



Venue Client Design 2.0
Futures Laboratory

Argonne National Laboratory

9700 S. Cass Ave.

Argonne, IL 60439

4/23/2003
Introduction

The Venue Client is an Access Grid user’s interface to Virtual Venues, allowing users to enter Venues and interact with their contents.  Support to share data, services, and applications as well as exchanging text-based messages with other participants in the Virtual Venue is provided by the interface.  The software also gives users the ability to manage Access Grid node resources providing collaborative capabilities such as microphones, cameras, and so forth.  Additionally, by including a navigation interface for the Virtual Venue space, the Venue Client enables users to travel from one Venue to another.

	
	Requirement
	Description

	Maintain coherence with the Venue
	Preserves contents and state of the Venue to display for users

	Node Startup
	Automatically launch default node configuration to control and use media tools.

	Shared data support
	Allows Venue participants to add, delete, open, and save shared data.

	Shared services support
	Presents an interface to add and use shared services

	Shared application support
	Provides an interface for associating data types with applications.  Dereferences the data type/application associations to launch the appropriate application.  Saves data type/application associations in user configuration

	Text communication
	Gives the ability to display short text messages visible for Venue participants 

	User Representation 
	Associate Access Grid users with profile information.

	Navigation interface
	Connects Venues in the Venue space, allowing users to move between Venues

	Follow/Lead
	Permits users to follow/lead each other through the Venue space


Design Overview
The Venue Client is made up of two high-level pieces, Node Management software and Venue Client software. The node management software enables users to utilize resources they have to collaborate with other users.  For more information about the node management software, see the AG Node Management Design document.  It is possible to have Venue Client software that is independent of node management software, but in this case the user has very limited capabilities for collaboration.  It is more often the case that users run the entire Venue Client software suite – thus creating a full personal AG node – then use the ability of the node management software to remotely manage a node.

2.1 Technology Decisions

The Venue Client will be implemented in python with user interface components developed using wxPython.  In order to communicate with the Virtual Venues, and Node Services, SOAP technology will be used to enable developers to build independent clients, using their technology of choice.

2.2 Abstractions

2.2.1 Venue Client Overview
An overview of the Venue Client class diagram is illustrated in Figure 1 and is described in the sections that follow.

The VenueClient class includes information about the Venue it is connected to and provides a programmatic interface to the Access Grid.  The Venue distributes events every time its state is changing (data is added, a new participant entered, and so forth) and Event Clients that are connected to the venue event channel will receive those events.  The state of the venue is included in the VenueState object, which will be updated according to received events.  To communicate with the Venue, the VenueClient calls methods in the Venue SOAP interface.  Profile information about the user is also incorporated in the VenueClient as the ClientProfile object and is made available to everybody connected to the Venue.  Each client also has a TextClient, a simple text chat for writing messages to everybody in the Venue.
Apart from exchanging information with the Venue, the VenueClient also initiates the AGNodeService, responsible for controlling media tools available for the client.  If the Venue Client is launched in personal node mode, the default node configuration is automatically used.  The default node configuration is initially set to use one machine (so called PIG node) for both audio and video, but this configuration can be changed by using the Node Management software or the Node Setup Wizard.  Changes to the node after program startup can be made from the Node Management software, for more information please read the Node Management Design document.  
By inheriting from ServiceBase, the VenueClient can create a service using the Server class and export methods, consequently be used as a SOAP interface, allowing distributed VenueClients to communicate with each other.  This is currently used for personal data exchange between clients and clients’ DataStores.  The client SOAP service is also used for follow and lead functionalities. 

[image: image1.emf]Venue

VenueClient

1

Event

Client

Venue

State

VenueClientUI

1

1

0..n

0..n

1

1

AGNode

Service

1

ServiceBase

Server

1

1

ClientProfile

1

1

1

0..n

VenueClientEvent

Subscriber

DataStore

1

1

Text

Client

1

1


Figure 1 Venue Client Class Diagram (see Section 4 for UML details)
2.2.2 Venue Client User Interface Classes Overview
The VenueClientUI class controls all graphical user interface components, illustrated in Figure 2.  It has a VenueClient object to communicate with the Venue and is registered as a subscriber to events.  Every time the Venue changes, events are distributed to the VenueClient and each event subscriber is notified of the change in Venue state and the VenueClientUI can do appropriate updates to the user interface.  The VenueClientFrame is the main frame of the user interface and includes the Menubar, Statusbar, VenueAddressBar, and panels for showing venue state.  The VenueListPanel contains a list of exits to other venues, a simple text chat is displayed in the TextClientPanel, and the ContentListPanel includes information about venue state such as current participants, data, services, and applications.

[image: image2.emf]VenueClientUI

VenueClientFrame

VenueListPanel VenueAddressBar TextClientPanel ContentListPanel

ExitPanel

VenueClient

EventSubscriber

Certificate

ManagerWXGUI

Menubar Statusbar

PersonalNodeManager

NodeManagementClient

Frame


Figure 2 Venue Client User Interface Class Diagram (see Section 4 for UML details)
2.2.3 Descriptions Overview
Objects are sent between components as different descriptions, all inherits from the base class ObjectDescription, see figure 3.

[image: image3.emf]ObjectDescription

ServiceDescription

VenueDescription

ConnectionDescription

DataDescription

StreamDescription

ApplicationDescription


Figure 3 Class Diagram for Descriptions (see Section 4 for UML details)
2.3 Coherence

The VenueClient class represents an interface for the Venue it is connected to and is responsible for presenting the contents of that specific Venue.  State information includes the name, description, URL, and unique id of the Venue, current participants, connections to other Venues, event location, text location, and applications, and is encapsulated in the VenueState object.  When a client initially enters the venue, the user interface is updated according to state found in the VenueState object.
When the state of the Venue changes while the client is connected to the venue, for instance when a new participant joins the Venue, an event is distributed through the EventClient.  By registering callback methods to the EventClient, the VenueClient handles events and updates the VenueState object accordingly.  Interactions with users are made via the VenueClientUI class, which is an event subscriber to the VenueClient and implements event callback methods to trigger appropriate user interface updates whenever an event occurs.  Following sequence diagram, Figure 4, shows one example of how calls propagate in order to change and maintain Venue state and finally update the user interface, in this particular case a new participant enters a Venue.  Figure 5 shows the same action in more details.

[image: image4.emf]VenueClientUI VenueClient Venue

EnterVenue(url)

Enter(clientProfile)

AddUserEvent(clientProfile)

EventService

DistributeEvent(uniqueId, event.ENTER)

AddUserEvent(clientProfile)


Figure 4 Sequence diagram – New user enters Venue

[image: image5.emf]Venue

Client

Frame

callAddress(evt)

VenueClient

En

t

e

r

Venue

(

u

r

l, 

back

)

HaveValidProxy()

Client

Profile

Cach

Certificate

Manager

AccessGrid.

VenueClient

Access

Control

GetSecurityManager()

Subject

GetSubject()

Security

Manager

GetName()

Capabilities GetCapabilities()

VenueState, privateId, StreamDescription[]

Enter(profile)

Event

Client

EventClient(privateId, venueState.eventLocation,

venueStateuniqueId)

RegisterCallback(event, callback)

start()

Send(ConnectEvent(venueState.uniqueId, privateId))

Scheduler

HeartbeatTask AddTask(heartbeat, 5)

start()

SetStreams(StreamDescription[])

VenueState

clients.values()

data.values()

services.values()

applications.values()

connections.values()

SetTitle

(venueState.name,

venueState.description)

AddParticipant(client)

AddData(data)

AddService(service)

AddApplication(app)

AddVenueDoor(app)

SetTextLocation()

FillInAddress(none, url)

__SetHistory

(venueUri, back)

SetIdentity(profile)

EnterVenue(url, back

warnings,enterSuccess)

PreEnterVenue(url,

back)

SOAP

Interface

Data

Store

SetEventDistributor(eventClient, uniqueId)

url GetUploadDescriptor()

Text

Client

TextClient(profile, textLocation)

Connect(uniqueId, privateId)

Upda

t

ePr

o

fil

e

(

c

li

en

t)

HaveValidProxy()

DetermineSubjectRoles()

ShowM

enu()

EnableAppMenu(flag)

SetUnicastEnabled(flag)

LeadFollowers()


Figure 5 Detailed enter venue sequence diagram

[image: image6.emf]VenueClientFrame

Exit(event)

VenueClient

OnExit()

PersonalNode

Manager

stop()

AccessGrid.

VenueClient

ExitVenue()

Event

Client

stop()

Send(ClientExitingEvent(uniqueId, privateId))

Task

stop()

Soap

PROXY

Exit(privateId)

__InitVenue

Data__()

GSIHTTP

Transfer

Server

ShutDown()

ExitVenue returns void

StopServices()

SetStreams([])

Destroy()

Text

Client

Disdonnect(uniqueId, privateId)

stop()

stop()

ShutDown()

Server

Data

Store


Figure 6 Exit venue sequence diagram
2.4 Node Startup

If the Venue Client is started in personal node mode, the default node configuration will be loaded automatically.  Initially, the default node configuration is set to run all media tools on the machine where the Venue Client is started (so called PIG node).   However, this configuration can be changed from the Node Management software or the Node Setup Wizard.  

The class diagram in Figure 7 includes the PersonalNodeManager, started when the Venue Client runs in personal node mode.  The PersonalNodeManager starts an AGNodeService and connects to AGServiceManagers running at locations described in the default node configuration, see sequence diagram in Figure 8.  When the node is started, the PersonalNodeManager sets the node service URL in the client by calling the setSvcCallback parameter, the node can after startup then be controlled via the Node Management window from the Venue Client.  


[image: image7.emf]Venue

VenueClient

1

Event

Client

Venue

State

VenueClientUI

1

1

0..n

0..n

1

1

AGNode

Service

1

ServiceBase

Server

1

1

ClientProfile

1

1

1

0..n

VenueClientEvent

Subscriber

DataStore

1

1

Text

Client

1

1

PersonalNode

Manager


Figure 7 Personal Node Manager; Class Diagram

[image: image8.emf]PersonalNode

Manager

StartServiceManager()

VenueClientUI

Persona

l

NodeManage

r

(

se

t

SvcCa

ll

back

, 

debugMo

de

)

Run()

StartNodeService()

InitEventObjects()

Personal

NodeManager

ReadServiceManagerURL

ReadNodeServiceURL

ServiceManagerURL

NodeServiceURL

setSvcCallback(NodeServiceURL)


Figure 8 Personal Node Manager; Sequence Diagram
2.5 Shared Data Support
Data is represented in the Venue in two different ways; either belonging to the Venue or owned by a participant or node in the Venue.  Venue data will stay in the Venue until removed while personal data will be carried around by the user who owns it, only present when the user is connected to the Venue.  However, both types of data can be accessed in the same way when in the Venue, available actions includes add, delete, open, and save data as well as viewing data properties.  Data is represented by DataDescriptions, distinguished by their type parameter. Personal data has type set to the owner’s public id while the value for Venue data equals none, see section 3.0 about Specifications.  
2.5.1 Shared Venue Data

Shared data is stored in the DataStore owned by the Venue, explained in the DataStore Design Document.  The sequence diagram for adding Venue data is illustrated below in figure 9.

[image: image9.emf]VenueClientUI VenueClient EventClient

GSIHttpUploadFiles(url, files, progressCB)

AddDataEvent(dataDescription)

Send(AddDataEvent)

AddDataEvent(dataDescription)

DataStore

Send(UpdateDataEvent)

UpdateDataEvent(dataDescription)

UpdateDataEvent(dataDescription)

Venue

AddData(data

Descriptoin)

UpdateData(data

Descriptoin)


Figure 9 Sequence diagram – Add Venue Data
2.5.2 Shared Personal Data

Each VenueClient has a DataStore for personal data storage and a SOAP interface available to make that data accessible to other clients.  Consequently, clients are calling other clients SOAP methods, and not the venue, to request personal data information.  The VenueClient is responsible for telling the venue when changes are made to its personal data, as a result the venue distributes correct data events to all clients.  When receiving data events, the VenueClient and VenueClientUI can, by examining the type parameter in the obtained DataDescription, update the user interface appropriately.  Figure 10 demonstrates the sequence of actions performed for adding personal data.

[image: image10.emf]VenueClientUI

AddDataEvent(Data

Description)

EventClient

DistributeEvent(uniqueId,

event.ADD_DATA)

VenueClient

AddDataEvent(Data

Description)

UploadLocalFiles(files,

destinguishedName,

publicId)

DataStore

SendEvent(event)


Figure 10 Sequence Diagram – Add personal data
2.6 Shared Services Support

NEEDS TO BE SPECIFIED
2.7 Shared Application Support

The VenueClient user interface should provide comfortable, integrated access to installed shared applications.  Two primary uses of applications are supported:

· Start a new shared application session in a venue

· Join an existing shared application session

A shared application will consist of some number of files with a single entry point.  Upon installation, these files will be placed in a subdirectory of the SystemConfigDir/applications directory, such as SystemConfigDir/applications/SharedBrowser.  Also, an association to the main entry point of the application will be made in the local mimeType database to allow the venue client to execute the appropriate client for an existing shared application instance.

Applications are described by an accompanying .app file, in ConfigParser format, as follows:


[application]


name = “app name”


description = “app description”


mimetype = “application/mimetype”

The UI will provide the following fnctionality:
Provide interface for adding applications to the Venue
Users can add applications to the venue from their pool of installed shared applications.  Applications are described in their accompanying .app file sufficiently to add them to the venue.  
The interface for adding an application to a venue includes selecting only the application to add.

Provide interface for user to associate mimetypes with applications

This interface should be similar to that in a web browser.  The user should be able to specify, for each mimetype, one shared application.

Launch the appropriate application for a given mimetype

When a user chooses to join a shared application session in a Venue, the client will examine the mimetype associated with the session, dereference the mimetype to the application specified by the user, and start the application.  If the user has not specified an application for the mimetype, the Venue client will prompt the user to specify one, launching the application when the association has been successfully completed.

The Venue client will start the application with the following command-line:


executable <appObjectUrl>

where appObjectUrl is the URL to the application object web service.
Interactions between the application client and the application object are outlined in the sequence diagram below.


[image: image11.emf]ApplicationClient

Join

privateId

GetDataChannel

GetData

appData

VenueClient

ApplicationObject

execute client

appObjectUrl

application executes

channelId,

eventServiceLocation

EventClient

RegisterCallback


Figure 11 Sequence diagram – Shared applications
2.8 Text Communication

Users of the Venue are given the ability to display text messages, visible for all participants of the Virtual Venue, by using the TextClient.
Figure 12 shows how calls are made between two clients in the Venue.  Initially, the TextClient is created in the VenueClient class and a ConnectEvent is sent to notify that the new user has entered the text communication channel, now able to distribute and react on text events.  After creating the TextClient, the first user decides to write a text message, and calls the Input method on the TextClient.  The second user’s ProcessNetwork thread reacts on the call and outputs the text by using the callback sent to the TextClient by the VenueClientUI. 

[image: image12.emf]TextClient

Panel

TextClient

Panel

TextClient

TextClient

User 1 User 2

TextClient(profile, textLocation) TextClient(profile, textLocation)

Start thread

ProcessNetwork

Start thread

ProcessNetwork

Connect(uniqueId, privateId)

Input(textString)

callback(text)

Connect(uniqueId, privateId)

Disconnect(uniqueId, privateId)

Stop thread

ProcessNetwork

Venue

Client

Venue

Client

Venue

ClientUI

Venue

ClientUI

RegisterCallback(callback)

RegisterCallback(callback)


Figure 12  Sequence diagram – Text communication
2.9 User Representation
In order to represent users throughout the AccessGrid, each VenueClient includes a ClientProfile object.  The ClientProfile information is sent to the Venue when a user first enters, as illustrated in figure 4 and 5, and is thereby included in the VenueState.  By doing so, the client profile information is made public to each participant in the Venue.   The client profile is distinguished by its public id, more information about Specifications is found in section 3.0.
2.10 Navigation Interface

Each Venue is associated with a URL address, specifying where the Venue is located, allowing Venue Clients to connect and communicate with the Venue using its SOAP interface.  

When a Venue is created, the option to set connections to other Venues is made available.  The connected Venues are contained in the VenueState object in VenueClient as a list of ConnectionDescriptions that includes name, id, description, and a url address, see section 3.0 about Specifications.  This architecture makes it possible for Venue creators to build their own Venue space, and for users to traverse between connected Venues in this space using the Venue Client.
2.11 Follow/Lead
A Venue client is represented in a Venue by its ClientProfile.  Each Venue client runs a SOAP Server, the URL of which is contained in its ClientProfile object.  One user can, then, select a second user in the Venue and make calls to its SOAP server.  Calls to arrange follow/lead relationships between clients are made via this SOAP interface.

When a client enters a Venue, it messages its followers to enter the same Venue over the SOAP interface.  A follower only responds to requests made by its registered leader.

Interactions between Venue clients during follow/lead are outlined in the following sequence diagrams.


[image: image13.emf]AuthorizeLead( followerProfile )

return

LeadResponse( leaderProfile, authResponse )

RequestLead( followerProfile )

[optional] CancelLead

New thread

Performs whatever local authorization is

necessary and then calls SendLeadResponse

to respond to the requesting client.  The

optional CancelLead call could cancel the

request, and this method must deal with

that.

VenueClient1 VenueClient2


Figure 13 Sequence diagram - Follow

[image: image14.emf]AuthorizeFollow(leaderProfile )

return

FollowResponse( followerProfile, authResponse )

RequestFollow( leaderProfile )

[optional] CancelFollow

New thread

Performs whatever local authorization is

necessary and then calls SendFollowResponse

to respond to the requesting client.  The

optional CancelFollow call could cancel the

request, and this method must deal with

that.

VenueClient1 VenueClient2


Figure 14 Sequence diagram - Lead
2.12 Error Reporting Tool

If an error occurs in the software, the ErrorDialog is displayed with an option to send an error report.  If the user decides to send an error report, a new dialog, BugCommentDialog, is opened to allow a comment about the error to be attached to the report.  This comment, together with the VenueClient.log file, is then sent to the bug-tracking system, Bugzilla, used by the Access Grid development team for software improvement.  To limit the message size, only the last 20 Kbytes of the log file are submitted.  The Utilities class uses urllib (http://www.python.org/doc/current/lib/module-urllib.html) to send data over the World Wide Web.  Finally, a wxMessageDialog is opened to thank the user for taking the time to report the error.  Following sequence diagram, see Figure 15, shows the flow of actions between classes involved.  


[image: image15.emf]BugReport

Comment

Dialog

ErrorDialog

wxMessage

Dialog

Utilities

BugReportCommentDialog

(parent, text, title)

SubmitBug(comment)

wxMessageDialog(parent, text, title, style)

Bug report gets sent to

Bugzilla

VenueClientUI

ErrorDialog(parent, text, title)

GetLogText

(maxSize)


Figure 15 Sequence diagram for reporting an error
Specifications

Venue Client

	Attribute
	Descriptions

	pendingLeader : ClientProfile
	Profile of user who’s been requested to lead this node, but hasn’t confirmed

	leaderProfile : ClientProfile
	Profile of user leading this client

	pendingFollowers : ClientProfile []
	List of profiles of users who’ve been requested to follow this client, but haven’t confirmed

	followerProfiles : ClientProfile []
	List of profiles of users who are following this client

	appAssociations : dict()
	Dictionary of mimetype/executable associations

key is mimetype, value is executable name


	Method Signature
	Description

	Methods to maintain coherence with the Venue

	EnterVenue(self, URL)
	Puts the client into the Venue located at specified URL 

	ExitVenue(self)
	Removes the client from the Venue

	AddUserEvent(self, data)
	Responds to ENTER events 

	RemoveUserEvent(self, data)
	Responds to EXIT events 

	ModifyUserEvent(self, data)
	Responds to MODIFY_USER events 

	AddDataEvent(self, data)
	Responds to ADD_DATA events 

	UpdateDataEvent(self, data)
	Responds to  UPDATA_DATA events 

	RemoveDataEvent(self, data)
	Responds to REMOVE_DATA events 

	AddServiceEvent(self, data)
	Responds to ADD_SERVICE events 

	RemoveServiceEvent(self, data)
	Responds to REMOVE_SERVICE events 

	AddApplicationEvent(self, data)
	Responds to ADD_APPLICATION events 

	RemoveApplicationEvent(self, data)
	Responds to REMOVE_APPLICATION events 

	AddConnectionEvent(self, data)
	Responds to ADD_CONNECTION events 

	RemoveConnectionEvent(self, data)
	Responds to REMOVE_CONNECTION events 

	SetConnectionsEvent(self, data)
	Responds to SET_CONNECTIONS events 

	Method to start venue client web service (presently used only for Follow/Lead)

	CreateVenueClientWebService(self)
	Creates SOAP server 

	Methods to support Follow

	Follow(self, leaderProfile)
	Encapsulates the call to tell another client to lead this client

	RequestLead ( self,  followerProfile )
	RequestLead accepts requests from other clients who wish to be lead

	AuthorizeLead ( self,  clientProfile )


	Authorize requests to lead this client. Subclasses should override this method to perform their specific authorization, calling SendLeadResponse thereafter.

	SendLeadResponse( self, clientProfile, response )
	SendLeadResponse responds to requests to lead other Venue clients.

	LeadResponse ( self, leaderProfile, isAuthorized )


	LeadResponse is called by other Venue clients to respond to lead requests sent by this client. A UI client would override this method to give the user visual feedback to the Lead request.

	Methods to support Lead

	Lead(self, followerProfile)
	Encapsulates the call to tell another client to follow this client

	RequestFollow ( self,  leaderProfile )


	RequestFollow accepts requests for other clients to lead this client

	AuthorizeFollow ( self,  leaderProfile )


	Authorize requests to lead this client. Subclasses should override this method to perform their specific authorization, calling SendFollowResponse thereafter.

	SendFollowResponse( self, leaderProfile,response )
	This method responds to requests to be led by other Venue clients.

	FollowResponse ( self, followerProfile, isAuthorized )


	FollowResponse is called by other Venue clients to respond to follow requests sent by this client. A UI client would override this method to give the user visual feedback to the Follow request.

	Methods to support Shared Applications

	GetInstalledApps() : ApplicationDescription [ ]
	Return a list of installed applications


VenueClient (UI)

	Method Signature
	Description

	Methods to support Shared Applications

	StartApp(appDescription)
	Create an application in the venue and join (start an appclient against) it

	JoinApp(appDescription)
	Join the specified application (i.e. start an appclient against it)

	RemoveApp(appDescription)
	Remove the specified application


VenueState
	Attribute
	Description

	uniqueId : int   
	

	name: string   
	Name of the Venue

	description : string           
	Description of the Venue

	uri : string
	Location to where Venue SOAP calls should be made

	eventLocation : string
	Host and port where the EventService can be found

	textLocation : string
	Host and port where the TextService can be found

	connections: dict()
	Venues this Venue is connected to, key is url and value is ConnectionDescriptions

	users : dict()
	Users in the Venue, key is public id and value is ClientDescriptions

	nodes : dict()
	Nodes in the Venue, key is public id and value is ClientDescriptions

	data : dict()
	Data in the Venue, both personal and Venue. Key is name and value is DataDescriptions

	clients : dict()
	?

	Applications : dict()
	Applications in the Venue. 


ClientProfile
	Attribute
	Description

	techSupportInformation : string    
	????

	profileType : string   
	A user can either be of type ‘NODE’ or ‘USER’

	email : string           
	Users email address

	name : string
	Users name

	phoneNumber : string
	Users phone number

	icon : IconType
	Users icon

	VenueClientURL : string
	Url pointing to where the client’s web service is located

	[key] publicId : string
	The public id is a client’s unique id

	privateId : string
	????

	distinguishedName : string
	Destinguished name associated with globus grid proxy

	capabilities : Capability [ ]
	List of user capabilities

	homeVenue: string
	The Venue url that will act as the default Venue url

	location : string
	Where is the users physical location

	defaultProfile : dict()
	Configuration values of initial client profile


	Method signature
	Description

	ClientProfile(self, fileName = None)
	Creates a client profile, if fileName is None this is the default profile

	Load(self, fileName)
	Load this ClientDescription with information from a profile saved with path filename

	CheckProfile(self)   
	Check to see if this profile contains correct information

	Save(self, fileName)
	Save this profile into a configuration file at location filename

	IsDefault(self)
	Check to see if this client profile has been changed based on the default profile


ObjectDescription

	Attribute
	Description

	 name : string
	The name of the object

	 description : string
	Description of the object

	 [key] url : string
	Address where the object is located

	Id : float 
	Unique id


DataDescription

	Attribute
	Description

	 name : string
	File name, parameter inherited from ObjectDescription

	 description : string
	Description of the data, parameter inherited from ObjectDescription

	 [key] uri : string
	Address where the data is located, parameter inherited from ObjectDescription

	 id : float  
	Unique id, Inherited from ObjectDescription

	type : string
	Used to distinguish between different data. Includes owners public id, else None if the data belongs to a Venue

	owner : string
	Distinguished name of the user who created the DataDescription.

	size : int
	Size of data

	checksum : float ?????
	Checksum for data


ConnectionDescription

	Attribute
	Description

	 name : string
	The name of the connected Venue, parameter inherited from ObjectDescription

	 description : string
	Description of the Venue, parameter inherited from ObjectDescription

	 [key] url : string
	Address where the data is located, parameter inherited from ObjectDescription

	Id : float 
	Unique id, Inherited from ObjectDescription


Event

	Attribute
	Description

	eventType : string
	Specifies the type of the event, available events includes;

ENTER, EXIT, ADD_USER, MODIFY_USER, ADD_DATA, MODIFY_DATA, REMOVE_DATA, ADD_SERVICE, REMOVE_SERVICE, ADD_APPLICATION, REMOVE_APPLICATION, ADD_CONNECTION, REMOVE_CONNECTION, SET_CONNECTIONS, UPDATE_VENUE_STATE

	venueId : string
	Contains information of what venue this event belongs to 

	data : string
	Data being sent with the event


	Method signature
	Description

	Event(self, eventType, venueId, data)
	Creates an event


4.0 Notes

Consideration should be taken to move non user interface code from the VenueClientUI to the VenueClient in order to separate user interface from implementation, examples of components that might belong in VenueClient are the personalNodeManager, see figure 7.
UML 

Figure 16 describes UML symbols used for class diagrams in this document.


[image: image16.emf]Aggregation ("has a")

Composition ("has a")

Subclass("is a")

Composition and

Aggregation are nearly

identical:  In Composition,

the target object cannot

exist independent of the

other; in Aggregation, the

target object can exist

independently

SOAP Proxy


Figure 16 UML symbols






Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.


_1123594535.vsd
�

�

�

�

�

Venue
Client
Frame�

callAddress(evt)�

�

VenueClient�

EnterVenue(url, back)�

HaveValidProxy()�

Client
Profile
Cach�

__SetHistory
(venueUri, back)�

�

SOAP
Interface�

Certificate
Manager�

SetIdentity(profile)�

EnterVenue(url, back
warnings,enterSuccess) �

�

Data
Store�

AccessGrid.
VenueClient�

Access
Control�

GetSecurityManager()�

Subject�

GetSubject()�

�

Security
Manager�

GetName()�

SetEventDistributor(eventClient, uniqueId)�

url GetUploadDescriptor()�

Capabilities GetCapabilities()�

VenueState, privateId, StreamDescription[] Enter(profile)�

Event
Client�

EventClient(privateId, venueState.eventLocation, venueStateuniqueId)�

RegisterCallback(event, callback)�

start()�

Send(ConnectEvent(venueState.uniqueId, privateId))�

Scheduler�

HeartbeatTask AddTask(heartbeat, 5)�

start()�

Text
Client�

SetStreams(StreamDescription[])�

�

VenueState�

clients.values()�

data.values()�

services.values()�

applications.values()�

connections.values()�

ShowMenu()�

EnableAppMenu(flag)�

SetUnicastEnabled(flag)�

LeadFollowers()�

SetTitle
(venueState.name, venueState.description)�

AddParticipant(client)�

AddData(data)�

AddService(service)�

AddApplication(app)�

AddVenueDoor(app)�

SetTextLocation()�

FillInAddress(none, url)�

�

PreEnterVenue(url, back)�

TextClient(profile, textLocation)�

Connect(uniqueId, privateId)�

UpdateProfile(client)�

HaveValidProxy()�

DetermineSubjectRoles()�


_1126939934.vsd
�

�

�

�

�

�

1�

�

Venue�

VenueClient�

�

�

1�

ServiceBase�

Event
Client�

Server�

1�

Venue
State�

VenueClientUI�

�

1�

�

�

�

�

�

ClientProfile�

1�

1�

1�

0..n�

0..n�

1�

�

1�

1�

0..n�

1�

AGNode
Service�

VenueClientEvent
Subscriber�

DataStore�

1�

1�

Text
Client�

1�

1�

PersonalNodeManager�


_1126942156.vsd
�

�

�

�

�

�

�

�

�

�

PersonalNode
Manager�

Run()�

�

StartNodeService()�

�

�

InitEventObjects()�

VenueClientUI�

PersonalNodeManager
(setSvcCallback, debugMode)�

�

�

StartServiceManager()�

ReadServiceManagerURL�

ReadNodeServiceURL�

ServiceManagerURL�

NodeServiceURL�

setSvcCallback(NodeServiceURL)�

�

Personal
NodeManager�


_1123595929.vsd
�

�

�

�

�

VenueClientFrame�

Exit(event)�

�

�

VenueClient�

OnExit()�

PersonalNode
Manager�

stop()�

ExitVenue()�

AccessGrid.
VenueClient�

�

Event
Client�

Task�

stop()�

Send(ClientExitingEvent(uniqueId, privateId))�

stop()�

Soap
PROXY�

Exit(privateId)�

__InitVenue
Data__()�

�

�

GSIHTTP
Transfer
Server�

ShutDown()�

ExitVenue returns void�

StopServices()�

SetStreams([])�

Destroy()�

Text
Client�

Disdonnect(uniqueId, privateId)�

stop()�

stop()�

ShutDown()�

Server�

Data
Store�


_1126615950.vsd
�

�

�

�

�

VenueClientUI�

UploadLocalFiles(files, destinguishedName, publicId)�

DataStore�

SendEvent(event)�

AddDataEvent(Data
Description)�

EventClient�

DistributeEvent(uniqueId, event.ADD_DATA)�

VenueClient�

AddDataEvent(Data
Description)�


_1123581006.vsd
�

�

�

�

�

�

VenueClientUI�

VenueClientFrame�

VenueListPanel�

VenueAddressBar�

TextClientPanel�

ContentListPanel�

ExitPanel�

�

VenueClient
EventSubscriber�

�

Certificate ManagerWXGUI�

Menubar�

Statusbar�

PersonalNodeManager�

�

NodeManagementClientFrame�

�


_1123590881.vsd
�

�

�

�

�

�

1�

�

Venue�

VenueClient�

�

�

1�

ServiceBase�

Event
Client�

Server�

1�

Venue
State�

VenueClientUI�

�

1�

�

�

�

�

�

ClientProfile�

1�

1�

1�

0..n�

0..n�

1�

�

1�

1�

0..n�

1�

AGNode
Service�

VenueClientEvent
Subscriber�

DataStore�

1�

1�

Text
Client�

1�

1�


_1123582991.vsd
�

�

�

�

�

TextClient
Panel�

TextClient
Panel�

TextClient�

TextClient�

User 1�

User 2�

RegisterCallback(callback)�

TextClient(profile, textLocation)�

TextClient(profile, textLocation)�

Start thread ProcessNetwork�

Start thread ProcessNetwork�

Connect(uniqueId, privateId)�

Input(textString)�

callback(text)�

Connect(uniqueId, privateId)�

Disconnect(uniqueId, privateId)�

Venue
Client�

Stop thread ProcessNetwork�

Venue
Client�

Venue
ClientUI�

Venue
ClientUI�

RegisterCallback(callback)�


_1112426465.vsd
�

�

ApplicationClient�

�

Join�

privateId�

GetDataChannel�

GetData�

appData�

VenueClient�

ApplicationObject�

execute client�

appObjectUrl�

application executes�

channelId, eventServiceLocation�

EventClient�

RegisterCallback�


_1117374443.vsd
�

�

�

�

�

�

BugReport
Comment
Dialog�

�

ErrorDialog�

�

wxMessage
Dialog�

Bug report gets sent to Bugzilla�

Utilities�

BugReportCommentDialog
(parent, text, title)�

SubmitBug(comment)�

wxMessageDialog(parent, text, title, style)�

�

VenueClientUI�

ErrorDialog(parent, text, title)�

GetLogText
(maxSize)�

�


_1123573079.vsd
�

�

�

�

�

�

ObjectDescription�

ServiceDescription�

VenueDescription�

ConnectionDescription�

DataDescription�

�

�

�

�

�

StreamDescription�

ApplicationDescription�

�


_1116243470.vsd
�

�

Aggregation ("has a")�

Composition ("has a")�

Subclass("is a")�

Composition and Aggregation are nearly identical:  In Composition, the target object cannot exist independent of the other; in Aggregation, the target object can exist independently�

SOAP Proxy�


_1110111636.vsd
�

�

�

�

AuthorizeFollow(leaderProfile )�

return�

FollowResponse( followerProfile, authResponse )�

RequestFollow( leaderProfile )�

[optional] CancelFollow�

New thread�

Performs whatever local authorization is 

necessary and then calls SendFollowResponse 

to respond to the requesting client.  The

optional CancelFollow call could cancel the

request, and this method must deal with 

that.�

VenueClient1�

VenueClient2�


_1111580748.vsd
�

�

�

�

�

VenueClientUI�

VenueClient�

Venue�

EnterVenue(url)�

�

Enter(clientProfile)�

�

AddUserEvent(clientProfile)�

EventService�

�

DistributeEvent(uniqueId, event.ENTER)�

�

AddUserEvent(clientProfile)�


_1110111425.vsd
�

�

�

�

VenueClient1�

RequestLead( followerProfile )�

AuthorizeLead( followerProfile )�

return�

LeadResponse( leaderProfile, authResponse )�

[optional] CancelLead�

New thread�

Performs whatever local authorization is 

necessary and then calls SendLeadResponse 

to respond to the requesting client.  The

optional CancelLead call could cancel the

request, and this method must deal with 

that.�

VenueClient2�


