
Lightweight Programming for VR :

Toward a Persistent Virtual Laboratory

Luc Renambot1 Henri E. Bal1;2 Desmond Germans2

Hans J.W. Spoelder2

1Division of Mathematics and Computer Science
2Division of Physics and Astronomy

Faculty of Sciences, Vrije Universiteit

De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

1 Introduction

In recent years, the availability of virtual reality,
high-performance computing, and high-speed networks
has opened opportunities for completely new types of
applications. Traditionally, scienti�c visualization dis-
plays computations in an o�-line and non-interactive
fashion. Scienti�c visualization is moving away from
o�-line and batch-oriented management to a visual
style of processing, using collaborative and interactive
virtual reality methods and computational steering [5].
To become widely used by scientists, virtual reality en-
vironments should provide tools to connect, visualize
and control on-going simulations. Furthermore, a sci-
entist wants to learn from his virtual reality experi-
ence. To facilitate this, the environments should pro-
vide means to interactively identify and quantify fea-
tures of the simulated data from the visual domain [15];
In short, scientists should be able to measure the data,
using a variety of measurement paradigms.

Existing methods for measuring in virtual reality are
based on ideas like probing the visual domain, deriving
quantities from the simulation prior to visualization
or altering the simulation to generate required data
directly. However, these methods are too restrictive,
rely on advanced programming skills of the scientist,
or are batch-oriented by nature.

To cope with these problems, we present a new pro-
gramming environment that enables scientists to easily
and interactively steer an un-modi�ed simulation from
a virtual reality environment. Rapid prototyping of in-
teractive environments will bring more scientists to use
VR environments. A key point is to close the loop be-
tween simulation, immersive visualization, interaction
in simulation domain and steering, giving the scientist
deeper insight into the simulated phenomenon. A cy-

cle we refer to as virtual measuring [6] or high-level
steering.

Using a high-level XML description of the simula-
tion, a relational database, and several Python mod-
ules, the system provides a communication layer to
control the execution of the simulation, an easy to pro-
gram measuring framework in VR, and a technique to
manage scienti�c datasets. We describe a preliminary
case-study dealing with diode laser simulation.

The main contributions of our work are as follows :

� a high-level steering system in a scripting lan-
guage,

� an easy to program measurement framework in
VR,

� a technique to start, browse, and replay scienti�c
simulations,

� a case study on theoretical physics, so called Sisy-

phus attractor.

This paper is structured as follows. In Section 2,
we survey related research. In Section 3, we present
our environment. Using an real program, we show the
coupling of a simulation to a virtual environment in
Section 4. Finally, we present some conclusions.

2 Related work

So far, bringing non-VR scientists to exploit VR and
tele-immersion system is very cumbersome process. It
requires a great skill of programming either in VR for
the scientist or a very good understanding of the sim-
ulation for VR specialist. Usually, the user of the sim-
ulation is unable to port the program to a VR system
for an interactive steering session.



A great deal of research has been done on the so
called \Grid Computing" research area [5], providing
languages, tools, and environments to create new appli-
cations that were not conceivable before. For instance,
one can cite world-wide collaboration in virtual reality,
or real-time data-mining of large data sets. Usually,
this becomes possible at the expense of high program-
ming complexity.

On another side, computational steering focuses on
the interactive control of a simulation during its exe-
cution [11]. The scientist can control a set of param-
eters of the program and react to the current results.
Computational steering enhances the productivity of
the scientist by giving a problem-solving environment.
The idea of a virtual laboratory, where scientist could
analyze their datasets as being produced, is explored
in some research projects. Among them are VIDL [9],
Distributed Laboratories [12, 13], or Cactus [1], the
latter trying to provide a collaborative and problem-
solving environment for large-scale simulations. How-
ever, existing systems are designed to build new appli-
cations or require modi�cations to the source code of
the application, and thus are unsuitable if the source
code is unavailable.

AccessGrid technologies [16] as a new medium for
group collaboration in virtual meeting rooms, using
real-time audio, video, and distributed presentation
provide a new way for tele-conference and group work,
but still lack support for scienti�c data analysis.

No environment so far provides the functionalities
needed for an immersive steering and measuring envi-
ronment which is easy to use by non-expert, highly dy-
namic to deal with collaborative aspects, and recon�g-
urable for a rapid prototyping approach. The steering
system CAVEStudy [14] and the high-level VR toolk-
it VIRPI [7] are �rst steps in the direction, where the
user is able to eÆciently explore his simulation in a
VR world, and to get a deeper insight of the studied
phenomena. But, it lacks 
exibility for several reason-
s. First, the �le format for the simulation description
is not standard. Second, the code generator produces
C++ classes that have to be compiled and linked into
a VR framework. Finally, the steering system and the
VR framework are still two distinct components that
have to be linked by the programmer.

However, new programming paradigms and tools
have been lately designed for 
exible, distributed, and
eÆcient computing, mainly in the context of Internet
programming. Among them are scripting languages,
such as Perl or Python, automatic library wrapper for
interpreted languages, such as SWIG, lightweight eÆ-
cient database, such as MySQL, extensible �le format,
such as XML. Theses tools are usually overlooked by

scienti�c programmers who prefer to develop their own
software in well-known compiled languages (C/C++).
However, this software proves to be eÆcient and 
exi-
ble [3]. It provides a high-level interface, while under-
neath it maintains eÆcient execution in layers such as
graphics rendering and network communication.

3 Toward a Virtual Laboratory

Data retrieval

Information
Registration

Storage

VR system Simulation

Commands

Data

Database

Naming

Figure 1. Basic components of the system

The goal is to get the scientist to bring himself his
simulation program to any VR system (workstation,
Cave, Immersadesk, Wall, ...) and let him explore, ana-
lyze, measure, and control the data produced. In short,
he should be able to produce data, to store the results,
and to learn something from his interactive visualiza-
tion session. We see several components in such an en-
vironment (�gure 1) : a VR system (generic term for
immersive or semi-immersive setup) connected to com-
puting resources where the simulation runs and stor-
age resources to keep the datasets produced. Between
the components, informations are exchanged to com-
plete the tasks : such as naming information (where
the simulation is running), data discovery (what new
dataset has been produced), and steering information
(command to the simulation, data retrieval from the
simulation).

In this paper, we explore some possibilities to inter-
connect these components.

3.1 Computational Steering in VR

CAVEStudy [14] is a system that allows the scien-
tist to steer a program from a virtual reality system
without requiring any modi�cation to the program. It
enables an interactive and immersive analysis of sim-
ulations running on remote computers. CAVEStudy

allows non-experts in VR to couple their simulation to
virtual environments. It uses the CAVERNSoft [10]



Aura

application

VIRPI

OpenGL, DirectX CAVElib, VR Juggler

CAVEStudy server

simulation

commands and parameters

simulation result

CAVEStudy
code generator simulation description

CAVERNSoft

CAVEStudy proxy

CAVERNSoft

VR environment simulation environment

co
n

tr
o

l

Figure 2. The software layers

toolkit as network layer, which is designed to pro-
vide a high performance network infrastructure for tele-
immersion and collaboration.

The scientist models the simulation as a set of in-
put, output, and graphical objects in a XML syntax.
These objects are the input parameters of the simula-
tion and the data produced. Given such a description,
our system generates a wrapper around the simulation
to control its execution on a remote computing system,
which usually is a supercomputer or a cluster. The data
produced by the simulation is then packed and sent to
the computer hosting the virtual environment. A prox-
y for the remote simulation is built to receive the data
generated by the simulation. This proxy is plugged in-
to a virtual reality environment, where it updates the
objects described by the scientist. CAVERNSoft pro-
vides the communication and persistence layer needed
by our infrastructure. Our infrastructure consists of
an XML description syntax, a code generator, and a
virtual reality environment. Thus, it is possible to vi-
sualize and control the program directly in the domain
space of the simulation.

For greater ease of use, CAVEStudy is integrated
into our VR software environment, as describe in �g-
ure 2. The left side shows the VR environment build
with the VIRPI toolkit [7], and the various layers that
are running there. The right side shows the simula-
tion environment, and the connection that is made with
CAVEStudy . VIRPI is an integral toolkit for interac-
tive visualization in virtual reality environments. It
de�nes a framework to build applications that allow
the user to interact with simulation data and describe
virtual measurement tools for the visualized data. It
is aimed at non-VR experts. With very little program-
ming e�ort, the programmer can create an interactive
VR application that suits the needs of the apparent
�eld of research. VIRPI hides platform di�erences, pro-

vides scene graph support, simple shapes, text, graph
loading and access to VR hardware. Also, an easy to
use C++ interface allows the programmer to de�ne
interactive behavior for measurements, object exami-
nation and the selection of subspaces.

3.2 XML as a glue

As mentioned earlier, we use the XML �le format
to describe the data of a simulation. It concerns the
input parameters of the simulation but also the result
of a run. From this �le, we generate modules able to
control a simulation execution. XML in such a mode is
used a protocol description between the software com-
ponents. Figure 3 shows how we use XML information
stored in the database to connect several software com-
ponents in uni�ed way. This way of using XML could
be related to existing works like the CCATT project [4]
where XML-schemas (o�ering a more strict semantic
than regular XML-DTD) to connect distributed soft-
ware component. One can cite also work at the CACR
project at Caltech where XSIL is designed as an XM-
L extension to manage scienti�c data in XML, or the
XDF project from NASA focusing on data manage-
ment with XML for astronomical observation.

3.3 Scripting

SWIG [2] is a tool for integrating scripting lan-
guages like Perl or Python with C and C++ libraries.
Python is an object-oriented scripting (or interpreted)
language widely popular in particular in Internet
programming. It o�ers a large and portable set of
modules (for string handling and process control to
XML parsing and database management). It combines
in a clean interface the C++ object-oriented aspect
and the Perl power of expression. Using SWIG, we



Simulation

Input Vector

Data Set

Simulation

Input Vector

Data Set

Controller

XML
description

Simulation 1

XML
description

Simulation 2

Visualization
PC

Visualization
Wall

Visualization
CAVE

Computing
ressources

Computing
ressources

Import simulation
description

Disk DBDatasets Informations

Store results

Launch requests

Instanciate model

Retrieve description

Receive data

Figure 3. XML as a protocol description / as software component glue

produced a Python version of Aura, the low level
graphic layer of our VR toolkit. The high-level
interaction and widget layer of our toolkit, VIRPI, is
easily translated entirely to Python. This way, the
performance of Aura remains untouched, and extra

exibility is gained on a higher level. This mechanism
gives a great ease of use, combining scripting language
and graphic eÆciency. In the same way, we wrapped
the low-level CAVEStudy classes into a Python
module, giving us a 
exible access o CAVERNSoft
functionalities (on which CAVEStudy is based).

Scripting and an explicit knowledge of the input pa-
rameters of a simulation allow us to write very easily a
large variety of applications, interactive or not, to ex-
ploit di�erent aspects of hardware setup (from the of-
�ce workstation to the full immersive system or a large
wall display). For instance, one could write non-VR
application such as a minimal batch system to explore
extensively the input parameter space of a simulation.

3.4 Database

The use of an relational database in an interactive
visualization system could seem awkward at �rst. We
propose to use it as a persistent access point to the
virtual laboratory. it manages the persistence of the

datasets produced and the naming functionality. In
our project, we use MySQL, a free, fast, and widely
used database system with an SQL front-end. It o�ers
plenty of interesting functionalities such as : networked
repository (multiple users from multiple site can ac-
cess the data simultaneously), fast response time using
multi-threaded daemons, some security features, data
can be easily replicated over multiple sites, and several
languages bindings (C, Perl, Python, C++) which are
easy to use.

We can see two modes of interaction with a simula-
tion, in respect to the database. First, a direct mode
(described in [14]) with live coupling between the sim-
ulation and the VR environment. Second, the system
could be used as data repository where the user can
browse previously produced datasets or start new sim-
ulation to produce data in an non-interactive mode.
The same interface is shown to the VR environment in
both modes, in such a way that one can switch between
live data and existing datasets.

The current design of our database is sketched in
�gure 4. The data stored in the database are simu-
lation informations, user informations, and datasets
already produced. We wrote in Python several mod-
ules to store and retrieve information : registration
as a new user in the system (login), creation of a
new simulation entry, registration of a new running



Application 

World

Simulation

File

Content

Length

Type

World

Scene (3D)

Sound

Simulation

Description(XML)

Port

Host

Simulation

Data

Input vector (XML)

Dataset

User

Application

Port

Avatar

Host

Figure 4. Element of the database

simulation, upload and download of a dataset. This
system allows us to easily answer questions like \where
a given simulation is running", \where are the users
connected to any simulations", or \what dataset are
available and where are they stored". One key point
is that the XML description of a simulation is also
stored in the system, and is used by the runtime for
the communication between the components. Datasets
can be store within the database if they are small and
for ease of use. A more general way is to store the
name of an URL pointing to the data �le (http://...,
ftp://...) accessible transparently. The data are
stored within that �le in a compact way (for example
in binary mode using the marshaling/demarshaling
facilities of Python).

A session at the simulation-side consists of several
steps : Registration of name, host, and communication
port in the simulation table; Upload of the XML �le de-
scribing the simulation; Generation a Python wrapper
for the simulation using the runtime XML parser; In-
stantiation of that wrapper and waiting for commands;
Send the data updates if there's one (or several) live
users; Store the results in the database at the end of
the run. A session at the VR side-could seen as : Reg-
ister as a user to the database; Download the required
information to connect to a running simulation such as
host, port, XML description; Exploration of a precom-
puted dataset by retrieving the location of the data and
the XML description (Both approaches, live simulation
or precomputed data, should be almost transparent :
it consists of the instantiation of an input vector for
the selected simulation); Modi�cation of the input pa-
rameters (meaning interactive steering by sending com-
mands to the simulation in a live session, or switching
to a new dataset for a data mining session); Finally,

measuring in data space using VIRPI to get a better
insight of the phenomenon under study.

3.5 Putting It All Together

We think our approach provides several advantages
over traditional approaches. It removes of the dis-
tinction between interactive steering, parameter-space
exploration, batch scheduling, or VR exploration of a
dataset. All data produced are stored by default. The
scientist can still delete irrelevant dataset afterwards.
Interactive session are not \result-less" : when the
scientist leaves the VR setup (Cave, PowerWall),
data are still available for further examination on
a regular desktop. The knowledge of the input
parameters and data produced in an XML descrip-
tion allows new ways to use a simulation program,
such as systematic or intelligent exploration of the
parameter space by specifying a range or a function
for each parameter, or feature extraction over the
data produced. Moreover, data can be produce in a
over a long period without user interaction and be
examined later on by writing a very simple script
program. Our C++ APIs (CAVEStudy/VIRPI) are
still available and fully operational with Python com-
ponents. After a rapid prototyping in Python and for
demanding applications (large dataset for instance), a
C++ implementation could improve the performances.

The full paper gives some program and XML samples

to illustrate the description.

4 Application

To evaluate our scripting approach of coupling a
simulation and a virtual-reality environment, we im-
plemented an application from the theoretical-physics
�eld dealing with the chaotic behavior of diode laser
in some given conditions. We address in this example
the ease of use, the usability of such a method, and the
added value for the user.

We implemented the visualization of a diode laser
behavior, referred to as the Sisyphus Attractor [8]. Nu-
merical simulations are performed for a semiconductor
diode laser, subject to optical feedback. Due to the
feedback, the resulting dynamical system has in�nite
degrees of freedom. The exploration and investigation
of such a large data set calls for the immersion of the
user into a representation of the parameter space. A
simulation run generates a trajectory in such a space.
Directly in simulation space, the user is able to tune
four parameters of the simulation to explore their
inter-relations. Both interactive sessions to explore



a limited set of values and extensive o�-line dataset
generation are useful for this application, which make
it a perfect case study for our 
exible environment.

This part describes in length the application and the

added value of our system in the full paper.

5 Conclusion

We sketched a new environment for steering from
within virtual reality environments in a 
exible way.
Both Python and C++ bindings are provided to the
CAVEStudy and VIRPI toolkits. The system provides
interactive immersive analysis and control of a simula-
tion running on a remote computer. It does not alter
the simulation program but interacts with the simu-
lation input and output parameters described as XM-
L attributes. Using modern and lightweight software
components (Python modules, XML �les, relational
database), we draw some functionalities needed to ease
and enhance the use of VR as a scienti�c visualization
tool. As a case study, we applied our system to an ex-
isting unmodi�ed simulation program from the �eld of
theoretical physics. On that examples, we showed the
added values of our system such as ease of use, 
exi-
bility, and in general a new way to manage scienti�c
programs.

References

[1] G. Allen, W. Benger, T. Goodale, H.-C. Hege, G. Lan-
fermann, A. Merzky, T. Radke, and E. Seidel. The
Cactus Code: A Problem Solving Environment for the
Grid. In Proceedings of the Ninth IEEE International
Symposium on High Performance Distributed Comput-
ing, Aug. 2000.

[2] D. M. Beazley. SWIG: an easy to use tool for in-
tegrating scripting languages with C and C++. In
U. Association, editor, 4th Annual Tcl/Tk Workshop
'96, pages 129{139. USENIX, July 1996.

[3] D. M. Beazley and P. S. Lomdahl. Lightweight com-
putational steering of very large scale molecular dy-
namics simulations. In Supercomputing '96 Conference
Proceedings. ACM Press and IEEE Computer Society
Press, Nov. 1996.

[4] R. Bramley, K. Chiu, S. Diwan, D. Gannon, M. Govin-
daraju, N. Mukhi, B. Temko, and M. Yechuri. A
Component Based Services Architecture for Building
Distributed Applications. In Proceedings of the Ninth
IEEE International Symposium on High Performance
Distributed Computing, Aug. 2000.

[5] A. Foster and C. Kesselman. The Grid: Blueprint for
a New Computer Infrastructure. Morgan Kaufman,
1998.

[6] D. Germans, H. J. Spoelder, L. Renambot, and H. E.
Bal. High-Level Steering : Measuring in Virtual Re-
ality Environments. In Proceedings of the ASCI, The
Netherlands, 2001, 2001.

[7] D. Germans, H. J. Spoelder, L. Renambot, and H. E.
Bal. VIRPI: A High-Level Toolkit for Interactive Sci-
enti�c Visualization in Virtual Reality. In Proc. Im-
mersive Projection Technology/Eurographics Virtual
Environments Workshop, Stuttgart, Germany, 2001,
2001.

[8] C. Mirasso, M. Mulder, H. Spoelder, and D. Lenstra.
Visualization of the Sisyphus Attractor. Computers in
Physics, 11(3):282{286, May/June 1997.

[9] U. Obeysekare, F. Grinstein, and G. Patnaik. The
Visual Interactive Desktop Laboratory. IEEE Com-
putational Science and Engineering, 4(1):63{71, Jan.
97.

[10] K. S. Park, Y. J. Cho, N. K. Krishnaprasad, C. Scharv-
er, M. J. Lewis, J. Leigh, and A. E. Johnson. CAV-
ERNsoft G2: A toolkit for high performance tele-
immersive collaboration. In Proceedings of the ACM
Symposium on Virtual Reality Software and Technol-
ogy, pages 8{15, Oct. 2000.

[11] S. Parker, M. Miller, C. Hansen, and C. Johnson. An
Integrated Problem Solving Environment: the SCIrun
Computational Steering System. In Hawaii Interna-
tional Conference of System Sciences, pages 147{156,
Jan. 1998.

[12] B. Plale, G. Eisenhauer, K. Schwan, J. Heiner, V. Mar-
tin, and J. Vetter. From Interactive Applications to
Distributed Laboratories. IEEE Concurrency, pages
78{90, April-June 1998.

[13] D. Reed, Giles, and C. Catlett. Distributed Data
and Immersive Collaboration. Communication of the
ACM, 40(11), Nov. 1997.

[14] L. Renambot, H. E. Bal, D. Germans, and H. J.
Spoelder. CAVEStudy: an Infrastructure for Com-
putational Steering in Virtual Reality Environments.
In Proceedings of the Ninth IEEE International Sym-
posium on High Performance Distributed Computing,
pages 57{61, Aug. 2000.

[15] H. J. Spoelder. Virtual Instrumentation and Virtual
Environments. IEEE Instrumentation and Measure-
ment Magazine, 3(3):14{19, 1998.

[16] R. Stevens. ActiveSpaces: The access grid, active mu-
ral and advanced visualization systems. In D. Ebert,
M. Gross, and B. Hamann, editors, Proceedings of the
1999 IEEE Conference on Visualization, pages 16{18,
Oct. 1999.


