
ARGONNE NATIONAL LABORATORY
���� South Cass Avenue

Argonne� IL �����

ANL�MCS	TM	
��

CAVEcomm Users Manual

by

Terrence L� Disz� Michael E� Papka�

Michael Pellegrino� and Matthew Szymanski �

Mathematics and Computer Science Division

Technical Memorandum No

��

December ����

�Address� The Electronic Visualization Lab� The University of Chicago� ��� S� Morgan St� �M�C ��	
� Chicago�
IL ����

This work was supported by the Mathematical� Information� and Computational Sciences Division subprogram

of the O�ce of Computational and Technology Research� U�S� Department of Energy� under Contract W����

����Eng����

Contents

Abstract �

� Library Model �

�
� The Broker �

�

 The Client �

� Communications Transport �

� CAVEcomm Library �

�
� General Routines �

�

 Broker Routines �

�
� Data Routines �

�
� World Routines �

�
� Global Variables �

�
� Data Structures �

�
�
� CaveEnv �

�
�

 CaveSession �

�
�
� CAVEUser �

�
�
� c
cCon�g �

� CAVEcomm Con�guration File �

� CAVEcomm Constants ��

�
� Stream Types ��

�

 Session Types ��

�
� Data Types ��

�
� Error Messages As Seen by User ��

�
� Various Array Sizes ��

�
� Miscellaneous Constant De�nintions �

iii

	 Sample Applications ��

�
� New Samples �

�

 Old Samples ��

Acknowledgments ��

iv

CAVEcomm Users Manual

by

Terrence L� Disz� Michael E� Papka

Michael Pellegrino� and Matthew Szymanski

Abstract

The CAVEcomm library is a set of routines designed to generalize the communications between
virtual environments and supercomputers�

� Library Model

The model for the library is that of a client�server
 Somewhere at a known URL is a broker whose
purpose is to mediate the communications between various client applications �CAVE� simulations�
etc
�

��� The Broker

The broker maintains tables of all clients and of all sessions �applications� that are registered with it

The table of clients includes such elementary information as the client�s capabilities �machine
type� model� etc
� as well as basic application information �CAVE application� IBM simulation� etc
�

Clients can query the broker for this information

The table of sessions includes information on all sessions �applications� that any registered client
can run
 The table maintains such information as executable names� data �les� command line argu	
ments� etc
 Of course� clients cannot attach to sessions outside of the realm of their physical machine

For example� clients cannot run a CAVE application unless CAVE functiexists onality on their ma	
chine
 Clients can query the broker for this session information

The broker executable is in the bin subdirectory within the CAVEcomm distribution

To run the broker� type ��c�cbroker 	 commandline arguments

Commandline arguments include the following�

� 	c
cdbg f ������� g

Speci�es the level of debuging messages output by the broker� ��� being the lowest
level of c�c internal messages and ��� being the greatest

� 	c
curl �lename f my url �le g

Contains the URL for the broker� the idea being that this �le lives in some common
shared �le space that all users of a given instance can access

�

� 	c
c port f port number g

Speci�es the particular port that the broker will be listening on� thereby allowing users
to pick an arbitrary port number and use that port over and over� thus eliminating
the need to change the con�g �les

Example
 ��c�cbroker �c�c port ����� �c�cdbg ���

This command will start a broker process on the machine from which it is run� listening
on port ������ and printing out all the internal c
c debug messages available

��� The Client

Each CAVEcomm client is an application �CAVE� simulation� etc
� that has the power to attach to
any other application on the broker
 A simulation that is registered with the broker can be accessed
by any other application on the broker such as visualization applications or virtual environments

� Communications Transport

The CAVEcomm library uses the Nexus communications library developed at the Mathematics and
Computer Science Division at Argonne National Laboratory
 �See http���www
mcs
anl
gov�nexus
�

While Nexus is the communications transport� the user does not need any prerequisite knowledge
in using it
 All Nexus communications calls are encapsulated in the library� thus� the user is unaware
of the Nexus presence

By using Nexus� the CAVEcomm library is able to support various communications protocols such
as TCP�IP sockets and shared memory� as well as various message	passing libraries

� CAVEcomm Library

All functions in the CAVEComm library start with the pre�x c�c
 The CAVEcomm library contains
functions that are broken down into various sections

��� General Routines

int c�cGetDebugLevel�void�
 Get the current maximum debugging level in an application

void c�cInit�int �argc� char �argvg���CaveEnv �env�
 Start all communications functionality

Its arguments are the argument count� argument vector� and a structure describing the appli	
cation�s operating environment
 It must be the �rst CAVEcomm library call made �except for
c
cReadCon�gFile or if the world routines are used�
 If the CAVEcomm library is used with the
CAVE library� the call to c
cInit must occur after the call to CAVEInit is made

void c�cPrintf�int level� char �format� ����
 Print the text
 The text consists of a chracter string
describing how to format the text and any applicable variables contained in the format
 This
function is similar to the printf function found in the standard I�O C library
 The level parameter
tells the library at what level to print the text

int c�cReadCon�gFile�char ��lename�c�cCon�g �con�g�
 Read �lename for application def	
initions
 The de�nitions are placed into con�g� which contains all known application de�nitions

If �lename is null� the default �le
c
cCon�g is attempted to be opened
 If �lename or
c
cCon�g
cannot be opened� E OPEN CONFIG FILE is returned� otherwise� E SUCCESS is returned

void c�cSetDebugLevel�int level�
 Set the current maximum debugging level in an application

void c�cTerminate�void�
 End all communications functionality
 It is the last CAVEcomm library
call made �unless the world routines are used�

��� Broker Routines

HostId c�cBrokerAttach�URL url�
 Attach to the broker listed by url
 The URL must be of
the format c�cBroker
��fip hostnameg
fip portg�
 Supplying a URL of a di�erent format
will give unpredictable results
 A HostId is returned uniquely describing that broker

int c�cBrokerDetach�HostId host�
 Detach from the broker speci�ed by host
 No further refer	
ences can be made to it host after it is detached
 E INVALID HOST is returned if HostId does
not match a host that was previously attached with c
cBrokerAttach� otherwise� E SUCCESS
is returned

int c�cBrokerKill�HostId host�
 Terminate the broker speci�ed by ost
 All database information
on the broker is disposed of� and all programs connected are terminated
 Most programs will
never issue this call
 E INVALID HOST is returned if HostId does not match a host that was
previously attached with c
cBrokerAttach� otherwise� E SUCCESS is returned

CAVEId c�cGetClientId�HostId host�char �name�
 Query the broker host� and return the as	
signed CAVEId of the client name
 The CAVEId is returned if the client name is found� otherwise�
E INVALID CLIENT is returned
 If the host is invalid� E INVALID HOST is returned

int c�cGetClients�HostId host�int �num clients�CaveEnv ��client list�
 Retrieve a list of all
clients currently registered on broker host
 The number of clients registered is returned is in
num clients along with an array of all the registered CaveEnv structures
 E INVALID HOST is
returned if HostId does not match a host that was previously attached to with c
cBrokerAttach�
otherwise� E SUCCESS is returned

SessionId c�cGetSessionId�HostId host�char �name�
 Query the broker host� and return the
assigned SessionId of the session name
 The SessionId is returned if the session name is found�
otherwise� E INVALID SESSION is returned
 If the host is invalid� E INVALID HOST is re	
turned

int c�cGetSessions�HostId host�int �num sessions�CaveSession ��session list�
 Retrieve a
list of all sessions currently registered on broker host
 The number of sessions registered is

�

returned is in num sessions along with an array of all the registered CaveSession structures

E INVALID HOST is returned if HostId does not match a host that was previously attached to
with c
cBrokerAttach� otherwise� E SUCCESS is returned

int c�cKillSession�HostId host�SessionId session�CAVEId cave�
 Not yet implemented

CAVEId c�cRegister�HostId host�CaveEnv �env�
 Register the application on broker host with
the environment env
 All subsequent queries to the broker with respect to clients will re�ect that
application�s presence
 E INVALID HOST is returned if HostId does not match a host that was
previously attached with c
cBrokerAttach
 E CLIENT EXISTS is returned if the client name
is already used on the broker
 If there are no errors� a CAVEId �� or higher� is returned

int c�cSessionAttach�HostId host�SessionId session� CAVEId cave�
 Not yet implemented

SessionId c�cSessionCreate�HostId host�CaveSession �ses�
 Create a session on broker host
with session ses
 All subsequent queries to the broker with respect to sessions will re�ect that
application session�s presence
 E INVALID HOST is returned if HostId does not match a host
that was previously attached with c
cBrokerAttach
 E SESSION EXISTS is returned if the
session name is already used on the broker
 If all goes well� E SUCCESS is returned

int c�cSessionDetach�HostId host�CAVEId cave�
 Not yet implemented

int c�cSubscribe�HostId host�CAVEId datasource�StreamType stream�void �callback�

Inform the broker host that your application would like receive stream data of type stream from
datasource� and call callback when any incoming data is to be processed
 The remote appli	
cation will then start streaming the requested data to the application
 E INVALID HOST is
returned if HostId does not match a host that was previously attached with c
cBrokerAttach

E INVALID CAVE ID is returned if datasource is invalid on host
 E INVALID STREAM is
returned if datasource does not have stream available
 E SUCCESS is returned upon successful
subscription to stream

int c�cUnregister�HostId host�CAVEId cave�
 Tell the broker host to remove an application
from the client list
 All subsequent queries to the broker with respect to clients will not re�ect
that application�s presence
 E INVALID HOST is returned if HostId does not match a host that
was previously attatched with c
cBrokerAttach
 E INVALID CAVE ID is returned if cave is
invalid on host
 E SUCCESS is returned upon successful subscription to stream

int c�cUnsubscribe�HostId host�CAVEId datasource�StreamType stream�void �callback�

Inform broker host that an application would like cancel the streaming of data of type stream
from datasource with the matching callback callback
 The remote application no longer streams
data to that application
 E INVALID HOST is returned if HostId does not match a host that was
previously attatched with c
cBrokerAttach
 E INVALID CAVE ID is returned if datasource is
invalid on host
 E INVALID STREAM is returned if datasource does not have stream available

E INVALID CALLBACK is returned if a callback is given that was not used for a subscription
to stream
 E SUCCESS is returned upon successful unsubscription to stream

�

��� Data Routines

void c�cFreeDataBu�er�void �bu�er�
 Free the data bu�er bu�er �accessed with c
cGetn calls�
from memory

void c�cFreePackBu�er�c�cBu�er ��bu�er�
 Free the data bu�er bu�er �accessed with c
cPackn
calls� from memory

void c�cGetChar�void �bu�er�char �data�int size�
 Get size characters from bu�er� and put
them into data

void c�cGetDouble�void �bu�er�double �data�int size�
 Get size doubles from bu�er� and put
them into data

void c�cGetFloat�void �bu�er��oat �data�int size�
 Get size �oats from bu�er� and put them
into data

void c�cGetInt�void �bu�er�int �data�int size�
 Get size integers from bu�er� and put them
into data

void c�cGetLong�void �bu�er�long �data�int size�
 Get size long integers from bu�er� and put
them into data

void c�cInitPackBu�er�c�cBu�er ��bu�er�
 Initialize data bu�er bu�er for future packing

void c�cPackChar�c�cBu�er ��bu�er�char �data�int size�
 Add size blocks of character data
to bu�er for broadcast later

void c�cPackDouble�c�cBu�er ��bu�er�double �data�int size�
 Add size blocks of double data
to bu�er for broadcast later

void c�cPackFloat�c�cBu�er ��bu�er��oat �data�int size�
 Add size blocks of �oat data to
bu�er for broadcast later

void c�cPackInt�c�cBu�er ��bu�er�int �data�int size�
 Add size blocks of integer data to bu�er
for broadcast later

void c�cPackLong�c�cBu�er ��bu�er�long �data�int size�
 Add size blocks of long data to
bu�er for broadcast later

int c�cRegisterStream�StreamType stream�void �subscribecallback�void

�unsubscribecallback�
 Register a stream in an application
 No streams can be subscribed to
until they are registered
 If subscribecallback is supplied �it is not null�� that callback will be
executed every time the stream is subscribed to
 If unsubscribecallback is supplied �it is not null��
that callback will be executed every time the stream is unsubscribed to

E STREAM REGISTERED is returned if the stream is already registered
 E SUCCESS is
returned otherwise

�

int c�cSendStream�CAVEId sourceid� c�cBu�er ��bu�er�StreamType stream�
 Cast a
bu�er of data bu�er �previously packed with c
cPackn routines� of stream
type stream to all applications subscribed to that stream with a source identi�er of sourceid
 The
source identi�er tells the remote processes who sent them the stream
 E INVALID STREAM is
returned if the stream was not registered� otherwise� E SUCCESS is returned

int c�cSendHeadTracker��oat x��oat y��oat z��oat a��oat e��oat r�
 Cast local CAVE head
tracker information �passed via parameters� to all applications subscribed to the stream
S HEAD TRACKER
 E INVALID STREAM is returned if the stream was not registered� oth	
erwise� E SUCCESS is returned

int c�cSendUser�CAVEId sourceId� CAVEUser �user�
 Cast local CAVE user �all trackers�
buttons� joystick and world info� to all applications subscribed to the stream S CAVE USER

E INVALID STREAM is returned if the stream was not registered� otherwise� E SUCCESS is
returned

int c�cSendWandButtons�CAVEId sourceId� int b��int b��int b��int b��
 Cast local CAVE
wand button information �passed via parameters� to all applications subscribed to the stream
S WAND BUTTON
 E INVALID STREAM is returned if the stream was not registered� other	
wise� E SUCCESS is returned

int c�cSendWandJoystick�CAVEId sourceId� �oat joyx��oat joyy�
 Cast local CAVE wand
joystick information �passed via parameters� to all applications subscribed to the stream
S WAND JOYSTICK
 E INVALID STREAM is returned if the stream was not registered� oth	
erwise� E SUCCESS is returned

int c�cSendWandTracker��oat x��oat y��oat z��oat a��oat e��oat r�
 Cast local CAVE wand
tracker information �passed via parameters� to all applications subscribed to the stream
S WAND TRACKER
 E INVALID STREAM is returned if the stream was not registered� oth	
erwise� E SUCCESS is returned

int c�cSendWorldPosition��oat x��oat y��oat z��oat a��oat e��oat r�
 Cast local CAVE world
position �passed via parameters� to all applications subscribed to the stream S WORLD POSITION

E INVALID STREAM is returned if the stream was not registered� otherwise� E SUCCESS is
returned

int c�cUnregisterStream�StreamType stream�
 Unregister a stream with an application
 No
remote applications can subscribe to a stream once it is unregistered
 E INVALID STREAM is
returned if the stream was not registered� otherwise� E SUCCESS is returned

��� World Routines

void c�cDrawAllUsers�void�
 Draw all users that are tracked via c
cTrackUserInit

void c�cDrawSomeUsers�int count�char �users���
 Draw a list of users that are tracked via
c
cTrackUserInit
 The number of users in the list as well as the application names of the users
to draw are passed as parameters

�

int c�cDrawUser�char �user�
 Draw a user that is tracked via c
cTrackUserInit
 The user to
draw is speci�ed by giving his applicaion name for user
 E INVALID CLIENT is returned if an
invalid client name is given
 E SUCCESS is returned otherwise

void c�cTrackUserInit�char �user�void �callback�
 Start tracking user �speci�ed by applica	
tion name�
 The rendering of the user can be user de�ned by supplying a callback
 Whenever
a draw command is issued� this callback will be executed
 If null is given as the callback� a
default stick	man representation of the user will be rendered
 E INVALID CLIENT is returned
if user is invalid
 E INVALID STREAM is returned if user does not have tracking available

E SUCCESS is returned upon successful tracking initializaion

int c�cTrackUserExit�char �user�void �callback�
 Cancel the tracking of user �speci�ed by
application name�
 The callback of the tracked user must match that given when initiated

E INVALID CLIENT is returned if user is invalid
 E INVALID STREAM is returned if user
does not have tracking available
 E SUCCESS is returned upon successful tracking exiting

void c�cWorldDataInit�void�
 Initialize necessary data structures needed for world communi	
cations
 This must be the �rst CAVEcomm library call issued in an application �except for
c
cReadCon�gFile�
 If the application running is a CAVE application� it must occur before the
call to CAVEInit is made
 In addition� if any CAVEcomm application wishes to use the user	
tracking facilities� it must make a call to c
cWorldDataInit �whether the application is CAVE
based or not�

void c�cWorldDataSubscribe�char �user�StreamType stream�void �callback�
 Subscribe
to user �speci�ed by application name� for data stream stream and to call callback when the
data is received
 E INVALID CLIENT is returned if user is invalid
 E INVALID STREAM is
returned if user does not have stream available
 E SUCCESS is returned upon successful data
subscription

void c�cWorldDataUnsubscribe�char �user�StreamType stream�void �callback�
 Unsub	
scribe to the data stream stream that was previously subscribed to from user �speci�ed by his ap	
plication name� with callback
 E INVALID CLIENT is returned if user is invalid
 E INVALID
STREAM is returned if user does not have stream available
 E INVALID CALLBACK is re	
turned if a callback is given that was not used for a subscription to stream
 E SUCCESS is
returned upon successful data unsubscription

void c�cWorldExit�void�
 Terminate all World functionality
 This must be the last CAVEcomm
library call issued in an application

CAVEId c�cWorldGetClientId�char �name�
 Query the broker� and return the assigned
CAVEId of the client name
 The CAVEId is returned if the client name is found� otherwise�
E INVALID CLIENT is returned

SessionId c�cWorldGetSessionId�char �name�
 Query the broker� and return the assigned Ses	
sionId of the session name
 The SessionId is returned if the session name is found� otherwise�
E INVALID SESSION is returned

void c�cWorldInit�int �argc�char �argv���
 Initiate all World functionality
 If the CAVEcomm
library is used with the CAVE library� it must occur after the call to CAVEInit is made

�

int c�cWorldSendStream�c�cBu�er ��bu�er�StreamType stream�
 Cast a bu�er of data
bu�er �previously packed with c
cPackn routines� of stream type stream to all applications
subscribed to that stream
 E INVALID STREAM is returned if the stream was not registered�
otherwise� E SUCCESS is returned

��� Global Variables

The CAVEcomm library maintains the following global variable that the user can access�

CaveEnv c�cEnv This variable maintains all local environment information that was registered
with c
cInit

��� Data Structures

The CAVEcomm library has data structures that are accessible by the user

��	�� CaveEnv

�� Structure defining CAVE environment ��

typedef struct caveenv

	

char name
C�C�NAME�SIZE�
 �� Unique name for this CAVE ��

int type
 �� Type of session this is �CAVE� I�Desk� etc���� ��

int id
 �� Id of the client ��

�CaveEnv

��	�� CaveSession

�� Structure describing a CAVE session ��

typedef struct cavesession

	

CAVEId owner
 �� Who owns the session on the broker ��

char name
C�C�NAME�SIZE�
 �� Unique name describing the session ��

char pathname
C�C�PATH�SIZE�
 �� Where to find the application ��

char execname
C�C�EXE�SIZE�
 �� Executable name ��

char args
C�C�ARGS�SIZE�
 �� Command line arguments ��

int id
 �� Id of the session ��

�CaveSession

��	�� CAVEUser

�� Structure defining CAVE user ��

�

typedef struct caveuser

	

float headx�heady�headz� �� Head tracker location ��

heada�heade�headr� �� Head tracker orientation ��

wandx�wandy�wandz� �� Wand tracker location ��

wanda�wande�wandr� �� Wand tracker orientation ��

worldx�worldy�worldz� �� World location ��

worlda�worlde�worldr
 �� World orientation ��

int but��but�� �� Button information ��

but��but�

float joyx�joyy
 �� joystick information ��

�CAVEUser

��	�� c�cCon�g

�� Structure defining a CAVEcomm session ��

typedef struct c�cconfig

	

URL broker
 �� URL to connect to broker with ��

CaveEnv env
 �� Local environment parameters ��

CaveSession session
 �� Session info for this CAVE app ��

�c�cConfig

� CAVEcomm Con�guration File

The CAVEcomm library looks for a con�guration �le �
c
cCon�g by default� that de�nes certain
aspects of the application
 The format for the con�guration �le is keyword �option�
 Keywords are not
case sensitive
 Application de�nitions are as follows�

Broker 	Broker URL
 �
A known URL of the broker that one is to register and attach to
 The broker URL must be of
the format c�cBroker
��fip hostnameg
fip portg�

DebugLevel level �
The level for debugging the application
 Debugging will be set at level as soon as the parser
�nishes processing the DebugLevel keyword

ClientName 	Client application name
 �
The name of the application that is used when registering on the broker

ClientAppType type �
The application type describing what type of application it is �CAVE� ImmersaDesk� simulation�

SessionName 	Session name
 �
Name of the session given to the broker upon session creation

�

SessionPath 	Pathname to application
 �
Pathname of the executable for the session
 It is given to the broker upon session creation

SessionExe 	Session executable name
 �
Executable name of the application for the session
 It is given to the broker upon session creation

SessionArgs 	Command line arguments
 �
Command line arguments needed to run the application
 They are given to the broker upon
session creation

� CAVEcomm Constants

��� Stream Types

S HEAD TRACKER Head tracker information

S WAND TRACKER Wand tracker information

S WAND BUTTON Button information

S WAND JOYSTICK Joystick information

S WORLD POSITION CAVE location in the world

S CAVE USER User information �trackers�buttons etc

 all in one�

��� Session Types

ST CAVE CAVE session

ST CAVE SIMULATOR CAVE simulator session

ST IMMERSADESK ImmersaDesk session

ST SIMULATION Data simulation of some sort

��� Data Types

DT CHAR Character data

DT INT Integer data

DT LONG Long integer data

DT FLOAT Float data

DT DOUBLE Double data

��

��� Error Messages As Seen by User

E SUCCESS No error at all

E BROKER ATTACH Attach to the broker failed

E SUBSCRIBE NO STREAM Subscribe to non	existant stream

E INVALID HOSTID Bad host id given

E INVALID CALLBACK Bad callback given

E INVALID STREAM Stream never registeged

E STREAM REGISTERED Stream already registered

E INVALID HOST Invalid host id given

E INVALID CAVEID Invalid CAVE id given

E INVALID BROKER URL Invalid broker URL given

E INVALID CLIENT Invalid client name given

E INVALID SESSION Invalid session name given

E CLIENT EXISTS Client already registered on broker

E SESSION EXISTS Session already created on broker

E OPEN CONFIG FILE Error opening con�guration �le

��� Various Array Sizes

C�C NAME SIZE Size of session string

C�C URL SIZE Size of a URL string

C�C PATH SIZE Size of path string

C�C EXE SIZE Size of exe string

C�C ARGS SIZE Size of argument string

��

��� Miscellaneous Constant De�nintions

C�C CONFIG FILE Default con�g �le to open if none is given

C�C BROKER URL FILE Default �lename to house broker URL

CONFIG FILE LINE SIZE Max size of a �le line in con�guration �le

CONFIG OPTION SIZE Max size of an option in con�guration �le

C�C SUBSCRIBE Flag for World subscribe operation

C�C UNSUBSCRIBE Flag for World unsubscribe operation

� Sample Applications

��� New Samples

Multiple CAVE OpenGL Application

Make�le �CAVE to CAVE�

Make sure to replace text in double brackets �

 ��� with the appropiate information for your
site

LIBS � �L� �L

 Path to CAVE lib �� �

�L

 Path to CAVEcomm lib �� �

�L

 Path to nexus lib ��

INCL � �I� �I

 Path to CAVE includes �� �

�I

 Path to CAVEcomm includes ��

TARGET � cave�

CFLAG � �c

LFLAG � �o ��TARGET�

OBJS � main�o

CFILES � main�C

ALL�LIB � ��LIBS� �lcave�ogl �lGL �lGLU �lc�c�ogl �lX�� �lXi �lnexuslite�opt �lm

ALL�INCL � ��INCL�

��TARGET�� ��OBJS�

CC ��LFLAG� ��OBJS� ��ALL�LIB�

main�o� main�C

CC �c ��ALL�INCL� main�C

�

clean�

rm �f ��o ��TARGET�

CAVE One Code

The following piece of code implements the code needed for a simple CAVE	to	CAVE application

The user in CAVE One will see the virtual representation of a user from CAVE Two
 In the code
included below� code speci�c to the CAVEcomm library is enclosed in double brackets �

 ���

�� CAVE�

�� Simple CAVE�to�CAVE application with CAVE functionality

��

�� This program contacts the CAVE application called �CAVE�� and

�� tracks its user� You will see the remote user navigating through

�� the coordinate space with the default user representation

�include �cave�ogl�h�

�include �c�c�h�

void display�void�

void frameFunction�void�

void navigate�void�

void navTranslate�float�

�� Display function� responsible for clearing the buffer�

�� setting up the navigation matrix� and rendering

void display�void� 	

glClear�GL�COLOR�BUFFER�BIT � GL�DEPTH�BUFFER�BIT�

�� Navigate the CAVE�s coordinates

CAVENavTransform��

�� Draw remote user

c�cDrawAllUsers��

�

�� Frame function� gets called once per frame� Is responsible

�� for any calculation� and�or interactions that must be performed

void frameFunction�� 	

�� Do navigation calculations

��

navigate��

�

�������������������������� NAVIGATION ROUTINES ������������������������

�� Translate the CAVE by some amount �dz� along the direction

�� the wand is being pointed

void navTranslate�float dz� 	

float tx� tz

float vec
��

CAVEGetVector�CAVE�WAND�FRONT� vec�

tx � dz � vec
��

tz � dz � vec
��

CAVENavTranslate�tx� �� tz�

�

�� Navigate function� gets called by frame function�

�� measures Joystick� and detemines if and how much

�� CAVE should be navigated�

void navigate�� 	

float dz

float azi

if�CAVE�JOYSTICK�Y � ���� 	

dz � ����CAVE�JOYSTICK�Y�

navTranslate�dz�

�

if�CAVE�JOYSTICK�Y � ����� 	

dz � ����CAVE�JOYSTICK�Y�

navTranslate�dz�

�

if�CAVE�JOYSTICK�X � ���� 	

azi � �CAVE�JOYSTICK�X

CAVENavRot�azi� �y��

�

if�CAVE�JOYSTICK�X � ����� 	

��

azi � �CAVE�JOYSTICK�X

CAVENavRot�azi� �y��

�

�

���������������������������������� MAIN �����������������������������������

�� Main function

void main�int argc�char �argv
��

	 �� main ��

int rc
 �� Return Code ��

 c�cWorldDataInit��
 �� Perform PreInitialization �� ��

CAVEConfigure��argc�argv�NULL�
 �� Get CAVE configuration info ��

CAVEInit��
 �� Start CAVE application ��

CAVEDisplay�display���
 �� Assign drawing function ��

CAVEFrameFunction�frameFunction���

 c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

rc � ��

while �rc �� E�SUCCESS� 	

printf��No One to ATTACH to yet�n��

�� Track Argonne user with default user rendering ��

rc � c�cTrackUserInit��CAVE���NULL�

� ��

while��CAVEgetbutton�CAVE�ESCKEY�� 	

�� Do computation here or spin endlessly ��

 c�cUpdate��
 �� This is needed every loop to

poll for a new event �� ��

� �� While ��

 c�cTrackUserExit��CAVE���NULL�
 �� Stop tracking Argonne user ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality �� ��

CAVEExit��
 �� End the CAVE application ��

�

��

CAVE Two Code

The following piece of code implements the code needed for a simple CAVE to CAVE application

The user in CAVE Two will see the virtual representation of a user from CAVE One
 In the code
included below code speci�c to the CAVEcomm library is enclosed in double brackets �

 ���

�� CAVE�

�� Simple CAVE�to�CAVE application with CAVE functionality

��

�� This program contacts the CAVE application called �CAVE�� and

�� tracks its user� You will see the remote user navigating through the

�� coordinate space with the default �stick�man� user representation

�include �cave�ogl�h�

 �include �c�c�h� ��

void display�void�

void frameFunction�void�

void navigate�void�

void navTranslate�float�

�� Display function� responsible for clearing the buffer�

�� setting up the navigation matrix� and rendering

void display�void� 	

glClear�GL�COLOR�BUFFER�BIT � GL�DEPTH�BUFFER�BIT�

CAVENavTransform��

 c�cDrawAllUsers��
 �� Draw remote user �� ��

�

�� Frame function� gets called once per frame� Is responsible

�� for any calculation� and�or interactions that must be performed

void frameFunction�� 	

navigate��

�

��

�������������������������� NAVIGATION ROUTINES ������������������������

�� Translate the CAVE by some amount �dz� along the direction

�� the wand is being pointed

void navTranslate�float dz� 	

float tx� tz

float vec
��

CAVEGetVector�CAVE�WAND�FRONT� vec�

tx � dz � vec
��

tz � dz � vec
��

CAVENavTranslate�tx� �� tz�

�

�� Navigate function� gets called by frame function�

�� measures Joystick� and detemines if and how much

�� CAVE should be navigated�

void navigate�� 	

float dz

float azi

if�CAVE�JOYSTICK�Y � ���� 	

dz � ����CAVE�JOYSTICK�Y�

navTranslate�dz�

�

if�CAVE�JOYSTICK�Y � ����� 	

dz � ����CAVE�JOYSTICK�Y�

navTranslate�dz�

�

if�CAVE�JOYSTICK�X � ���� 	

azi � �CAVE�JOYSTICK�X

CAVENavRot�azi� �y��

�

if�CAVE�JOYSTICK�X � ����� 	

azi � �CAVE�JOYSTICK�X

CAVENavRot�azi� �y��

�

�

��

���������������������������������� MAIN �����������������������������������

�� Main function

void main�int argc�char �argv
��

	 �� main ��

int rc
 �� Return Code ��

 c�cWorldDataInit��
 �� Perform PreInitialization �� ��

CAVEConfigure��argc�argv�NULL�
 �� Get CAVE configuration info ��

CAVEInit��
 �� Start CAVE application ��

CAVEDisplay�display���
 �� Assign drawing function ��

CAVEFrameFunction�frameFunction���

 c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

rc � ��

while �rc �� E�SUCCESS� 	

printf��No One to ATTACH to yet�n��

�� Track Argonne user with default user rendering ��

rc � c�cTrackUserInit��CAVE���NULL�

� ��

while��CAVEgetbutton�CAVE�ESCKEY�� 	

�� Do computation here or spin endlessly ��

 c�cUpdate��
 �� This is needed every loop to

poll for a new event �� ��

� �� While ��

 c�cTrackUserExit��CAVE���NULL�
 �� Stop tracking Argonne user ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality �� ��

CAVEExit��
 �� End the CAVE application ��

� �� main ��

��

CAVE Three Code

The following piece of code implements the code needed for a simple CAVE to CAVE application

The user in CAVE Three will see the virtual representation of a user from CAVE One and Two
 In
the code included below� code speci�c to the CAVEcomm library is enclosed in double brackets �

���

�� CAVE�

�� Simple CAVE�to�CAVE application with CAVE functionality

��

�� This program contacts the CAVE applications called �CAVE�� and

�� �CAVE�� and tracks its users� This application does not have

�� navigation� You will see the remote users navigating

�� through the coordinate space with the default user representations

�include �cave�ogl�h�

 �include �c�c�h� ��

void display�void�

�� Display function� responsible for clearing the buffer�

�� and rendering

void display�void� 	

glClear�GL�COLOR�BUFFER�BIT � GL�DEPTH�BUFFER�BIT�

 c�cDrawAllUsers��
 �� Draw remote user �� ��

�

void main�int argc�char �argv
��

	 �� main ��

int rc
 �� Return Code ��

 c�cWorldDataInit��
 �� Perform PreInitialization �� ��

CAVEConfigure��argc�argv�NULL�
 �� Get CAVE configuration info ��

CAVEInit��
 �� Start CAVE application ��

CAVEDisplay�display���
 �� Assign drawing function ��

 c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

��

rc � ��

while �rc �� E�SUCCESS� 	

printf��No One to ATTACH to yet�n��

rc � c�cTrackUserInit��CAVE���NULL�
�� Track Argonne user with default

user rendering ��

�

rc � ��

while �rc �� E�SUCCESS� 	

printf��No One to ATTACH to yet�n��

rc � c�cTrackUserInit��CAVE���NULL�
�� Track Argonne user with default

user rendering ��

� ��

while��CAVEgetbutton�CAVE�ESCKEY�� 	

�� Do computation here or spin endlessly ��

 c�cUpdate��
 �� This is needed every loop to

poll for a new event �� ��

� �� While ��

 c�cTrackUserExit��CAVE���NULL�
 �� Stop tracking Argonne user ��

c�cTrackUserExit��CAVE���NULL�
 �� Stop tracking Argonne user ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality �� ��

CAVEExit��
 �� End the CAVE application ��

� �� main ��

Inventor CAVE Application

Client C�� Code

The following piece of code implements the code needed for a simple Inventor CAVE	to	CAVE
application
 In the code included below� code speci�c to the CAVEcomm library is enclosed in double
brackets �

 ���

�include ��A HREF��clientH�html��client�h��A��

�define WINWIDTH ���

�define WINHEIGHT ���

�define STREAM�� ��

�define STREAM�� ��

�

�define NAVSPEED ���

�� smObjectPosition is where the position data from the server is

�� stored� This must be put into shared memory since� each of the

�� graphics pipes has its own copy of the inventor objects� and

�� each will need to access smObjectPosition to update its �pipe�

�� cones position�

��

void �smArena

float �smObjectPosition

�� root and the cone transform node are declared globally so that they

�� can be accessed easily within the various functions

��

SoSeparator �root

SoTransform �coneXForm

c�cBuffer �databuffer

void INVInit�int� char���

void initSharedMem��

void updateScene��

void initLighting��

void sendToServer��

void initCAVEcomm�int � char�
��

void oglDraw��

void navigate��

void navTranslate�float�

void CAVENavRotateY��

void callbackFunction�void�� CAVEId�

void initSharedMem�� 	

smArena � CAVEUserSharedMemory������

smObjectPosition � �float��amalloc���sizeof�float�� smArena�

�

�

void initLighting�� 	

�� Create some directional lights to be shared amongst

�� the scene hierarchies

��

SoDirectionalLight� directionalLight� � new SoDirectionalLight

directionalLight���direction�setValue���� ��� ���

SoDirectionalLight� directionalLight� � new SoDirectionalLight

directionalLight���direction�setValue��� �� ��

root��addChild�directionalLight��

root��addChild�directionalLight��

�

void INVInit�int argc� char� argv
�� 	

�� Initialize Inventor

SoDB��init��

�� create the scene�s root node

��

root � new SoSeparator

root��ref��

myViewPort � new SbViewportRegion

�� add some lighting

initLighting��

�� Create a cone for the scene

��

SoSeparator �coneSeparator � new SoSeparator

coneXForm � new SoTransform

SoMaterial �coneMat � new SoMaterial

SoCone �myCone � new SoCone

coneSeparator��addChild�coneXForm�

coneSeparator��addChild�coneMat�

coneSeparator��addChild�myCone�

root��addChild�coneSeparator�

�� Create a node for the ogl rendering of the other

�� users

SoCallback �oglCallback � new SoCallback

oglCallback��setCallback�oglDraw�

root��addChild�oglCallback�

�� Initialize the CAVE�to�CAVE communications

��

 initCAVEcomm�argc� argv�
 ��

�

�� This function is setting up two way communication between the server and

�� client� although� in this application we are only doing one way communication�

�� This app only receives position information of the cone from the server� but

�� the code that follows will show you how to set up two way communication

�� in case it is needed�

void initCAVEcomm�int argc� char� argv
�� 	

int subscribed � ��

int rc � ��

�� Only set up the communication links once�

��

if�CAVEMasterDisplay��� 	

c�cWorldInit��argc� argv�

�� Register a stream that sends to the server

��

c�cRegisterStream�STREAM��� NULL� NULL�
 �� Register stream to cast ��

�� Subscribe to the server� and pass a pointer to the callback

�� function that will get executed when data is received

�� from the server�

�

while�subscribed �� E�SUCCESS� 	

subscribed � c�cWorldDataSubscribe��ANL�SERVER�� STREAM��� callbackFunction�

sleep���

cout �� �subscribed � �� subscribed �� endl

�

�� Initialize the user tracking� this way an avatar

�� of the server will be rendered when c�cDrawAllUsers��

�� gets exectued� This function takes care of tracking

�� users in remote CAVEs for you�

while�rc �� E�SUCCESS� 	

rc � c�cTrackUserInit��ANL�SERVER�� NULL�

sleep���

�

�

else 	

cout �� �not master display� �� endl

cout �� �SUBSCRIBED SUCCESSFUL� �� endl

�

�

��

�� A function that calls the c�c function to render

�� users in remote CAVEs

��

void oglDraw�� 	

 c�cDrawAllUsers��
 ��

�

�� Gets called from c�cupdate� when data from the server

�� has been received� We store the data into a shared memory

�� variable� since it will be used by each of the pipes

�� to update its own scene graph

��

void callbackFunction�void� databuffer� CAVEId� 	

 c�cGetFloat�databuffer� smObjectPosition� ��

c�cFreeGetBuffer�databuffer�
 ��

�

�

�� Called from the frame function� it is called once per

�� frame per pipe� Each pipe�s cone transform node gets

�� updated with the data stored in shared memory�

��

void updateScene�� 	

coneXForm��translation�setValue�smObjectPosition�

�

�� the send to server routine that would be called

�� via the frame function� if this app were sending

�� data to the server�

��

void sendToServer�� 	

�

�� A typical display function for any application that uses Inventor

�� in the CAVE

��

void display�� 	

XGetWindowAttributes�CAVEXdisplay� CAVEglxWindow� �winAtts�

glPushAttrib�GL�ALL�ATTRIB�BITS�

glClear�GL�COLOR�BUFFER�BIT � GL�DEPTH�BUFFER�BIT�

glPushMatrix��

myViewPort��setWindowSize�winAtts�width� winAtts�height�

SoGLRenderAction myRenderAction��myViewPort�

CAVENavTransform��

myRenderAction�apply�root�

glPopMatrix��

glPopAttrib��

�

�� The frame function gets called once per frame per pipe�

�

�� It�s been added to the CAVEFrameFunction��

��

void frameFunction�� 	

�� You only want to send�receive data in the master proc

�� since that is where the c�c routines were setup

��

if�CAVEMasterDisplay���	

 c�cUpdate��
 �� This is needed every loop to

poll for a new event �� ��

�

�� THIS IS IMPORTANT

�� You only need this in a server�client that receives data�

�� Wait here for all procs to complete the above routines�

�� since c�cUpdate calls the callback function that receives

�� data from the other CAVEs�

��

�� You do not want one of the non�master procs to continue

�� and try to update the scene using the shared mem data

�� if it hasn�t been updated by the master proc yet�

��

CAVEDisplayBarrier��

updateScene��

navigate��

�

��������������������� NAVIGATION ROUTINES ���������������������

void navigate�� 	

float dz

if�CAVE�JOYSTICK�Y � ���� 	

dz � NAVSPEED

navTranslate�dz�

�

if�CAVE�JOYSTICK�Y � ����� 	

�

dz � �NAVSPEED

navTranslate�dz�

�

CAVENavRotateY��

�

void navTranslate�float dz� 	

float wandVector
��

CAVEGetVector�CAVE�WAND�FRONT� wandVector�

wandVector
�� �� dz

wandVector
�� �� dz

CAVENavTranslate�wandVector
��� �� wandVector
���

�

void CAVENavRotateY�� 	

float azi

azi � NAVSPEED��

if�CAVE�JOYSTICK�X � ���� 	

azi � CAVE�JOYSTICK�X � azi

CAVENavRot��azi� �y��

�

if�CAVE�JOYSTICK�X � ����� 	

azi � CAVE�JOYSTICK�X � azi

CAVENavRot��azi� �y��

�

�

������������������������������� MAIN ��������������������������������

void main�int argc� char ��argv� 	

 c�cWorldDataInit��
 ��

�

CAVEConfigure��argc�argv�NULL�

initSharedMem��

CAVEInit��

CAVEInitApplication��CAVECALLBACK�INVInit� �� argc� argv�

CAVEDisplay�display� ��

CAVEFrameFunction�frameFunction� ��

while��CAVEgetbutton�CAVE�ESCKEY�� 	

�

 c�cTrackUserExit��ANL�SERVER��NULL�

c�cWorldExit��
 ��

CAVEExit��

�

Client Header Code

The following piece of code implements the code needed for a simple Inventor CAVE	to	CAVE
application
 In the code included below� code speci�c to the CAVEcomm library is enclosed in double
brackets �

 ���

�ifndef CLIENT�H�

�define CLIENT�H�

�include �cave�ogl�h�

�include �GL�glx�h�

�include �GL�gl�h�

�include �GL�glu�h�

�include �stdio�h�

�include �unistd�h�

�include �stream�h�

 �include �c�c�h� ��

�include �malloc�h�

�include �sys�types�h�

�include �Inventor�SoDB�h�

�include �Inventor�actions�SoGLRenderAction�h�

�include �Inventor�nodes�SoCube�h�

�include �Inventor�nodes�SoDirectionalLight�h�

�include �Inventor�nodes�SoPointLight�h�

�include �Inventor�nodes�SoLightModel�h�

�include �Inventor�nodes�SoMaterial�h�

�

�include �Inventor�nodes�SoTransform�h�

�include �Inventor�nodes�SoSeparator�h�

�include �Inventor�nodes�SoGroup�h�

�include �Inventor�nodes�SoSphere�h�

�include �Inventor�nodes�SoCallback�h�

�include �Inventor�nodes�SoPerspectiveCamera�h�

�include �Inventor�nodes�SoRotor�h�

�include �Inventor�nodes�SoCone�h�

�include �Inventor�nodes�SoDrawStyle�h�

�include �Inventor�nodes�SoComplexity�h�

�include �Inventor�nodes�SoScale�h�

�include �Inventor�nodes�SoSwitch�h�

�include �Inventor�nodes�SoLineSet�h�

�include �Inventor�actions�SoWriteAction�h�

�include �Inventor�SoOffscreenRenderer�h�

XWindowAttributes winAtts

extern Display �CAVEXdisplay

extern Window CAVEglxWindow

SbViewportRegion �myViewPort

extern SbViewportRegion� myViewPort

�endif

Server C�� Code

The following piece of code implements the code needed for a simple Inventor CAVE	to	CAVE
application
 In the code included below� code speci�c to the CAVEcomm library is enclosed in double
brackets �

 ���

�include �server�h�

�define WINWIDTH ���

�define WINHEIGHT ���

�define STREAM�� ��

�define STREAM�� ��

�define NAVSPEED ���

�� root and the cone transform node are declared globally so that they

�� can be accessed easily within the various functions

��

SoSeparator �root

SoTransform �coneXForm

�

 c�cBuffer �databuffer ��

void INVInit�int� char���

void initSharedMem��

void updateScene��

void initLighting��

void sendToClient��

void initCAVEcomm�int � char�
��

void oglDraw��

void grabMove�SoTransform�� int�

void navigate��

void navTranslate�float�

void CAVENavRotateY��

void callbackFunction�void�� CAVEId�

void initSharedMem�� 	

�

�� A typical initialization function that initializes Inventor

�� and creates some scene objects�

��

void INVInit�int argc� char� argv
�� 	

�� Initialize Inventor

SoDB��init��

�� create the scene�s root node

��

root � new SoSeparator

root��ref��

myViewPort � new SbViewportRegion

�� add some lighting

initLighting��

�� create a cone for the scene

��

��

SoSeparator �coneSeparator � new SoSeparator

coneXForm � new SoTransform

SoMaterial �coneMat � new SoMaterial

SoCone �myCone � new SoCone

coneSeparator��addChild�coneXForm�

coneSeparator��addChild�coneMat�

coneSeparator��addChild�myCone�

root��addChild�coneSeparator�

�� Create a node for the ogl rendering of the other

�� users

SoCallback �oglCallback � new SoCallback

oglCallback��setCallback�oglDraw�

root��addChild�oglCallback�

�� Initialize the CAVE to CAVE communications

��

initCAVEcomm�argc� argv�

�

�� Create some lighting nodes and add them to the scene

��

void initLighting�� 	

�� Create some directional lights to be shared amongst

�� the scene hierarchies

��

SoDirectionalLight� directionalLight� � new SoDirectionalLight

directionalLight���direction�setValue���� ��� ���

SoDirectionalLight� directionalLight� � new SoDirectionalLight

directionalLight���direction�setValue��� �� ��

root��addChild�directionalLight��

root��addChild�directionalLight��

�

�� This function is setting up two way communication between the server and

��

�� client� although� in this application we are only doing one way communication�

�� This app only sends position information of the cone to the client� but

�� the code that follows will show you how to set up two way communication

�� in case it is needed�

��

void initCAVEcomm�int argc� char� argv
�� 	

int subscribed � ��

int rc � ��

�� Only set up the communication links once�

��

if�CAVEMasterDisplay��� 	

 c�cWorldInit��argc� argv�
 ��

�� Register a stream that sends to the client

��

 c�cRegisterStream�STREAM��� NULL� NULL�
 ��

�� Subscribe to the client� and pass a pointer to the callback

�� function that will get executed when data is received

�� from the client�

 while�subscribed �� E�SUCCESS� 	

subscribed � c�cWorldDataSubscribe��ANL�CLIENT�� STREAM��� callbackFunction�

sleep���

cout �� �subscribed � �� subscribed �� endl

� ��

�� Initialize the user tracking� this way an avatar

�� of the client will be rendered when c�cDrawAllUsers��

�� gets exectued� This function takes care of tracking

�� users in remote CAVEs for you�

 while�rc �� E�SUCCESS� 	

rc � c�cTrackUserInit��ANL�SERVER�� NULL�

sleep���

� ��

�

else 	

cout �� �not master display� �� endl

cout �� �SUBSCRIBED SUCCESSFUL� �� endl

�

�

�� A function that calls the c�c function to render

�� users in remote CAVEs

�

��

void oglDraw�� 	

 c�cDrawAllUsers��
 ��

�

�� This callback function would get executed if the client

�� were to send information to the server

��

void callbackFunction�void� databuffer� CAVEId� 	

 c�cFreeGetBuffer�databuffer�
 ��

�

�� Update the scene� pretty self explanatory�

�� If button � is pressed and the wand is moved

�� the cone moves relative to the wand�s motion

��

void updateScene�� 	

��move cone

��

if�CAVEButtonChange��� �� ��

grabMove�coneXForm� ��

if�CAVEBUTTON��

grabMove�coneXForm� ��

�

�� Code for grabbing and moving the cone

��

void grabMove�SoTransform� trans� int initialPress� 	

static float oldPos
��� newPos
��� diffPos
��

SbVec�f oldVec� newVec

int i

if�initialPress �� �� 	

CAVEGetPosition�CAVE�WAND� oldPos�

��

�

else 	

CAVEGetPosition�CAVE�WAND� newPos�

oldVec � trans��translation�getValue���getValue��

for�i��
 i��
 i �

diffPos
i� � newPos
i� � oldPos
i�

newVec�setValue�diffPos�

newVec � oldVec

trans��translation�setValue�newVec�

for�i��
 i��
 i �

oldPos
i� � newPos
i�

�

�

�� This function gets called once per frame via the master display proc�

�� it is responsible for getting the cone�s current position and storing

�� the values in a static array� and sends the values to the client

��

void sendToClient�� 	

static float position
��

coneXForm��translation�getValue���getValue�position
��� position
���

position
���

 c�cInitPackBuffer��databuffer�
 �� �� Initialize pack buffer ��

 c�cPackFloat��databuffer� position� ��
 ��

 c�cWorldSendStream��databuffer�STREAM���
 �� �� Broadcast your stream ��

 c�cFreePackBuffer��databuffer�
 �� �� Free sending data buffer ��

�

�� A typical display function for any application that uses Inventor

�� in the CAVE

��

void display�� 	

XGetWindowAttributes�CAVEXdisplay� CAVEglxWindow� �winAtts�

glPushAttrib�GL�ALL�ATTRIB�BITS�

glClear�GL�COLOR�BUFFER�BIT � GL�DEPTH�BUFFER�BIT�

��

glPushMatrix��

myViewPort��setWindowSize�winAtts�width� winAtts�height�

SoGLRenderAction myRenderAction��myViewPort�

CAVENavTransform��

myRenderAction�apply�root�

glPopMatrix��

glPopAttrib��

�

�� The frame function gets called once per frame per pipe�

�� It�s been added to the CAVEFrameFunction��

��

void frameFunction�� 	

�� You only want to send�receive data in the master proc

�� since that is where the c�c routines were setup

��

if�CAVEMasterDisplay���	

 c�cUpdate��
 ��

sendToClient��

�

�� THIS IS IMPORTANT

�� You only need this in a server�client that receives data�

�� Wait here for all procs to complete the above routines�

�� since c�cUpdate calls the callback function that receives

�� data from the other CAVEs�

��

�� You do not want one of the non�master procs to continue

�� and try to update the scene using the shared mem data

�� if it hasn�t been updated by the master proc yet�

��

CAVEDisplayBarrier��

updateScene��

navigate��

�

��

��������������������� NAVIGATION ROUTINES ���������������������

void navigate�� 	

float dz

if�CAVE�JOYSTICK�Y � ���� 	

dz � NAVSPEED

navTranslate�dz�

�

if�CAVE�JOYSTICK�Y � ����� 	

dz � �NAVSPEED

navTranslate�dz�

�

CAVENavRotateY��

�

void navTranslate�float dz� 	

float wandVector
��

CAVEGetVector�CAVE�WAND�FRONT� wandVector�

wandVector
�� �� dz

wandVector
�� �� dz

CAVENavTranslate�wandVector
��� �� wandVector
���

�

void CAVENavRotateY�� 	

float azi

azi � NAVSPEED��

if�CAVE�JOYSTICK�X � ���� 	

azi � CAVE�JOYSTICK�X � azi

CAVENavRot��azi� �y��

�

if�CAVE�JOYSTICK�X � ����� 	

azi � CAVE�JOYSTICK�X � azi

CAVENavRot��azi� �y��

�

�

��

������������������������������� MAIN ��������������������������������

void main�int argc� char ��argv� 	

 c�cWorldDataInit��
 ��

CAVEConfigure��argc�argv�NULL�

initSharedMem��

CAVEInit��

CAVEInitApplication��CAVECALLBACK�INVInit� �� argc� argv�

CAVEDisplay�display� ��

CAVEFrameFunction�frameFunction� ��

while��CAVEgetbutton�CAVE�ESCKEY�� 	

�

 c�cTrackUserExit��ANL�SERVER��NULL�

c�cWorldExit��
 ��

CAVEExit��

�

Server Header Code

The following piece of code implements the code needed for a simple Inventor CAVE	to	CAVE
application
 In the code included below� code speci�c to the CAVEcomm library is enclosed in double
brackets �

 ���

�ifndef SERVER�H�

�define SERVER�H�

�include �cave�ogl�h�

�include �GL�glx�h�

�include �GL�gl�h�

�include �GL�glu�h�

�include �stdio�h�

�include �unistd�h�

�include �stream�h�

 �include �c�c�h� ��

�include �malloc�h�

�include �sys�types�h�

�include �Inventor�SoDB�h�

�include �Inventor�actions�SoGLRenderAction�h�

��

�include �Inventor�nodes�SoCube�h�

�include �Inventor�nodes�SoDirectionalLight�h�

�include �Inventor�nodes�SoPointLight�h�

�include �Inventor�nodes�SoLightModel�h�

�include �Inventor�nodes�SoMaterial�h�

�include �Inventor�nodes�SoTransform�h�

�include �Inventor�nodes�SoSeparator�h�

�include �Inventor�nodes�SoGroup�h�

�include �Inventor�nodes�SoSphere�h�

�include �Inventor�nodes�SoCallback�h�

�include �Inventor�nodes�SoPerspectiveCamera�h�

�include �Inventor�nodes�SoRotor�h�

�include �Inventor�nodes�SoCone�h�

�include �Inventor�nodes�SoDrawStyle�h�

�include �Inventor�nodes�SoComplexity�h�

�include �Inventor�nodes�SoScale�h�

�include �Inventor�nodes�SoSwitch�h�

�include �Inventor�nodes�SoLineSet�h�

�include �Inventor�actions�SoWriteAction�h�

�include �Inventor�SoOffscreenRenderer�h�

XWindowAttributes winAtts

extern Display �CAVEXdisplay

extern Window CAVEglxWindow

SbViewportRegion �myViewPort

extern SbViewportRegion� myViewPort

�endif

Supercomputer to CAVE Application 	Coming Soon

CAVE Side C Code
CAVE Side Header C Code
Supercomputer Side C Code
Supercomputer Side Header Code

��� Old Samples

Below is a sample application using the CAVEComm library in a CAVE application

��

Simple CAVE�to�CAVE application with CAVE functionality

This program contacts the CAVE application called �Argonne CAVE� and

��

tracks its user� You will see the remote user navigating through the

coordinate space with the default �stick�man� user representation

��

�include �cave�h� �� CAVE library ��

�include �c�c�h� �� CAVE�to�CAVE library ��

void UserDraw�void�
 �� Prototype for drawing function ��

int connection

void main�int argc�char �argv
��

	 �� main ��

int rc
 �� Return Code ��

c�cWorldDataInit��
 �� Perform PreInitialization ��

CAVEConfigure��argc�argv�NULL�
 �� Get CAVE configuration info ��

CAVEInit��
 �� Start CAVE application ��

CAVEDisplay�UserDraw���
 �� Assign drawing function ��

c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

rc � ��

connection � �

while �rc �� E�SUCCESS�

	

printf��No One to ATTACH to yet�n��

rc � c�cTrackUserInit��Argonne CAVE���NULL�
�� Track Argonne user with default

user rendering ��

sleep���

��� End of WHILE Loop ��

connection � �

while��getbutton�ESCKEY�� �� Wait for escape key ��

	 �� While ��

�� Do computation here or spin endlessly ��

c�cUpdate��
 �� ����������������������������������� NEW FUNCTION ��

� �� While ��

c�cTrackUserExit��Argonne CAVE���NULL�
�� Stop tracking Argonne user ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality ��

CAVEExit��
 �� End the CAVE application ��

� �� main ��

��

User drawing function with CAVE�to�CAVE functionality

��

void UserDraw�void�

	 �� UserDraw ��

��

float bg
�� � 	������

c�f�bg�

clear��
 �� Clear frame buffers ��

zclear��

c�cDrawAllUsers��
 �� Draw remote user ��

� �� UserDraw ��

Here is its corresponding
c
cCon�g �le�

c�cBroker���cavesound�mcs�anl�gov��!���

ClientApptype CAVE

Clientname �CAVEComm Test�

Simulation Sample Application

Below is an example of a client�server CAVEComm application
 The server casts its application name
to everyone subscribed to it �in this case� everyone subscribed to stream APP NAME STREAM�

Server program

��

Simple CAVE�to�CAVE application without CAVE functionality

This server sends a stream of data �its app name� to everyone

subscribed to it

��

�include �c�c�h� �� CAVE�to�CAVE library ��

�include �stdio�h�
 �� Standard I�O library ��

�define APP�NAME�STREAM �� �� Requested stream id ��

void main�int argc�char �argv
��

	 �� main ��

c�cBuffer �databuffer
 �� Data buffer to pack ��

long longdata � �����"!#

float floatdata � $#!"����

double doubledata � �!�#��"!�

c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

c�cRegisterStream�APP�NAME�STREAM�NULL�NULL�
 �� Register stream to cast ��

while��� �� Wait for escape key ��

	 �� While ��

c�cInitPackBuffer��databuffer�
 �� Initialize pack buffer ��

��

c�cPackChar��databuffer��c�cEnv�name��� Pack the sending buffer ��

C�C�NAME�SIZE�

c�cPackInt��databuffer��c�cEnv�type���

c�cPackLong��databuffer��longdata���

c�cPackFloat��databuffer��floatdata���

c�cPackDouble��databuffer��doubledata���

c�cWorldSendStream��databuffer�APP�NAME�STREAM�
�� Broadcast your stream ��

c�cFreePackBuffer��databuffer�
 �� Free sending data buffer ��

c�cUpdate��

� �� While ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality ��

� �� main ��

This is the server�s corresponding
c
cCon�g �le�

Broker c�cBroker���cavesound�mcs�anl�gov��!���

ClientApptype SIMULATION

Clientname �Argonne Simulation Server�

Client program

��

Simple CAVE�to�CAVE application without CAVE functionality

This client receives a stream and processes it in UserData callback

��

�include �c�c�h� �� CAVE�to�CAVE library ��

�include �stdio�h� �� Standard I�I ��

�define APP�NAME�STREAM �� �� Requested stream id ��

void UserData�void �data� CAVEId id�
 �� Callback prototype ��

void main�int argc�char �argv
��

	 �� main ��

c�cWorldInit��argc�argv�
 �� Start CAVE�to�CAVE functionality ��

c�cWorldDataSubscribe��Argonne Simulation Server�� �� Subscribe to stream ��

APP�NAME�STREAM�UserData�

while��� �� Spin endlesslyy ��

	 �� While ��

c�cUpdate��
 �� Do some computation here or spin endlessly ��

� �� While ��

c�cWorldExit��
 �� End CAVE�to�CAVE functionality ��

� �� main ��

��

��

This is the callback called when the stream data is received

��

void UserData�void �databuffer� CAVEId id�

	 �� UserData ��

char remotedata
C�C�NAME�SIZE�
 �� Data buffers ��

int type

long longdata

float floatdata

double doubledata

c�cGetChar�databuffer�remotedata�C�C�NAME�SIZE�
 �� Read the data ��

c�cGetInt�databuffer��type���

c�cGetLong�databuffer��longdata���

c�cGetFloat�databuffer��floatdata���

c�cGetDouble�databuffer��doubledata���

c�cFreeGetBuffer�databuffer�
 �� Get rid of data buffer ��

printf��Received data character %s�n��remotedata�

printf�� integer %d�n��type�

printf�� long %d�n��longdata�

printf�� float %f�n��floatdata�

printf�� double %f�n��doubledata�

printf��from source %d�n��id�

� �� UserData ��

This is the client�s corresponding
c
cCon�g �le�

Broker c�cBroker���cavesound�mcs�anl�gov��!���

ClientApptype SIMULATION

Clientname �Argonne Simulation Client�

Acknowledgments

The following people have contributed to the development of the CAVEcomm library� Terry Disz�
Ian Foster� Terry Franguiadakis� Jonathan Geisler� Dan Heath� Ivan Judson� Bob Olson� Mike Papka�
Mike Pellegrino� Rick Stevens� Matthew Szymanski� and Steve Tuecke

�

