Venue Client Process Management

Robert Olson

April 7, 2003

Introduction

The Virtual Venues client design requires the use of one or more external programs (the Node Service and the Service Manager) to start, stop, and configure the node’s services. In this note we discuss the requirements related to the management of these processes.

An AG client installation will likely fall into one of the two following categories:

· A personal node, where all software runs on a user’s computer. This is currently most likely a Windows 2000 or Windows XP computer with a built-in sound card using a microphone, and headset, and a USB or Firewire video camera.

· A room-based node, where the venues client and video presentation tools run on a multi-headed computer (most likely Windows 2000 or Windows XP), and video capture and audio processing run on one or more Linux-based computers.

Personal Nodes

In this section we will concentrate on the requirements for personal nodes. As much as possible, we would like to remain hidden the fact that there exist services operating behind the scenes on behalf of the user for the management of media tools. Toward this end, the startup and shutdown of these processes must remain invisible to the user.

For a personal node, it is likely only necessary that the processes run while the user is running the venue client itself.

We use the following protocol to achieve the interlock between venues client and the subsidiary clients.

Each subprocess has two win32 event objects associated with it. Each is created by the venues client, given a unique name, and passed to the subprocess on creation. The first event object, the init object, is signaled by the subprocess when it has finished initialization and squirrels away its configuration information into the registry. The termination object is signaled by the venues client at shutdown time, and is used by the subprocess to effect a clean shutdown.

We use an additional event object to synchronize the node service and the service manager, so that the node service initialization is directly triggered by the completion of the service manager initialization.

The startup protocol can now be described:

	Venues Client
	Node Svc
	Svc Mgr

	Create svc-mgr-init and svc-mgr-term.

Create svc-mgr-node-svc-synch.

Create node-svc-init and node-svc-term.

Start svc mgr.

Start node-svc.

Wait(svc-mgr-init)
	
	

	
	Open node-svc-init, node-svc-term, and svc-mgr-node-svc-synch.

Wait(svc-mgr-node-svc-synch)
	Open svc-mgr-init and svc-mgr-term event objects.

Initialize svc mgr.

Write URL into registry.

Signal svc-mgr-init.

Signal svc-mgr-node-svc-synch.

Begin execution.

	Read svc-mgr-url from registry.

Wait(node-mgr-init)

	Read svc-mgr-url from registry.

Initialize node svc.

Write node-svc-url to registry.

Signal node-mgr-init

Begin execution.
	

	Read node-svc-url from registry.

Initialize venues client with node-svc-url.
	
	

Implementation

The venues client code is integrated in the PersonalNodeManager class. This class maintains the event objects used by the interlocked initialization sequence above, as well as the process handles to the actual subprocesses.

PersonalNodeManager(setNodeServiceCallback)

Constructor. Initializes the event objects, but does not start up the subprocesses.

setNodeServiceCallback is a Python callable that will be invoked with the URL of the node’s node service, at the point in the initialization interlock that it is known.

Run()

Kick off the subprocess execution, and implement the interlocked initialization as above.

Stop()

Stop the subprocesses (by signaling the terminate event objects, and forcibly terminating the processes if they do not respond promptly).

The node service and service manager each also have a class used in the personal node integration: PersonalNode_NodeService and PersonalNode_ServiceManager.

The creation of these objects is gated on whether a command-line argument is passed to the process that contains the startup information. This argument is of the form:

-pnode <info>

where for a node service, <info> is:

init_name:synch_name:term_name

init_name is the name of the node-svc-init event object, synch_name the name of the svc-mgr-node-svc-synch event object, and term_name the name of the node-svc-term event object.

For the service manager, <info> is:

init_name:synch_name:term_name

with the obvious meanings.

The API for these objects is as follows.

PN_NodeService(terminateCallback)

Initialize the node service object.

terminateCallback is a Python callable that will be invoked when the venue client signals it is time for the application to terminate.

RunPhase1(initArg)

Begin the first phase of the initialization interlock protocol. initArg is the argument that was passed to the node service on the command line.

When the service manager initialization is finished, this call will return the URL to the service manager.

The node service initialization is split into two phases to allow the startup protocol to continue while the somewhat time-consuming node service initialization continues; it is a performance optimization.

RunPhase2(myURL)

Begin the second phase of the initialization interlock protocol. myURL is the URL for the node service to be passed to the other participants in the protocol.

This method creates a thread that waits for either a signal on the termination event object, or for the parent process to terminate.

PN_ServiceManager(terminateCallback)

Initialize the service manager object.

terminateCallback is a Python callable that will be invoked when the venue client signals it is time for the application to terminate.

Run(initArg)

Start the initialization interlock protocol. initArg is the argument that was passed to the node service on the command line.

When the initialization is finished, this call will return. A thread will have been created to wait for a termination signal from the venue client.

Linux Support

The implementation described above relies upon the use of Win32 Event objects and the registry for passing information between the processes. On Linux, we clearly must find a different solution.

One approach to solving this problem is to use System V shared memory primitives: semaphores or message queues. However, the system objects implementing these primitives are a limited resource, and an implementation depending on them can fail in numerous ways: it is difficult to harden the implementation against all possible failures.

The approach we use instead is to utilize standard Unix pipes for synchronization. The protocol is exactly the same as the protocol specified above; however, we replace the operation “Write a URL to the registry and signal an event object” with the operation “Write a URL to the pipe”, and the operation “Wait on a synch object and read the URL from the registry” with “Block on a pipe read; read the URL from the pipe.”

We rely on the property of Linux processes which allow file descriptors opened by a process to be inherited by the child. The parent process creates all the pipes that will be used by the protocol and notifies the child processes which file descriptors correspond to which synchronization pipes by passing the file descriptor numbers on the command line. The implementation must ensure that all unused file descriptors (to pipe ends that are not used by each process) be closed; otherwise, end-of-file conditions will not be properly detected.

The pipes implementation makes use of the property of pipes where the death of a process owning the write end of a pipe causes an end-of-file condition to be signaled on the read end of the pipe to allow the detection of process termination.

The object API to the pipes implementation is identical to the Win32 Event object-based API.

Copyright 2003 Argonne National Laboratory/University of Chicago.

For more information email: ag-mcs@mcs.anl.gov.

