Virtual Venues Access Control: Architecture and Design Notes

Robert Olson

January 23, 2003

Introduction

In a secure Access Grid environment, we must support two main mechanisms to ensure the security. Authentication is the process of verification of the identity claimed by a user. Authorization is the process by which a system determines whether an authenticated user has the right or permission to access a resource [1] .

In the Virtual Venues architecture, authentication is provided by the underlying messaging system; in the 2.0 implementation this is the Globus Toolkit [2]. The Globus toolkit bases its authentication mechanisms on a public-key infrastructure-based architecture; hence, users and systems are identified by X.509 certificates.

This document will discuss the authorization problem and describe an architecture and design for solving this problem in the context of the Access Grid.

Access Control

The problem we are solving is this:

Allow access to a resource only to those users to which we wish to allow access.

In the Access Grid, such resources might include Virtual Venues (“locked doors”), shared files (give logged-in users the right to read, people in my group the right to write), services (only people with a valid TeraGrid login can access the high-throughput genomics server), etc.

The computing and security literature is rich with architectures and designs for access control mechanisms [refs]. The Access Grid environment, however, has a fundamental difference from many of the environments discussed in the literature. As a real-time collaboration environment, it has strict requirements for dynamic real-time modification of the access control policies.

Architecture

In this section we discuss the basic abstractions the access control subsystem defines, as well as issues of naming and the linkage to theoretical work on access control systems.

Role-based Access Control

We use the concept of role-based access control in this access control architecture. In short, role-based access control implies that permissions are associated with roles, and that users are assigned roles depending on their context, identity, and environment. In its full form, an RBAC system can include a complex hierarchy of roles with context-based activation rules, role membership constraints, etc [3, 4]. However, for our purposes we are using a fairly simple model based on the RBAC concepts and abstractions.

In the Access Grid, we envision common roles to include those of “Currently logged into Venue X”, “Allowed to enter Venue Y”, “Authenticated user”, “Member of SWOF Expedition”, etc.

Permissions are defined in the context of some object or service. For a file sharing service, we might define permissions for “read”, “write”, and “delete”. For a Venue, permissions might be “enter”, “administer”, “remove users”.

Abstractions

We will use the following abstractions in the AG access control system:

User. A user is a person.

Subject. A subject is the manifestation of a user in the software system. The AG software provides a means by which a user can authenticate himself with the system to make available a subject that represents the user.

Role. A role defines a class of allowed access to a set of operations.

Object. An object is a resource to be protected.

Operation. An operation, when invoked, causes data to flow to or from an object or causes the consumption of the resource.

Permission. A permission is the privilege to perform an operation on an object.

Subject / User Distinction

In classical RBAC systems a distinction is drawn between users and subjects. However, newer work [5, 6] appears to blur this distinction and only incorporate the notion of a subject or user, defined as the human being interacting with the computer system. The subject is identified by “any convenient representation that uniquely identifies a user in the system.”[5].

We will adopt this definition, as it simplifies both the semantics of access control operations and the implementation of the system.

Naming: Subjects

In the access control literature, a subject is often named using the given name of the person to which the subject applies. This works in the traditional environment in which these access control conventions are used; that is, for limiting access to files or database tables or web pages to subsets of an organization’s members or affiliates. In the case of the Access Grid, however, the subjects concerned can come from a much larger population whose members names we may not know a priori.

For our purposes, then, we need to more precisely define how subjects are named. There may be multiple mechanisms available for this naming, corresponding to the various authentication schemes that may be supported by the system. The primary means of authentication is via the use of X.509 certificates. These certificates provide a Distinguished Name that identifies the subject of the certificate. This, then, would be a reasonable name to use for identify subjects thus authenticated.

A further consideration with X.509 certificate-based authentication is that of trusted certificate authorities. It is the case that the underlying security library must be configured with a list of CA public keys identifying those CAs which it will trust. It may be the case that this is information desired to be passed along to the users of a subject. The identity of the CAs which have signed a certificate are found in the certificate itself; it would therefore make sense to attach the certificate itself to the name. However, the Globus toolkit does not support retrieving full certificates.

We may also want to provide a simpler authentication mechanism commonly used by web sites today, a username/password scheme. Using this mechanism, it is reasonable to identify subjects using their assigned username (this would likely be their email address).

We can derive the following requirements, then, for our subject name:

· It must support multiple naming domains

· It must support tagging the subject name with additional information pertaining to this subject (a certificate, a source IP address, etc).

We define a subject name as follows. It is a 3-tuple:

(NameType, Name, AuthenticationInfo)

where NameType is “x509” for X.509 Distinguished Names, “md5-challenge” for username/password-based authentication.

Hm.

Let’s step back a moment. In the current system we are assuming that the user has some sort of identification certificate; an alternative authentication mechanism results in the generation of a new privately-created identity certificate, likely on a per-venue-server basis. In this event, the DN for that certificate will have all the information needed by the venue to identify the user, by backchaining through the certificate to the local authentication database that registered the creation of the certificate.

Hence, assuming that we do always require an identification certificate, we never need anything more than the DN to identify a user; hence, the DN is all that we need to provide throughout the system to represent a subject. As always, it is a concern that at some point in the future that we will break this assumption, and having hardwired DNs everywhere could cause problems. This argues for the same definition of subject names as the 3-tuple mentioned above, where NameType is currently always “x509”.

Naming: Roles and Operations

The access control mechanisms require a vocabulary for naming the allowed roles and operations to which these roles are assigned. Since all that the access control system does is match names, these names can be arbitrary and chosen by the subsystem to which they apply.

In [5] the authors define a strict scoping mechanism where each service defines the set of roles appropriate for that service. The name of a role is unique within that scope.

Role Assignment

An essential component of the RBAC model is the definition of the mappings between users and the roles that are assigned to them. The RBAC literature [7] defines formal mappings between the sets of users, roles, and permissions. Operationally, we need to be able to define the following mappings and make them available to the system in order to active the roles appropriate for a user:

· PA. Permission to role assignment relation

· UA. User to role assignment relation.

Note that each of these relations are many-to-many relations. For instance, a user may hold many roles, and a role may be held by many users.

The permission to role assignment relation will likely not be stored as a single object, as the permissions are distributed across multiple services and objects within the services. Rather, each object to which a permission applies will maintain the permissions for the object. The conceptual model still holds, however, and can be used (as the RBAC literature does) in formal reasoning about access control behavior.

User Database

The access control subsystem may maintain a database of all users which have been seen. The purpose of this database is to provide a means for the assignment of roles to users by administrators (such an assignment requires the administrator to know the user’s subject name). This database may be bootstrapped from an external list of users.

Note that there is not a fundamental requirement that this database be an integral part of an access control subsystem. However, it provides a solution to the problem of knowing a priori the names of the users for which an administrator may desire to grant permissions.

Operations

We can now discuss the general operation of the access control system. We define an “authentication point” which is where an incoming request is authenticated and roles are assigned for the subject associated with that incoming connection. At the authentication point the following actions are taken:

· The subject name for this connection is determined. This involves using the information passed up from the low-level communications library to determine the authenticated Distinguished Name associated with this connection.

· The subject name is looked up in the User Database, and added if not present.

· The UA (User to role assignment) mapping is consulted to determine the set of roles that are assigned to this user.

· These roles are stored in a location such that they are accessible to any code that wishes to make access control decisions based on the subject’s assigned roles. (In a distributed system, the equivalent operation here might be to create an attribute certificate asserting that the user is a member of these roles. In the Venue Server-based implementation, we can hold this information locally).

At this point, the service code has access to the authenticated identity associated with the incoming request as well as the set of roles that are associated with that request. It is straightforward to match this request with a set of permissions on a resource.

For instance, a the fine grain access control level, each file and directory in a server might associated with an access control tuple. In the RBAC/Web design document [8] we see the following:

The W3 ACL file is used to define which roles are permitted to perform which operation on which files:

.RBAC_acl

Each line of the W3 ACL file has the format:

<filename wildcard template> : <op list> : <role list>

Users which have any of the roles in <role list> in their ARS may perform all methods in <op list> on each file which satisfies <filename wildcard template>. The .RBAC_acl files reside on on each server where RBAC/Web is installed.
Design

The Access Control subsystem contains three major components: the user database, the role database, and the security manager.

In this section we will discuss the design of these components, including the mapping of their functionality to the Python-based implementation used in the Access Grid reference implementation.

Basic Types

We represent each of the main abstractions in the access control subsystem (subject and role) as instances of the Python classes Subject and Role.

Class Subject

The Subject class represents an authenticated user of the system. It has the following methods:

__init__(name, authentication_type, authentication_data)

Create a new Subject with the given name, authentication_type, and authentication.

Authentication_type is a string; valid values are defined in the access_control module:

· access_control.AUTH_X509

· access_control.AUTH_ANONYMOUS

Authentication_data is a piece of arbitrary data, intended to be of use to code associated with this subject’s authentication type.

GetName()

Return the name of this subject.

GetAuthenticationType()

Return the authentication type of this subject.

GetAuthenticationData()

Return the authentication data for this subject.

GetSubject()

Returns the standard subject name tuple of (authentication_type, name, authentication_data)

__repr__()

Return the string representation of this subject.

Class Role

The Role class represents a valid role in the system. A role is valid if it has an entry in the role database; instances of the Role class include a reference to the role database so that the membership in the role can be dynamically retrieved.

__init__(role_name, role_db)

Create a new role named role_name. The role_db argument refers to the role database to which this Role belongs.

GetName()

Returns the name of this role.

GetMembership()

Returns the membership of this role as a list of instances of the Subject class.

Role Manager

The role manager maintains the membership. It contains both a listing of all allowed roles, and a mapping from role name to the set of users contained in that role.

This class is intended to be used fairly freely. For instance, each Venue in a AG server may have its own RoleManager, initialized with a set of venue-specific roles and their allowed membership. A Venue Server would also have a RoleManager, perhaps only for server-wide administration, or perhaps to hold common roles through the venue. In the latter case, the Venue would define a subclass of the RoleManager that allows for cascaded lookups of roles.

An instance of the Role class represents each role that the system knows about. The RoleManager class maintains the set of Roles which have been registered, along with the mapping from Role to Subject.

In the reference implementation, the role database is exposed via the RoleManager class.

GetRoleList()

Returns a list of Role objects, one for each Role currently registered with the database.

RegisterRole(role_name)

Registers a new role with the database. Returns the Role object for this new Role.

DetermineRoles(subject)

Determine the roles for which this subject has access.

User Database

The Security Manager

The Security Manager provides the mechanism by which application code can determine if the currently-executing thread has the appropriate permissions. This mechanism is modeled after the (much more extensive) mechanism used in the Zope application server [9, 10]
The current security manager is obtained like this:

import SecurityManager

SecurityManager.getSecurityManager().validateUser(userList)

SecurityManager.getSecurityManager().validateRole(roleList)

Module SecurityManager

getSecurityManager()

Returns the SecurityManager instance that is valid for the currently-executing request in the current thread.

Class SecurityManager

__init__(roleManager)

SecurityManager constructor. The argument roleManger is an instance of the RoleManager class, to be used to determine the valid roles that the current user can hold.

ValidateUser(userList)

Returns true if the current user is present in userList. This list can contain instances of the Subject class or subject-name tuples of the form (authentication_type, name, authentication_data)

ValidateRole(roleList)

Returns a true value if the current user is a member of a role in roleList. This list can contain instances of the Role class or role names as Python strings.

Linkage to the Hosting Environment

The access control subsystem itself does not define the role membership: that is up to the application environment. However, since the construction of the security manager and the assignment of role membership happens at a rather deep level in the messaging environment, we must have a high-level mechanism to create a binding between the entities in the environment that are defining the role membership and this low-level enforcement mechanism.

We describe this linkage in the context of the pyGlobus-based hosting environment used in the AG 2.0 system.

In this hosting environment, the linkage between the SOAP-based messaging infrastructure and the application code is through a ServiceObject instance. Application code creates ServiceObject instances that are tied to Server objects, which in turn are tightly bound to individual SOAP network endpoints.

If we wish to have the methods bound to a ServiceObject be invoked with a security context that has roles defined by the application-layer logic, the service object is bound to an instance of the RoleManager class:

server = Server.Server(portnum)

service_obj = server.create_service_object()

service_obj.setRoleManager(roleManager)

The service object also is the point at which the Globus authorization callback is invoked. It is possible, then, to allow the service object to query the role manager directly (this is before the security manager has been configured, as the authorization callback is invoked before the connection is completed) to determine if the user is allowed to connect at all.

There are tradeoffs to this mechanism. On the one hand, it is potentially more secure, as the Globus runtime will not allow the connection to complete if the authorization callback returns a false value. On the other hand, it might be more user-friendly for the server to throw an exception that more clearly explains the problem – a failed connection can stem from several causes.

The actual creation of the security manager and its state is handled by the InvocationWrapper class. An instance of this class is created when a service callback is registered with a Service Object. The callback passed into the registration is saved in the wrapper instance, as well as the callback’s desire to receive old-style connection information in the first argument. The wrapper instance is stored in the Service Object’s function map, and invoked when a request is received by the service. The wrapper class defines a __call__ method that is invoked when the method is called by the messaging infrastructure.

It is this invocation method that creates a Security Manager instance for the thread, stores it in thread-local storage, registers the service object’s role manager with the Security Manager instance, invokes the actual callback, and clears the security manager state when the call returns.

A Simple Example

Following is an example of a service which uses the security manager to restrict access to only a single identity:

from AccessGrid.hosting import access_control

from AccessGrid.hosting.pyGlobus import ServiceBase

class C(ServiceBase.ServiceBase):

 def meth(self, x):

 sm = access_control.GetSecurityManager()

 ident = "/O=Grid/OU=Access Grid/OU=mcs.anl.gov/CN=Bob Olson"

 if not sm.ValidateUser([ident]):

 raise Exception("Invalid user!")

 return ('you sent', x)

Related Technology

The Security Assertion Markup Language (SAML) [11] defines syntax and semantics for assertions about authentication, attributes, and authorization. SAML would provide a mechanism by which one could define role-membership assertions, for instance, and pass them between communicating entities in the system. In the current model for the architecture of the Access Grid, however, this functionality is not necessary: we can define the scope of role membership to be per-Venue Server, and maintain that state locally within the Venue Server.

Similarly, Shibboleth [12] defines an architecture for cross-site sharing of authentication and authorization information. It may be the case that Shibboleth would be a reasonable architecture to implement for the purpose of define cross-Venue Server authentication and authorization sharing mechanisms. However, we currently plan to utilize PKI mechanisms to accomplish this goal. Interoperation with Shibboleth (to enable interoperation with campus H.323 or SIP infrastructures, for instance) may be a future goal.

 Bibliography

http://www.ietf.org/rfc/rfc2828.txt1.
Shirey, R., RFC 2828: Internet Security Glossary. 2000, Network Working Group.
2.
Foster, I., et al. A Security Architecture for Computational Grids. in 5th ACM Conference on Computer and Communications Security Conference. 1998.

3.
Ferraiolo, D.F., J.F. Barkley, and D.R. Kuhn, A role-based access control model and reference implementation within a corporate intranet. ACM Transactions on Information and System Security, 1999. 2(1): p. 34-64.

4.
OASIS eXtensible Access Control Markup Language (XACML). 2002.http://www.oasis-open.org/committees/xacml/w
5.
Yao, W., K. Moody, and J. Bacon. A model of OASIS rolebased access control and its support for active security. in Sixth ACM Symposium on Access Control Models and Technologies. 2001. Chantilly, Virginia, United States.

6.
Covington, M., M. Moyer, and M. Ahamad. Generalized role-based access control for securing future applications. in 23rd National Information Systems Security Conference. 2000. Baltimore, MD.

7.
Sandhu, R.S., Role-Based Access Control, in Advances in Computers, M. Zerkowitz, Editor. 1998, Academic Press.

8.
Barkley, J., Design Documentation for Role Based Access Control for the World Wide Web (RBAC/Web). 1997.

9.
Pelletier, M. and A. Latteier, The Zope Book. 1st ed. 2001: New Riders Publishing.

10.
Zope SecurityManager.http://www.zope.org/Members/jim/ZopeSecurity/SecurityManager
11.
Hallam-Baker, P. and E. Maler, Assertions and Protocol for the OASIS Security Assertion Markup Language (SAML). 2002, OASIS.http://www.oasis-open.org/committees/security/docs/
12.
Erdos, M. and S. Cantor, Shibboleth-Architecture DRAFT v05. 2002.http://shibboleth.internet2.edu/docs/draft-internet2-shibboleth-arch-v05.pdf

� See � HYPERLINK "http://bugzilla.mcs.anl.gov/globus/show_bug.cgi?id=312" ��http://bugzilla.mcs.anl.gov/globus/show_bug.cgi?id=312�, marked as an enhancement request.

Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.

