile)

Venue

Lock

Event

Service

GetNextPrivateId()

Clients[privateId] = Client Profie, time

NegotiateCapabilities(Client Profile, privateId)

Distribute(uniqueId, Event(ENTER,

 uniqueId,

 Client Profile))

AsVenueState()

(Venue State, privateId, Stream Descriptions)

Figure 11: Entering a Venue.

[image: image12.emf]wsAddData(Data Description Struct)

CreateDataDescription(Data Description Struct)

Release

AddData(Data Description)

Data Description

Venue

Lock

Distribute(uniqueId,

 Event(ADD_DATA,

 uniqueId,

 dataDescription)

)

Event

Service

This method

appears to be only

adding the data

description to the

venue list of data

descriptions.

Figure 12: Adding Data to a Venue.

[image: image13.emf]wsRemoveData(Data Description Struct)

CreateDataDescription(Data Description Struct)

Release

RemoveData(Data Description)

Data Description

Venue

Lock

Data Store

DeleteFile(name)

Distribute(uniqueId,

 Event(REMOVE_DATA,

 uniqueId,

 dataDescription)

)

Event

Service

Figure 13: Removing Data from a Venue.

[image: image14.emf]wsUpdateData(Data Description Struct)

CreateDataDescription(Data Description Struct)

Release

UpdateData(Data Description)

Data Description

Venue

Lock

Data Store

GetDownloadDescriptor(name)

Distribute(uniqueId,

 Event(UPDATE_DATA,

 uniqueId,

 dataDescription)

)

Event

Service

Figure 14: Updating Data in a Venue.

[image: image15.emf]wsGetData(name)

Release

Data Description

Venue

Lock

GetData(name)

Data Store

DataStore[name]

Data Description

Figure 15: Getting Data from a Venue.

[image: image16.emf]wsAddConnection(Connection Description Struct)

CreateConnectionDescription(name, description, url)

Release

AddConnection(Connection Description)

Venue

Lock

Distribute(uniqueId,

 Event(ADD_CONNECTION,

 uniqueId,

 connectionDescription)

)

Event

Service

_Authorize()

Figure 16: Adding a connection to a Venue.

[image: image17.emf]RemoveConnection(Connection Description Struct)

CreateConnectionDescription(name, description, url)

Release

Data Description

Venue

Lock

Distribute(uniqueId,

 Event(REMOVE_DATA,

 uniqueId,

 dataDescription)

)

Event

Service

We remove the

connection

description from

the venue.

Figure 17: Removing a connection from a Venue.

[image: image18.emf]wsSetConnections(Connection Description Struct List)

CreateConnectionDescription(name, description, url)

Release

AddConnection(Connection Description)

Venue

Lock

Distribute(uniqueId,

 Event(ADD_CONNECTION,

 uniqueId,

 connectionDescription)

)

Event

Service

_Authorize()

For each

Connection

Description

Figure 18: Setting the connection list on a Venue.

[image: image19.emf]CreateApplication(name, description

 mimeType, id = None)

Venue

Distribute(uniqueId,

 Event(ADD_APPLICATION,

 uniqueId,

 connectionDescription)

)

Event

Service

CreateApplication(name, description,

 mimeType,

 self.server.eventService, id)

appImpl

AppObject(appImpl)

app

pyGlobus.Server

BindService(app)

App

Service

Application Description

Figure 19: Creating an application in a Venue.

[image: image20.emf]GetApplication(id)

Venue

GetApplication(id)

Application

GetState()

AppState

AppState

Figure 20: Getting an application from a Venue.

[image: image21.emf]DestroyApplication(id)

Venue

Distribute(uniqueId,

 Event(REMOVE_APPLICATION,

 uniqueId,

 connectionDescription)

)

Event

Service

GetApplication(id)

Application

Shutdown()

Figure 21: Destroying an application in a Venue.

[image: image22.emf]Exit(privateId)

Venue

RemoveUser(privateId)

Removal

Lock

acquire()

Set removing privateId

release()

Lock

Release

Stream

Producer

List

RemoveProducer(privateId)

Remove All User Data

This is

brokenness left

over.

Distribute(uniqueId,

 Event(ADD_SERVICE,

 uniqueId,

 serviceDescription)

)

Event

Service

acquire()

unset removing privateId

release()

Figure 22: Exiting a Venue.

[image: image23.emf]UpdateClientProfile(Client Profile Struct)

CreateClientProfile(client profile struct)

Venue

Distribute(uniqueId,

 Event(MODIFY_USER,

 uniqueId,

 client profile)

)

Event

Service

Figure 23: Updating a Client Profile.

[image: image24.emf]wsAddService(Service Description Struct)

CreateServiceDescription(Service Description Struct)

Release

AddService(Service Description)

Venue

Lock

Distribute(uniqueId,

 Event(ADD_SERVICE,

 uniqueId,

 serviceDescription)

)

Event

Service

_Authorize()

Service Description

Figure 24: Adding a service to a Venue.

[image: image25.emf]wsRemoveService(Service Description Struct)

CreateServiceDescription(Service Description Struct)

Release

RemoveService(Service Description)

Venue

Lock

Distribute(uniqueId,

 Event(REMOVE_SERVICE,

 uniqueId,

 serviceDescription)

)

Event

Service

_Authorize()

Service Description

Figure 25: Removing a service from a Venue.
References
G. van Rossum and F.L. Drake (eds), Python Reference Manual, PythonLabs, Virginia, USA, 2001. Available at http://www.python.org
K. Jackson, pyGlobus: a Python Interface to the Globus Toolkit. Concurrency and Computation: Practice and Experience, 14(13-25), 2002, pp1075-1084.

I.Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit. Intl. J. Supercomputing Applications, 11(2):115-128, 1997.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielson, S. Thatte, and D. Winer, "Simple Object Access Protocol (SOAP) 1.1," World Wide Web Consortium, W3C Note May 08 2000. http://www.w3.org/TR/SOAP/.

E. Christensen, F. Curbera, G. Meredith, and S. Wccrawarana. Web services description language (WSDL) 1.1. Technical report, W3C, March 2001.

I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the grid: Enabling scalable virtual organizations. International J. Supercomputer Applications, 15(3), 2001.
� EMBED Visio.Drawing.6 ���

Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.

© 2002-2003 Argonne National Laboratory / University of ChicagoPlease send comments to ag-arch@mcs.anl.gov.

©
Please send comments to ag-tech@mcs.anl.gov.

[image: image27.emf]VenueServer

VenueServer(Server, ConfigFile) Server

[if Server is None:]

Server(defaultPort)

[if ConfigFile is not None:]

InitFromFile(ConfigFile)

[if administratorList is empty:]

administratorList.append(GetDefaultIdentityDN())

GSIHTTPTransferServer

GSIHTTPTransferServer((‘’, dataPort), numThreads = 4, sslCompat = 0)

run()

Event Service

Text Service

EventService((hostname, eventPort))

start()

TextService((hostname, eventPort))

start()

LoadPersistentVenues(persistenceFilename)

BindService(self, ‘VenueServer’)

Scheduler

Scheduler()

StartAllTasks()

AddTask(Checkpoint, houseKeeperFrequencey, 0)

AddTask(CleanupVenueClients, 10)

[if there is a default Venue:]

SetDefaultVenue(MakeVenueURL(defaultVenue))

[if there is not a default Venue:]

AddVenue(defaultVenueDesc)

VenueServer

_1116656198.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsRemoveData(Data Description Struct)�

CreateDataDescription(Data Description Struct)�

Release�

RemoveData(Data Description)�

Data Description�

Venue�

Event Service�

Lock�

Data Store�

DeleteFile(name)�

Distribute(uniqueId,
 Event(REMOVE_DATA,
 uniqueId,
 dataDescription)
)�

_1116662009.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

UpdateClientProfile(Client Profile Struct)�

CreateClientProfile(client profile struct)�

Venue�

Distribute(uniqueId,
 Event(MODIFY_USER,
 uniqueId,
 client profile)
)�

Event Service�

_1116666817.vsd
�

�

�

�

�

�

�

�

Venue�

Venue(server, name,
 description, administrators,
 dataStoreLocation, id = None)�

Venue Server�

GetEncryptAllMedia()�

defaultEncrypt�

[if defaultEncrypt]
AllocateEncryptionKey()�

Venue Lock�

Heartbeat Lock�

Lock(�venue�)�

Lock(�heartbeat�)�

Stream Description List�

StreamDescriptionList()�

Client Being Removed Lock�

Lock(�clientRemove�)�

VenueServer.eventService�

VenueServer.textService�

AddChannel(id)�

AddChannel(id)�

RegisterCallback(id, HEARTBEAT, ClientHeartbeat)�

RegisterCallback(id, DISCONNECT, EventServiceDisconnect)�

RegisterCallback(id, CLIENT_EXITING, EventServiceClientExits)�

Data Store�

VenueServer.dataTransferServer�

RegisterPrefix(string(id))�

DataStore(path, id)�

SetTransferEngine(server.dataTransferServer)�

_1126617552.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

CreateApplication(name, description
 mimeType, id = None)�

AppObject(appImpl)�

Application Description�

BindService(app)�

Venue�

app�

Distribute(uniqueId,
 Event(ADD_APPLICATION,
 uniqueId,
 connectionDescription)
)�

Event Service�

App Service�

CreateApplication(name, description,
 mimeType,
 self.server.eventService, id)�

appImpl�

pyGlobus.Server�

_1127761698.vsd
�

The height of the text box and its associated line increases or decreases as you add text. To change the width of the comment, drag one of the side handles.�

Drag the side handles to change the width of the text block.�

Asynchronous Service using GSI Sockets�

Event Queue�

Event Queue
Processing
Thread�

Events�

Events�

Connection Handler:�

Connection Handler:�

Connection Handler:�

Connection Handler:�

Listen Callback�

Channel
Object�

Channel
Object�

2. When the accept callback is invoked on the connection handler the handler is initialized and registers a read callback that gets invoked when an event is read to be processed from the network. The read callback moves the event from the network to the event queue.�

3. The Event Queue Processing Thread spins processing events from the single event queue for the asynchronous service. This reduces the number of threads required from one per channel to one per service.�

4. The Event Queue Processing Thread processes an event then hands it to the channel object to be processed for that channel.�

5. The channel object distributes the event to the connections according to the purpose and protocol of the channel.�

The service maintains multiple channels. The service and all channels know about each other. However, the connections know only about the channel they are connected to and the service.�

1. The listen callback is invoked asynchronously when a new connection is made. It creates a new connection handler, then registers that handlers accept callback.�

_1116667291.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsEnter(Client Profile Struct)�

CreateClientProfile(Client Profile Struct)�

Release�

Enter(Client Profile)�

Venue�

Lock�

NegotiateCapabilities(Client Profile, privateId)�

Event Service�

GetNextPrivateId()�

Clients[privateId] = Client Profie, time�

Distribute(uniqueId, Event(ENTER,
 uniqueId,
 Client Profile))�

AsVenueState()�

(Venue State, privateId, Stream Descriptions)�

_1116663233.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsRemoveService(Service Description Struct)�

CreateServiceDescription(Service Description Struct)�

Release�

RemoveService(Service Description)�

Venue�

Lock�

Distribute(uniqueId,
 Event(REMOVE_SERVICE,
 uniqueId,
 serviceDescription)
)�

Event Service�

_Authorize()�

Service Description�

_1116665261.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Exit(privateId)�

Venue�

RemoveUser(privateId)�

�

Removal Lock�

acquire()�

Set removing privateId�

release()�

Lock�

Release�

Stream Producer List�

RemoveProducer(privateId)�

Remove All User Data�

This is brokenness left over.�

Distribute(uniqueId,
 Event(ADD_SERVICE,
 uniqueId,
 serviceDescription)
)�

Event Service�

acquire()�

unset removing privateId�

release()�

_1116663146.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsAddService(Service Description Struct)�

CreateServiceDescription(Service Description Struct)�

Release�

AddService(Service Description)�

Venue�

Lock�

Distribute(uniqueId,
 Event(ADD_SERVICE,
 uniqueId,
 serviceDescription)
)�

Event Service�

_Authorize()�

Service Description�

_1116661106.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

DestroyApplication(id)�

Venue�

Distribute(uniqueId,
 Event(REMOVE_APPLICATION,
 uniqueId,
 connectionDescription)
)�

Event Service�

GetApplication(id)�

Application�

Shutdown()�

_1116661232.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

GetApplication(id)�

Venue�

GetApplication(id)�

Application�

GetState()�

AppState�

AppState�

_1116656206.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsAddData(Data Description Struct)�

CreateDataDescription(Data Description Struct)�

Release�

AddData(Data Description)�

Data Description�

Venue�

Lock�

Distribute(uniqueId,
 Event(ADD_DATA,
 uniqueId,
 dataDescription)
)�

Event Service�

This method appears to be only adding the data description to the venue list of data descriptions.�

_1116397985.vsd
�

�

�

�

�

�

�

�

�

VenueServer�

Checkpoint()�

File�

File(persistenceFilename)�

AsINIBlock()�

returnString�

write(returnString)�

close()�

SaveConfig(configFilename, config)�

Venue�

For each venue:
	Shutdown()�

We modify the URL for the venue to remove the host and port so that venues can be shutdown on one machine and restarted on another.�

_1116656150.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsGetData(name)�

GetData(name)�

Release�

Data Description�

Venue�

Lock�

Data Store�

DataStore[name]�

Data Description�

_1116656181.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsUpdateData(Data Description Struct)�

CreateDataDescription(Data Description Struct)�

Release�

UpdateData(Data Description)�

Data Description�

Venue�

Lock�

Data Store�

GetDownloadDescriptor(name)�

Distribute(uniqueId,
 Event(UPDATE_DATA,
 uniqueId,
 dataDescription)
)�

Event Service�

_1116656104.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

RemoveConnection(Connection Description Struct)�

CreateConnectionDescription(name, description, url)�

Release�

Data Description�

Venue�

Lock�

Distribute(uniqueId,
 Event(REMOVE_DATA,
 uniqueId,
 dataDescription)
)�

Event Service�

We remove the connection description from the venue.�

_1116656130.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsAddConnection(Connection Description Struct)�

CreateConnectionDescription(name, description, url)�

Release�

AddConnection(Connection Description)�

Venue�

Lock�

Distribute(uniqueId,
 Event(ADD_CONNECTION,
 uniqueId,
 connectionDescription)
)�

Event Service�

_Authorize()�

_1116399000.vsd
�

�

�

�

�

�

�

�

VenueServer�

VenueServer(Server, ConfigFile)�

Server�

[if Server is None:]
Server(defaultPort)�

[if ConfigFile is not None:]
InitFromFile(ConfigFile)�

[if administratorList is empty:]
administratorList.append(GetDefaultIdentityDN())�

GSIHTTPTransferServer�

GSIHTTPTransferServer((��, dataPort), numThreads = 4, sslCompat = 0)�

run()�

Event Service�

Text Service�

EventService((hostname, eventPort))�

start()�

TextService((hostname, eventPort))�

start()�

LoadPersistentVenues(persistenceFilename)�

BindService(self, �VenueServer�)�

Scheduler�

Scheduler()�

StartAllTasks()�

AddTask(Checkpoint, houseKeeperFrequencey, 0)�

AddTask(CleanupVenueClients, 10)�

[if there is a default Venue:]
SetDefaultVenue(MakeVenueURL(defaultVenue))�

[if there is not a default Venue:]
AddVenue(defaultVenueDesc)�

VenueServer�

_1116656082.vsd
�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

wsSetConnections(Connection Description Struct List)�

CreateConnectionDescription(name, description, url)�

Release�

AddConnection(Connection Description)�

Venue�

Lock�

Distribute(uniqueId,
 Event(ADD_CONNECTION,
 uniqueId,
 connectionDescription)
)�

Event Service�

_Authorize()�

For each
Connection
Description�

_1116398137.vsd
�

�

�

�

�

�

�

VenueServer�

CleanupVenueClients()�

Venue�

For each venue:
	CleanupClients()�

_1116337661.vsd
�

�

�

�

�

�

�

�

wsAddVenue(Venue Description Struct)�

_Authorize�

Lock�

Release�

AddVenue(Venue Description)�

Venue URL�

CreateVenueDescription(Venue Description Struct [vds])�

�

�

BindService(Venue, venuePath)�

[if this is the first venue]
SetDefaultVenue(Venue.uri)�

�

Venue(vds.name,
 vds.description,
 vds.administrators,
 vds.dataStorageLocation)�

SetConnections(vds.connections)�

Venue URL�

Venue Server�

Venue�

hosting.pyGlobus.Server�

for each stream in vds.streams:
AddStream(stream)�

_1116396949.vsd
�

�

�

�

�

�

�

�

VenueServer�

wsShutdown(secondsFromNow)�

Server�

Shutdown()�

_Authorize()�

GSIHTTPTransferServer�

stop()�

Event Service�

Text Service�

stop()�

stop()�

Checkpoint()�

stop()�

Scheduler�

StopAllTasks()�

Venue�

For each venue:
Shutdown()�

_Authorize()�

_1116223574.vsd
�

�

�

�

�

�

Venue�

VenueServer�

Venue Management
Client�

�

Multicast
Address
Allocator�

Application
Factory�

Application�

Data Description�

Service Description�

0..n�

0..n�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

1�

Stream Description List�

Shared Application Client�

�

0..n�

0..n�

Event
Service�

Data Transfer Server�

1�

1�

Text
Service�

1�

1�

Virtual Venue
Client�

�

1�

0..n�

0..n�

1�

�

1�

1�

Administrator List�

�

1�

1�

Administrator List�

�

1�

1�

Hosting Environment�

Connection Description�

0..n�

1�

Client Profile�

0..n�

1�

_1116333312.vsd
�

�

�

Venue Server�

wsModifyVenue(URL, Venue Description Struct)�

_Authorize�

Lock�

Release�

ModifyVenue(id, Venue Description)�

CreateVenueDescription(Venue Description Struct)�

IdFromURL(URL)�

