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The “holy grail” of the ab initio electronic
structure theory:

The development of simple, “black-box,” and affordable methods that can pro-
vide highly accurate (~ spectroscopic) description of ENTIRE GROUND- AND
EXCITED-STATE POTENTIAL ENERGY SURFACES
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Examples of applications:

e dynamics of reactive collisions
e highly excited and metastable ro-vibrational states of molecules
e rate constant calculations

e collisional quenching of electronically excited molecular species

Motivation:

e clementary processes that occur in combustion (e.g., reactions involving

OH and N,0,)

e collisional quenching of the OH and other radical species

IN THIS PRESENTATION, WE FOCUS ON NEW
“BLACK-BOX” COUPLED-CLUSTER METHODS FOR
GROUND-STATE POTENTIAL ENERGY SURFACES



SINGLE-REFERENCE COUPLED-CLUSTER (CC) THEORY
(J. Cizek, 1966, 1969; J. Cizek and J. Paldus, 1971)
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PROBLEMS WITH THE STANDARD CC
APPROXIMATIONS

(TW =34 Ti,, ma < N)

Example: Ny
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Existing solutions

e Multi-Reference CC Methods (Jeziorski, Monkhorst, Paldus, Piecuch,
Bartlett, Mukherjee, Lindgren, Kaldor et al.)
[also, Multi-Reference CI and MBPT Approaches; cf. the presentation
by Professor Mark S. Gordon]

e State-Selective, Active-Space CC Methods (e.g., the CCSDt and CCSDtq
approaches of Piecuch et al.)

e Externally-Corrected CC Methods (e.g., the RMRCCSD approach of Pal-
dus and Li)

THE PROPOSED RESEARCH FOCUSES ON METHODS
THAT COMBINE THE SIMPLICITY OF THE STANDARD
SINGLE-REFERENCE CC APPROACHES, SUCH AS
CCSD(T), WITH THE EFFICIENCY WITH WHICH THE
MULTI-REFERENCE METHODS DESCRIBE GROUND-
STATE POTENTIAL ENERGY SURFACES

SPECIFIC GOALS

e New CC methods for ground-state potential energy surfaces:

— method of moments of CC equations

— renormalized CC approaches



METHOD OF MOMENTS OF COUPLED-CLUSTER
EQUATIONS: A NEW APPROACH TO THE
MANY-ELECTRON CORRELATION PROBLEM

A new relationship in quantum-mechanical theory of

many-fermion (many-electron) systems

EW — the electronic energy obtained using the approximate coupled-
cluster calculations (e.g., CCSD)

E — the exact energy (the exact eigenvalue of the electronic Hamil-
tonian)

) — the exact wave function

M?(mA) - the generalized moments of coupled-cluster equations

MMCC - the method of moments of coupled-cluster equations - provides us
with fundamentally new ways of performing electronic structure calculations
and renormalizing the failing standard tools of quantum chemistry:.



The MMCC Energy Formula (the Ground-State Problem)
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Approximate MMCC Methods: The MMCC(m4,mp)
Approaches

E(ma,mp) = EY + 33" (W]Q, Cy(ma) M;(ma)| @)/ (W] @)
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Various approximate forms of |V) lead to different classes of MMCC(m 4, mp) schemes.



The MMCC(2,3), MMCC(2,4), and MMCC(3,4) Methods
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The MMCC(2,3)/CISDT, MMCC(2,3)/CISDt,
MMCC(2,4)/CISDTQ, and MMCC(2,4) /CISDtq Methods

MMCC(2,3)/CISDT
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The Renormalized and Completely Renormalized CCSD|[T],
CCSD(T), CCSD(TQ), and CCSDT(Q) Methods

MBPT(2)-like choices of ¥ lead to the renormalized (R) and completely renormalized
(CR) CCSD[T], CCSD(T), CCSD(TQ), CCSDT(Q), etc. approaches. Here are some

examples of these methods:
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CR-CCSDT(Q)

(WOOSPTQ = (1 4+ Ty + T + Ty + i To + 173 | @)

ECRfCCSDT(Q) _ ECCSDT + <\PCCSDT(Q)|Q4 M4(3)|(I)>/<\IJCCSDT(Q)|6T1+T2+T3|(I)>

The (C)R-CCSD|T], (C)R-CCSD(T), (C)R-CCSD(TQ), and (C)R-CCSDT(Q)
methods can be viewed as the extensions of the standard CCSD[T], CCSD(T),
CCSD(TQx), and CCSDT(Qs) methods, respectively.

The computer costs of the (C)R-CCSD[T], (C)R-CCSD(T), (C)R-CCSD(TQ), and
(C)R-CCSDT(Q) calculations are the same as the costs of the corresponding stan-
dard CCSD|[T], CCSD(T), (C)R-CCSD(TQ), and (C)R-CCSDT(Q) calculations.
For example, the cost of calculating the noniterative (T) correction of the standard
CCOSD(T) approzimation is knnk. The costs of calculating the noniterative (T)
corrections of the R-CCSD(T) and CR-CCSD(T) methods are kn?n? and 2kn3n?,

respectively.
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Selected vibrational energies G(v) (v is the vibrational quantum number) and dissociation
energies D, (in ecm™!) of the HF molecule as described by the aug-cc-pVTZ basis set.
The RKR represent total energies and all theoretically computed energies represent errors
relative to RKR.
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The PES for the Be + FH — BeF 4+ H Reaction

Full Cl Results
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Future Work (Methods and Algorithms, Ground-State
Problem)

e Incorporation of the standard and renormalized CCSD(T),
CCSD(TQ), and CCSDT(Q) methods in GAMESS (years 1
and 2)

e Development of the ground-state MMCC schemes with the
non-perturbative choices of ¥ (years 1-3)

e Extensions of the MMCC and renormalized CC methods to
open-shell states and reference configurations of the ROHF
type (years 2 and 3)

e Work with Professor Mark S. Gordon and coworkers on par-
allelizing the MMCC and renormalized CC methods within
GAMESS (years 2 and 3)

e Personnel: 3 (PI, 1 postdoc, 1 student)

e Present computer resources: 2- and 32-CPU Origin systems
at MSU

e Collaborations: Professor Mark S. Gordon and coworkers at
Iowa State University and Ames Laboratory; also, Professor
Stanistaw A. Kucharski (Silesian University)

e Expected computer needs: 55,000 MPP hours at NERSC



