

Network Services Design

Susanne Lefvert

Futures Laboratory

Argonne National Laboratory

9700 S. Cass Ave.

Argonne, IL 60439

8/10/2004
Introduction

This document describes ongoing and planned work to support network services in the Access Grid Toolkit.
Requirements

In order to decide requirements for network services, different types of services are identified and described as follows.
1. Transcoders
· For example a 8kHz <-> 16 kHz audio transcoder.
· Has stream input and output.

· Registers with venues/venue servers.

· Should not be visible in venue clients.

· A venue connects to a transcoder when capability mismatch occurs.

· Can be described by one general SOAP interface.

· May need user input to function properly.

2. General Services
· For example a Multicast Monitor.

· Input does not have to be streams.

· Registers with venues/venue servers.

· Have different SOAP interfaces.

· Should be visible in venue clients.

· Needs a customized client to communicate with the service.

· May contribute information to decide capabilities.
Design
Since the requirements for are different for network services, I have divided the design section into two parts; one for transcoders and the other for general services.

Design to Support Transcoders.

The class diagram in Figure 1 shows new classes that will be added to support network services. The NetworkServicesManager contains a list of AGNetworkServiceDescriptions, describing available services, and a NetworkServiceMatcher, to use for service selection when capability mismatch occurs in the venue. The Venue class will get new methods to support registration of network services, and the VenueClient is provided with richer capabilities.

[image: image1.emf]+RegisterNetworkService()

+UnRegisterNetworkService()

+GetNetworkServices()

+NegotiateCapabilities()

Venue

-[ServiceCapability]

-ClientPreferences

-NodeCapability

VenueClient

+RegisterService()

+UnRegisterService()

+GetServices()

+ResolvMismatch()

-[AGNetworkServiceDescription]

-NetworkServiceMatcher

NetworkServicesManager

+Transform()

+StopTransform()

AGNetworkService

1 1

+Match()

NetworkSerivceMatcher

1

1

1

*

ClientPreferencesUI

1

1

-name

-description

-url

-inCapabilities

-outCapabilities

-mimeType

-extension

-visible

AGNetworkServiceDescription

1

*

Figure 1 Class Diagram
A network service would register with the venue or a venue server in a similar manner to how the bridge server works, see diagram in Figure 2. To notify the venue client of the new service, an ADD_SERVICE event is distributed to all participants of the venue.

[image: image2.emf]NetworkService Venue NetworServicesManager

VenueClient

RegisterNetworkService(AGNetworkServiceDescription)

Distribute(ADD_SERVICE_EVENT)

RegisterService(AGNetworkServiceDescription)

AddService(AGNetworkServiceDescription)

Figure 2 Sequence Diagram - Register Network Service
The sequence diagram in Figure 3 shows the flows of actions that occur when a node enters a venue with capabilities that do not match all streams available. For instance, this could be a node that is only able to receive 8kHz audio while streams in the venue are of 16kHz. The network service would then be an audio transcoder (8kHz -> 16 kHz). When a node enters the venue, the internal NegotiateCapability() call will notice a mismatch in capabilities and call the NetworkServiceManager.ResolveMismatch() method with all the streams that do not match and the capabilities of the node. The NetworkServiceMatcher will select a chain of network services that can be used to resolve the mismatch based on streams, capabilities, and available network services. The mismatched streams are then sent to the NetworkService.Transform() method to produce new streams for the venue.

[image: image3.emf]NetworkService Venue NetworServicesManager VenueClient

Enter

NetworkServiceMatcher

Match([StreamDescription], myCapability, [NetworkServiceDescription])

NegotiateCapabilities()

[StreamDescription]

[([StreamDescription], [NetworkServiceDescription])]

[StreamDescription]

ResolveMismatch([StreamDescription], myCapability)

Mismatch between

stream and capability;

Find appropriate

network service to use.

Transform([StreamDescription])

If venue

doesn't have

new streams;

add them.

[StreamDescription]

Network service

may need user input

to perform action.

Figure 3 Sequence Diagram - Enter Venue
Design to Support General Services

General services do not necessarily operate on streams and should not be a result of service matching. Instead, these services may present nodes and the venue with useful information that may change the environment and capabilities that are providing the base for matching. Each general service would instead have a unique soap interface and a client that knows how to communicate with the service via the interface. Classes relevant for general services are shown in Figure 3.

[image: image4.emf]+RegisterNetworkService()

+UnRegisterNetworkService()

+GetNetworkServices()

+NegotiateCapabilities()

Venue

-[ServiceCapability]

-ClientPreferences

-NodeCapability

VenueClient

+RegisterService()

+UnRegisterService()

+GetServices()

+ResolvMismatch()

-[AGNetworkServiceDescription]

-NetworkServiceMatcher

NetworkServicesManager

AGNetworkService

1

1

1

*

ClientPreferencesUI

1

1

-name

-description

-url

-inCapabilities

-outCapabilities

-mimeType

-extension

-visible

AGNetworkServiceDescription

1

*

NetworkServiceClient

1

1

Figure 4 General Services
A general service would still register with the venue, just like transcoders would shown in Figure2. When registering, an AddService event would be distributed to all participants of the venue and the service would show up under the Service heading in the venue client. When you right click the new service and select open, a custom client, installed for this specific service, would open. To register the service client, agpm.py is used to associate the client with the service mime type.
Implementation

This section includes changes made to the toolkit to support the design described in last section as well as examples of how a transcoder and a general service would be implemented.

Modifications to Existing Classes

Descriptions.Capability
To maintain interoperability, a new parameter is added to the capability class where a richer capability description will get stored.
class Capability:

 PRODUCER = "producer"

 CONSUMER = "consumer"

 AUDIO = "audio"

 VIDEO = "video"

 TEXT = "text"

 def __init__(self, role=None, type=None):

 self.role = role

 self.type = type

 self.parms = dict()

 self.xml = ''
Descriptions.CreateCapability()
def CreateCapability(capabilityStruct):

 # Old capability

 cap = Capability(capabilityStruct.role,capabilityStruct.type)

 # Add new capability as xml document.

 if hasattr(capabilityStruct, 'xml') and capabilityStruct.xml:

 cap.xml = capabilityStruct.xml

Node Services

Node services need to include richer capabilities and will use the new ServiceCapability class to do so. The new Capability.xml parameter is used to store the new xml document.

from AccessGrid.ServiceCapability import ServiceCapability
oldCap1 = Capability(Capability.PRODUCER, "audio")

oldCap2 = Capability(Capability.CONSUMER, Capability.AUDIO)

Create new capabilities to include in old capability format

config = {ServiceCapability.DEVICE_SAMPLE_RATE:'16000', ServiceCapability.ENCODING_NAME:'H.261'}

nsc1 = ServiceCapability('Fake Audio Service', oldCap1.role, oldCap1.type, config)

oldCap1.xml = nsc1.ToXML()

nsc2 = ServiceCapability('Fake Audio Service', oldCap2.role, oldCap2.type, config)

nsc2.SetConfigOption(ServiceCapability.DEVICE_SAMPLE_RATE, '8000')

oldCap2.xml = nsc2.ToXML()

self.capabilities = [oldCap1, oldCap2]

Venue
__init__()

from AccessGrid.Descriptions import CreateAGNetworkServiceDescription

from AccessGrid.ServiceCapability import ServiceCapability

from AccessGrid.NetworkServicesManager import NetworkServicesManager

class Venue(AuthorizationMixIn):

 def __init__(self, server, name, description, dataStoreLocation,

 oid=None):

 self.networkServicesManager = NetworkServicesManager()

RegisterNetworkService()

def RegisterNetworkService(self, networkServiceDescription):

 nsd = CreateAGNetworkServiceDescription(networkServiceDescription)

 try:

 self.networkServicesManager.RegisterService(nsd)

 self.server.eventService.Distribute(self.uniqueId,

 Event(Event.ADD_SERVICE,

 self.uniqueId,

 nsd))

 except:

 log.exception('Venue.RegisterNetworkService: Failed')

 raise Exception, 'Venue.RegisterNetworkService: Failed'

NegotiateCapabilities()

Add matching of new richer capabilities if they exist. When mismatch occurs, call the NetworkService manager for resolution.
add user as producer of new stream

if not matchesExistingStream:

 capability = Capability(clientCapability.role,

 clientCapability.type)

 capability.parms = clientCapability.parms

 # Add new capability as xml document.

 if hasattr(clientCapability, 'xml') and clientCapability.xml:

 n = ServiceCapability.CreateServiceCapability(clientCapability.xml)

 capability.xml = n.ToXML()

clientConsumerCapTypes = []
newCapabilities = []

mismatchedStreams = []

for capability in clientProfile.capabilities:

 if capability.role == Capability.CONSUMER:

 clientConsumerCapTypes.append(capability.type)

 # Store new capabilities to check with new streams

 if hasattr(capability, 'xml') and capability.xml:

 newCapabilities.append(capability)
for stream in self.streamList.GetStreams():

 if stream.capability.type in clientConsumerCapTypes:

 streamDescriptions.append(stream)

Additional Check!

Find mismatches in new capabilities. The streams might already

be added to the streamDescriptions list, so remove them from the list

and send them to the network service manager for resolution.

for s in self.streamList.GetStreams():

 match = 0

 # If stream has new capability

 if hasattr(s.capability, 'xml') and s.capability.xml:

 # Check for matches for new consumer capabilities

 sCap=ServiceCapability.CreateServiceCapability(s.capability.xml)

 for c in newCapabilities:

 cCap = ServiceCapability.CreateServiceCapability(c.xml)

 if sCap.Matches(cCap):

 match = 1

 if not match:

 # Append to the list of mismatched streams.

 mismatchedStreams.append(s)

 # The stream does not match so remove it from

 # the list of stream descriptions.

 for stream in streamDescriptions:

 if s.id == stream.id:

 streamDescriptions.remove(stream)

Use network services to resolve mismatches.

if len(mismatchedStreams)>0:

 matchingStreams = self.networkServicesManager.ResolveMismatch(mismatchedStreams,

 clientProfile.capabilities)

 # Add new streams that got created by

 # network services during matching.

 streamIds = map(lambda x: x.id,self.streamList.GetStreams())

 for s in matchingStreams:

 c = ServiceCapability.CreateServiceCapability(s.capability.xml)

 if not self.streamList.FindStreamByDescription(s):

 # Make new stream available for other clients.

 self.streamList.AddStream(s)

 # Return new streams to the client.

 streamDescriptions.extend(matchingStreams)

VenueClientUI

AddService()

Only show network services that have the visible flag set. For example, we might not want to show a transcoder in the UI.

def AddService(self, serviceDescription):

 if isinstance(serviceDescription, AGNetworkServiceDescription):

 # Only show visible network services

 if not serviceDescription.visible:

 return
ContentListPanel.OnRightClick()

elif isinstance(item, AGNetworkServiceDescription):

 menu = self.BuildNetworkServiceMenu(event, item)

 self.PopupMenu(menu, wxPoint(self.x, self.y))
ContentListPanel.BuildNetworkServiceMenu()

Only add Open and Properties options to menu.

def BuildNetworkServiceMenu(self, event, item):

 ext = item.name.split('.')[-1]

 commands = self.parent.GetCommands(item)

 menu = wxMenu()

 # - Open

 id = wxNewId()

 menu.Append(id, "Open", "Open this service.")

 if commands != None and commands.has_key('Open'):

 EVT_MENU(self, id, lambda event,

 cmd=commands['Open'], itm=item:

 self.parent.StartCmd(itm, verb='Open'))

 else:

 EVT_MENU(self, id, lambda event,

 itm=item: self.FindUnregistered(itm))

 # - type-specific commands

 if commands != None:

 for key in commands.keys():

 if key != 'Open':

 id = wxNewId()

 menu.Append(id, string.capwords(key))

 EVT_MENU(self, id, lambda event,

 verb=key, itm=item:

 self.parent.StartCmd(itm, verb=verb))

 menu.AppendSeparator()

 # - Properties

 id = wxNewId()

 menu.Append(id, "Properties", "View the details of this service.")

 EVT_MENU(self, id, lambda event, item=item:

 self.LookAtProperties(item))

 return menu
ContentListPanel.LookAtProperties()

elif isinstance(desc, AGNetworkServiceDescription):

 serviceView = ServicePropertiesDialog(self, -1, "Service Properties")

 serviceView.SetDescription(desc)

 serviceView.ShowModal()

 serviceView.Destroy()

VenueClientController
StartCmd()
elif isinstance(objDesc, AGNetworkServiceDescription):

 namedVars = self.__HandleNetworkServiceCmd(objDesc, verb)

def __HandleNetworkServiceCmd(self, objDesc, verb):

 name = self.__venueClientApp.GetNameForMimeType(objDesc.mimeType)

 namedVars = dict()

 if name != None:

 serviceName = '_'.join(name.split(' '))

 userNsDir = UserConfig.instance().GetNetworkServiceDir()

 agtkNsDir = AGTkConfig.instance().GetNetworkServiceDir()

 # Get the service dir

 if os.access(os.path.join(userNsDir, serviceName),os.R_OK):

 serviceDir = os.path.join(userNsDir, serviceName)

 elif os.path.join(agtkNsDir, serviceName):

 serviceDir = os.path.join(agtkNsDir, serviceName)

 else:

 raise Exception, "Couldn't find network service client"

 try:

 os.chdir(serviceDir)

 except:

 log.warn("Couldn't Change dir to service directory")

 return namedVars

 #

 # Build up named vars

 #

 if verb != None:

 namedVars['serviceCmd'] = verb

 namedVars['serviceName'] = objDesc.name.replace(" ", "_")

 namedVars['serviceDesc'] = objDesc.description

 namedVars['serviceUrl'] = objDesc.uri

 #namedVars['localFilePath'] = localFilePath

 namedVars['venueUrl'] = self.__venueClient.GetVenue()

 return namedVars

 else:

 self.gui.Notify("You have no client for this Network Service.", "Notification")

 return namedVars

Open Issues
· How should I store new capabilities in node service svc file? Do we have to modify the file by hand or could we automatically write the xml document to the svc file.

· How can a network service communicate with a participant? For example, if we have a video selector and we want the participant to select which streams to receive.

· Events?
· Through venue client soap interface. Firewall issues…

· Should I use AGNetworkServiceDescription class, or have a more general name for it…like ServiceDescription. Maybe other services will be using the same mechanism? Should general services apply to all services, not just network services?

· How can information retrieved from general services be used in capability negotiation?

· Is it right to use agpm.py to install service clients?

· Should I use .app extension to a service client? Or svc? Or something else?

· Should extension be application/servicename or maybe service/servicename?

Example Implementation of a Transcoder
Currently, this is just a fake transcoder that really does not do anything but receive a stream description with sample rate set to 16kHz and returns a description set to 8 kHz.
from AccessGrid.AGNetworkService import AGNetworkService, AGNetworkServiceI

from AccessGrid.ServiceCapability import ServiceCapability

from AccessGrid.hosting.SOAPInterface import SOAPInterface, SOAPIWrapper

from AccessGrid.Toolkit import CmdlineApplication

from AccessGrid.GUID import GUID

import copy

class FakeAudioTranscoder(AGNetworkService):

 def __init__(self, name):

 AGNetworkService.__init__(self, name, 'Convert from 16kHz to 8kHz', '1.0',

 'application/x-ag-fake-transcoder', 'faketranscoder')

 # Create in and out capabilities.

 config = {ServiceCapability.DEVICE_SAMPLE_RATE:'16000', ServiceCapability.ENCODING_NAME:'H.261'}

 n1 = ServiceCapability(name, 'transform', 'audio', config)

 config = {ServiceCapability.DEVICE_SAMPLE_RATE:'8000', ServiceCapability.ENCODING_NAME:'H.261'}

 n2 = ServiceCapability(name, 'transform', 'audio', config)

 self.inCapabilities = [n1.ToXML()]

 self.outCapabilities = [n2.ToXML()]

 soapInterface = FakeAudioTranscoderI(service)

 # Start the service.

 self.Start(self)

 def StopTransform(self):

 # Nothing to stop yet.

 pass

 StopTransform.soap_export_as = "StopTransform"

 def Transform(self, streamList):

 newStreams = []

 for stream in streamList:

 nsc = ServiceCapability.CreateServiceCapability(stream.capability.xml)

 print '\n\n---- stream before transformation'

 print nsc.ToXML()

 cfg = nsc.GetConfiguration()

 if ServiceCapability.DEVICE_SAMPLE_RATE in cfg.keys():

 nsc.SetConfigOption(ServiceCapability.DEVICE_SAMPLE_RATE, '8000')

 newStream = copy.copy(stream)

 newStream.id = str(GUID())

 newStream.location.port = 8888

 print '\n---- stream after transformation'

 print nsc.ToXML()

 newStream.capability.xml = nsc.ToXML()

 newStreams.append(newStream)

 return newStreams

 Transform.soap_export_as = "Transform"

if __name__ == "__main__":

 # Create the network service.

 fat = FakeAudioTranscoder('Fake Audio Service')

 # Register with venues if url is not given via command line.

 if not fat.app.GetOption('venueUrl') or fat.app.GetOption('venueServerUrl'):

 fat.RegisterWithVenues(['https://localhost:8000/Venues/default'])

 # Start signal loop to make it possible to exit cleanly

 fat.StartSignalLoop()

Example Implementation for a General Services

This example shows a simple service that has one SOAP method, GetConfiguration(), that returns 1. The client connects to the service and shows a simple window with a button displaying the received configuration value.
FakeMonitor.py

from AccessGrid.AGNetworkService import AGNetworkService, AGNetworkServiceI

from AccessGrid.ServiceCapability import ServiceCapability

from AccessGrid.hosting.SOAPInterface import SOAPInterface, SOAPIWrapper

from AccessGrid.Toolkit import CmdlineApplication

from AccessGrid.GUID import GUID

from AccessGrid.hosting.SOAPInterface import SOAPIWrapper

from AccessGrid.Descriptions import CreateStreamDescription

import copy

class FakeMonitor(AGNetworkService):

 def __init__(self, name):

 AGNetworkService.__init__(self, name, 'Multicast monitor', '1.0',

 'application/x-ag-fake-monitor', 'fakemonitor')

 # Create in and out capabilities.

 config = {ServiceCapability.DEVICE_SAMPLE_RATE:'8000', ServiceCapability.ENCODING_NAME:'H.261'}

 n1 = ServiceCapability(name, 'consumer', 'audio', config)

 self.inCapabilities = [n1.ToXML()]

 self.outCapabilities = None

 soapInterface = FakeMonitorI(self)

 # Start the service.

 self.Start(soapInterface)

 def GetConfiguration(self):

 return 1

 GetConfiguration.soap_export_as = "GetConfiguration"

class FakeMonitorI(SOAPInterface):

 def __init__(self, impl):

 SOAPInterface.__init__(self, impl)

 def _authorize(self, *args, **kw):

 return 1

 def GetConfiguration(self):

 return self.impl.GetConfiguration()

class FakeMonitorIW(SOAPIWrapper):

 '''

 This interface is used for monitor clients.

 '''

 def __init__(self, url, faultHandler = None):

 SOAPIWrapper.__init__(self, url, faultHandler)

 def GetConfiguration(self):

 return self.proxy.GetConfiguration()

if __name__ == "__main__":

 import sys

 # Create the network service.

 fat = FakeMonitor('Fake Monitor Service')

 # Register with venues if url is not given via command line.

 if not fat.app.GetOption('venueUrl') or fat.app.GetOption('venueServerUrl'):

 fat.RegisterWithVenues(['https://localhost:8000/Venues/default'])

 # Start signal loop to make it possible to exit cleanly

 fat.StartSignalLoop()

FakeMonitorClient.py
from FakeMonitor import FakeMonitorIW

from wxPython.wx import *

from AccessGrid import icons

import os

class FakeMonitorClient(wxApp):

 def __init__(self, url, app):

 wxApp.__init__(self, False)

 app.Initialize('FakeMonitorClient')

 fms = FakeMonitorIW(url)

 confVal = fms.GetConfiguration()

 wxInitAllImageHandlers()

 self.mainSizer = None

 self.frame = wxFrame(None, -1, "Shared Question Tool")

 self.frame.SetIcon(icons.getAGIconIcon())

 self.button = wxButton(self.frame, -1, str(confVal))

 self.SetTopWindow(self.frame)

 self.topPanel = wxPanel(self.frame, -1)

 self.__Layout()

 self.frame.Show(1)

 self.MainLoop()

 def OnInit(self):

 return 1

 def __Layout(self):

 sizer = wxBoxSizer(wxVERTICAL)

 sizer.Add((10,10))

 sizer.Add(self.button, 0, wxEXPAND|wxALL, 10)

 self.topPanel.SetSizer(sizer)

 sizer.Fit(self.topPanel)

 self.mainSizer = wxBoxSizer(wxVERTICAL)

 self.mainSizer.Add(self.topPanel, 0, wxEXPAND)

 self.frame.SetSizer(self.mainSizer)

 self.mainSizer.Fit(self.frame)

 self.frame.SetAutoLayout(1)

if __name__ == "__main__":

 import sys

 from AccessGrid.Toolkit import WXGUIApplication

 app = WXGUIApplication().instance()

 i = 0

 for arg in sys.argv:

 i = i + 1

 if arg == '--s':

 app.AddCmdLineOption('--s')

 url = sys.argv[i]

 fClient = FakeMonitorClient(url, app)
FakeMonitor.app
[application]

name = Fake Monitor

mimetype = application/x-ag-fake-monitor

extension = fakemonitor

files = FakeMonitor.py

startable = 0

[commands]

Open = %(python)s FakeMonitorClient.py --s %(serviceUrl)s

_1153643834.vsd
�

�

�

�

�

+RegisterNetworkService()
+UnRegisterNetworkService()
+GetNetworkServices()
+NegotiateCapabilities()�

�

Venue�

�

�

-[ServiceCapability]
-ClientPreferences
-NodeCapability�

VenueClient�

�

�

�

1�

�

1�

�

�

1�

�

+RegisterService()
+UnRegisterService()
+GetServices()
+ResolvMismatch()�

-[AGNetworkServiceDescription]
-NetworkServiceMatcher�

NetworkServicesManager�

�

+Transform()
+StopTransform()�

�

AGNetworkService�

�

�

�

1�

�

1�

*�

�

�

ClientPreferencesUI�

�

�

�

1�

�

1�

+Match()�

�

NetworkSerivceMatcher�

�

�

-name
-description
-url
-inCapabilities
-outCapabilities
-mimeType
-extension
-visible�

AGNetworkServiceDescription�

�

�

�

1�

�

*�

_1153649447.vsd
�

�

�

NetworkService�

Venue�

NetworServicesManager�

VenueClient�

RegisterNetworkService(AGNetworkServiceDescription)�

Distribute(ADD_SERVICE_EVENT)�

RegisterService(AGNetworkServiceDescription)�

AddService(AGNetworkServiceDescription)�

_1153648623.vsd
�

�

�

�

�

+RegisterNetworkService()
+UnRegisterNetworkService()
+GetNetworkServices()
+NegotiateCapabilities()�

�

Venue�

�

�

-[ServiceCapability]
-ClientPreferences
-NodeCapability�

VenueClient�

�

+RegisterService()
+UnRegisterService()
+GetServices()
+ResolvMismatch()�

-[AGNetworkServiceDescription]
-NetworkServiceMatcher�

NetworkServicesManager�

�

�

�

AGNetworkService�

�

�

�

1�

�

1�

�

�

NetworkServiceClient�

�

�

�

1�

�

1�

�

�

1�

�

*�

�

�

ClientPreferencesUI�

�

�

�

1�

�

1�

�

-name
-description
-url
-inCapabilities
-outCapabilities
-mimeType
-extension
-visible�

AGNetworkServiceDescription�

�

�

�

1�

�

*�

_1153642985.vsd
�

�

�

�

NetworkService�

Venue�

NetworServicesManager�

VenueClient�

Enter�

NetworkServiceMatcher�

Match([StreamDescription], myCapability, [NetworkServiceDescription])�

NegotiateCapabilities()�

[StreamDescription]�

[([StreamDescription], [NetworkServiceDescription])]�

[StreamDescription]�

ResolveMismatch([StreamDescription], myCapability)�

Mismatch between

stream and capability;

Find appropriate

network service to use.�

Transform([StreamDescription])�

If venue

doesn't have

new streams;

add them.�

[StreamDescription]�

Network service

may need user input

to perform action.�

