
Problem – Poor Performance

You are experiencing poor network performance,
but who is to blame?

• Your End Host? Edge Router? Wide Area Network?
• A wide variety of network tools exist to help narrow down

this problem
• However, most end-users are either:

• Unfamiliar with these tools
• Or, unable to fully understand the output of these tools

Problem – At the End Hosts?

End Hosts not tuned for optimal performance
• TCP uses a congestion window to determine how many

packets may be sent at a given time
• The larger the window, the higher the throughput
• Maximum congestion window size is related to the space allocated

for the send and receive buffers
• Must use optimal send and receive buffer sizes

• Small buffers will cause the congestion window not to open fully
• Large receiver buffer will cause the window to shutdown.

Problem – At the Edge Router?

Edge router could be misconfigured:
• Duplex mismatch is common

• Edge router (or even the host itself) maybe set to half duplex
instead of full duplex

• Half duplex mode: Send or receive data, but not at the same time
• Transfer rate is cut in half or more

Problem – Wide Area Network?

Problem could be in the Wide Area Network
• The path could be congested:

• Packets are arriving at some router along the path much faster than
it can forward them

• Packets are dropped
• Excessive TCP retransmissions are a sign of congestion

• There could be a bottleneck on the path:
• Somewhere along the patch is a much slower link
• Causes the throughput to be significantly less than expected

Solution: Performance Advisor
Measures, displays, and analyzes network metrics

• Uses existing diagnostic tools:
– ping, traceroute, Iperf, and Web100
– integrates them into a common framework

• Attempts to emulate a junior-level network engineer:
– Allows users to troubleshoot their own networking problems
– Advises users on course of action, including “do nothing—your

network performance is as good as possible”

• Additional tools and analyses are simple to add

• Implementation details:
– Written in Java, uses XML-RPC for portability and extensibility

Methodology: Architecture
Performance Data Collector (PDC)

• Gathers network performance data
Performance Data Historical Archiver (PDHA)

• Archives network performance data
Analysis Engine

• Analyzes network data
• Provide plain text advice to solve
problems or increase performance

GUI
• Expert Interface: table & tree of metrics
• Map Interface: graphical display of network
• Analysis Interface: interact with Analysis Engine

• Designed to be stand-alone, extensible, and portable
• Elegantly handles platform differences and unavailability

of any given measurement
• Features:

– Uses bundles to facilitate integration of performance data
measurement tools

– Implements an XML-RPC interface
– All requests are fulfilled immediately without any caching
– Allows cooperation of both ends through a mechanism called

activation (i.e. for tools such as Iperf)
– Security using SSL and username/password (more to come)
– Mechanism for autoupdating bundles

Performance Data Collector

• A collection of scripts or Java classes that describe:
– How to invoke a measurement tool
– What metrics the measurement tool measures
– How to parse the measurement tool's output

• PDC communicates with bundles using interface “Bundle”
– canInvoke: returns true or false

• Tests if bundle can be invoked (for platform specific tools)
– getMeasures: returns metrics measured
– getTool: returns tool it uses
– getVersion: returns version of bundle

• Used for auto-updating
– needsActivation: returns true if activation on destination host is

needed (for tools such as Iperf)

PDC - Bundles

• A Java bundle can implement the Bundle interface
• An ADF bundle can consists of:

– a set of executables which may be written in any language
– a text file, called an application definition file (ADF), which

includes the information needed to tie the pieces together

• Settings required in Application Definition Files:
– measures: whitespace-delimited list of the metric identifiers
– invoke: name of the bundle's executable
– constraints: the name of the bundle's executable
– tool: text that describes the method used to measure the metrics
– version: version of bundle
– activate: name of service this bundle provides
– command: string containing activation executable name and

arguments

PDC – Two Bundle Types

• XML-RPC Interface
– getAllMetrics: returns the list of metrics that may be measured
– getMeasurement: returns an individual measurement
– getMeasurements: returns a list of measurements
– getAllMeasurements: returns all measurements given a remote host

• PDC auto-updating:
– Periodically updates the bundles (automatically)

• User can set how often to check for updates
• All system bundles updated

– Tool to update bundles on demand
• User can control which bundles are updated

PDC - Features

• Short to medium-term storage of PDC measurements

• Features:
– Utilizes an XML-RPC interface

• same security features as the PDC
– Allow customization of how often, and how much historical

performance data is stored
– Act as a caching proxy for the PDC
– Allow the retrieval of historical data by date and time:

• Also from 3rd party databases
– Allow different performance measurements to have different

"lifetimes"

PDHA (Design)

• Analyze the metrics for a specific end-to-end path and give
advice to solve any performance or connectivity problems

• Features:
– “Test Definition Files” (TDFs) similar to PDC’s ADFs

• TDFs consist of detection rules (simple binary operations on
metrics), problem descriptions, and solutions.

• Will migrate to an interface similar to the bundles

– Constructs decision trees to efficiently determine
problems, driven by the detection rules

– Decision trees are ordered by cost and probability
• Cost is updated by results from the PDC

Analysis Engine

Example: ADF Bundle
iperf.adf:

Measures: network.link.bandwidth.available.TCP
Invoke: invoke.sh
Constraints: constraints.sh
Tool: iperf
Version: 2.3+5.0
Activate: iperf-server
Command: /usr/bin/iperf -s

activate.sh:

#!/bin/sh
#activate the iperf server
iperf -s & echo $!

public class TestJava implements Bundle {
static final private String METRIC =

"test.java.measurement";
static final private String TOOL = "testing-

java";
static final private String VERSION =

"1.2.3+3.1.2";

public boolean canInvoke() {
return true; }

public MetricList getMeasures() {
MetricList ml = new MetricList();
ml.add(METRIC);
return ml; }

public String getTool() {
return TOOL; }

public String getVersion() {
return VERSION; }

public boolean needsActivation() {
return false; }

public boolean activationServiceVerified() {
return true; }

Example: Java Bundle
public String getActivationService() {

return null;
}
public String getActivateCommand() {

return null;
}

public MeasurementMap invoke(InetAddress
remoteHost, int port)

throws AdvisorException {

try {

MeasurementMap mm = new MeasurementMap();

Measurement m = new Measurement(METRIC,
"2", TOOL, InetAddress.getLocalHost(),
remoteHost, new Date(), new Date()); mm.put(METRIC,
m);

return mm;

} catch (UnknownHostException ex) {

throw new AdvisorException(ex); }

}

}

• Visit our website:
– http://dast.nlanr.net/Projects/advisor

• Download alpha release
– PDC and Expert GUI only
– Released: November 2003

• Join our mailing list: advisor-users
– Instructions on website

For More Information

• Three main graphical displays
– Expert GUI: Displays all metrics

• Uses a tree to organize metrics
• Uses a table to display metrics and corresponding

information
– Analysis GUI: Displays advice reported from

the analysis engine
• Simple text display

– Map GUI: Visually display of the network and
trouble spots

• Users will be able to click on the map to view
measurements for specific areas along the path

Advisor GUI

Advisor Expert GUI

Progress
Monitor

Optionally
start PDC on

local host
automatically

Advisor Expert GUI

Buttons to measure the current metric
set in the table, all metrics, save the
current set, save all metrics, and clear
the table.

Custom
metric list to
watch
specific
metrics or
constrain the
list

Tree display of all metrics

Table
showing
metrics
selected in
the tree
display

Connection
and security
settings

Advisor GUI

• Retrieving Internet2 Pipes Data
• http://e2epi.internet2.edu/E2EpiPEs/e2epipe_index.html

Advisor GUI

• Displaying Internet2 Pipes Data
• http://e2epi.internet2.edu/E2EpiPEs/e2epipe_index.html

Poster Credits

• Tanya Brethour, NLANR/DAST
Email: brethour@ncsa.uiuc.edu

• Jim Ferguson, NLANR/DAST
Email: ferguson@ncsa.uiuc.edu

