Venue Event Service Implementation Notes
Robert Olson

May 28, 2003

Introduction

The AG Event Service is used to synchronize the state of venue clients with each other and with the Venue’s state. This state is comprised primarily of the set of clients which are actually “in” the venue; correct maintenance of this state is particularly important as it is used as the mechanism for gating access to the resources associated with the venue.

Membership Semantics

In some sense, the AG Venue server is implementing reliable multicast group communication, where membership in the group is used as authorization to access resources.

In the absence of a fully distributed reliable multicast protocol, we define the venue membership list as maintained by the Venue as authoritative. The service interface (Enter and Exit methods) on the Venue in concert with the Event Service collaborate to accurately distribute this state to all clients.

It is important to note that for the purposes of gating access to resources, all that is strictly required is the Enter/Exit service interface to the Venue. However, two issues arise that lead to the introduction of the event service.

First, because the web services interface to the Venue is connectionless, it is possible for a client to issue an Enter call but to exit without ever issuing an Exit call. Without a mechanism to automatically and robustly detect client termination, the membership list of a Venue could grow without bound. The AG2 prototype implementation used a service-based heartbeat mechanism in concert with a timeout mechanism for expunging expired clients.

Second, the basic Enter/Exit semantics do not provide clients with a mechanism for determining the current membership state of the venue. While not required for access control to venue resources, it is a requirement of the users to be able to determine to some level of accuracy the current membership of the Venue. The AG2 prototype implementation used an additional “Update State” method on the venue; the clients used this to periodically poll the venue server for the current membership.

While the service-based mechanisms used by the prototype were effective in their basic operation, they had some faults. The timeout-based expiration of disconnected clients results in windows of time, based on the frequency with which the client heartbeats were checked, where the Venue maintained inaccurate information. This mechanism has a scaling problem as well: Each heartbeat is a secure method invocation, and hence requires a full SSL connection handshake, which can consume significant resources in comparison to the size of the transaction itself.

We see a similar problem with the clients’ updating of their state via a service invocation to the venue. Not only is there the problem where there are windows of time where the client’s view of the venue membership is inaccurate and the price of the SSL handshake has to be paid for each update, but also the updates will include possibly large amounts of redundant data (the membership state that the client already has in place).

The Event Service

The AG2 system solves these problems using an event service. The event service is hosted at the Venue. It is not a web service, but rather a connection-oriented service implemented atop reliable unicast connections (GlobusIO TCP sockets).

The event service does not itself provide a reliable multicast abstraction, but it provides a substrate upon which one can be assembled.

The event service relies on the notion of an event channel to organize the distribution of events. In order to maintain scalability of a venues server to a large number of venues, a single event service is shared between all venues, and uses the channel mechanism to route incoming events appropriately.

Each event channel maintains a set of clients which are currently connected to it. Each of these clients’ connections is an open GlobusIO socket.

We discuss the event service from two points of view: that of a process that hosts an event service, and that of a process that is a client of an event service.

An event service host registers callbacks with the event service which are triggered when matching events arrive. This registration always includes the channel, and may include a specific event type.

An event service host can also distribute events to all clients which have connected to a particular channel.

Similarly, an event service client registers for incoming events. It only has the option of registering for particular event types. The client can also send events to the event service. This does not imply that they are necessarily distributed to all other connected clients on the channel: that functionality resides in the code that is making use of the event service on the hosting process.

The Venue Event Service

The AG Venue uses an event service to optimize the maintenance of shared state between the venue and its clients. Each venue creates a channel in the event service for its use, naming it with the unique identifier for the venue. The venue registers for heartbeat and disconnection events on the event service.

Heartbeat events are sent periodically from the clients to the venue. When a specified time has elapsed and the venue has not received a heartbeat event, the client is removed from the venue.

When the venue receives a disconnection event, the client is also removed from the venue.

Whenever the state of the venue changes, the venue will distribute events to the currently-connected clients to notify them of these changes. We focus here on the maintenance of the client membership list in the venue.

Thus, in the Enter method of the venue, an Enter event is distributed to all connected clients notifying them of the entrance of the new client. Similarly, when a client is removed from the venue, either due to the client’s invocation of the Exit method or due to heartbeat timeout or event service disconnection, an Exit event is distributed to all connected clients.

The clients use these Enter and Exit events to add and remove clients from their lists of currently-connected clients.

Problems with the Simple Protocol

However, the simple protocol discussed above has some problems. Consider the following pseudocode, executed by the client at room entry time:

venueInfo = venueProxy.Enter(myProfile)

[Process venueInfo]

eventServiceAddr = [retrieve address from venueInfo]

eclient = EventClient(eventLocation, channel)

eclient.Start()

eclient.Send(ConnectEvent(…))

Consider what happens if a second client enters the venue in the period between the return of venueProxy.Enter() and the call to eclient.Start(), when the client connects to the event service. The targets of the distribution of the second client’s Enter event will not include the first client, as it has not yet connected to the event service. The shared state will not be synchronized.

A harder-to-describe sequence of events has also been observed. Consider three clients, each in the same venue. Each client reconnects to the venue; that is, each disconnects from the venue then immediately re-enters. The interaction between each client and the venue server goes something like this:

1. Client calls venue.Exit

2. Venue distributes an Exit event

3. venue.Exit call returns

4. Client disconnects event service

5. Client calls venue.Enter

6. venue distributes an Enter event

7. venue.Enter call returns

8. Client connects to event service

The thread of execution in the venue server is such that the Enter and Exit methods are guaranteed to execute to completion before another is invoked.

Since the distribution of the events is not tightly bound to strict venue membership, it is possible for one client to complete the exit/enter sequence in time to receive a stray Exit event from a second client, leaving the second client missing from the first client’s list of participants. (I am having trouble again recreating the exact sequence of events, but it has to do with the events reaching the client before the SOAP calls finish).

Solutions

How do we solve this? The general plan is to regain synchrony between the web service-based interface to the Venue and the event service-distributed events.

We can see that the two examples above break this synchrony in two different ways. First, a hole in the protocol let events slip by when the Venue thought the client was connected. Second, an event service connection lifetime did not mirror the lifetime of the web service-based client connection.

To solve the first problem, we would like to assume that the web service Enter call and the registration with the event service are a single atomic operation. Unfortunately, since the information required to connect to the event service is returned by the Enter call, this cannot happen. We can emulate this, however, by maintaining in the venue a queue of events that need to be relayed to the event client when it does eventually connect. (This leaves us open to a denial of service attack, however, where a client invokes Enter but never connects an event client. There are several possible solutions that we will discuss later).

To solve the second, we need to ensure that events only arrive at a client if, at the time the event was sent, the client was actually in the venue. If the client has left the venue before the event arrives, the event must be discarded by the client.

We need to consider the possibility of an information leak outside the secure perimeter of the Venue. Such a leak might be the fact that a new client has Entered the venue after the client under consideration has Exited. For this to happen, an event would have to be distributed by the event service to the client after the Exit call has returned. We can ensure this does not happen by vectoring all event transmission through an explicit list of client event connections kept as part of the membership list of the venue. The only remaining problem is that an event in transit to the client when the client invokes Enter may still arrive while the exit processing is in progress. This should be harmless if the client shuts down its event client before starting the Exit process.

Event Service Details

Requirements:

Connection requests from clients must be vectored through the venue to ensure that only authorized clients can connect, and that the venue can maintain the handle for communicating with the clients.

Disconnection events from clients must also be vectored back to the venue in order to remove the client from the venue.

This implies that it is not the EventService object itself (the one that currently both listens for new connections and that distributes events to clients) that distributes events; rather, the Venue itself takes on that responsibility (or owns an object that does it for it).

It may be the case that the object responsible for distributing the events to a list of clients actually represents the channel. That is, the semantics of joining a channel (connecting to the service to get events on a particular channel) are bound to a Channel object that implements those semantics, and, additionally, includes a permission mechanism that enables the callbacks to the Venue for authorization for connection to the channel.

Bibliography

